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This paper presents two schemes for decentralized state estima­
tion of hierarchical interconnected dynamical systems. Scheme-1 is 
the interaction free decoupled state estimation algorithm and it is 
inefficient compared to the centralized scheme. Scheme-2 is devel­
oped to improve the performance of the decoupled estimators by 
processing the estimated output error data (based on scheme-1) 
of each subsystem along with the state and parameter estimation 
technique of Tse and Wienert (1975). This, in turn, incorporates 
the effect of the state interaction terms into the decoupled filters. 
Both schemes are free from state information exchange between the 
sub-estimators and moreover1 the telemetry and instrumentation 
costs reduces rapidly as the dimension of the composite system in­
creases. A lOth order hierarchical interconnected dynamical model 
is used to illustrate the effectiveness of the proposed method based 
on scheme-2. 
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1. Introduction 

For small to medium size linear dynamic systems, a centralised state estima­
tion scheme has shown itself to be viable in terms of the processing burden 
placed on the computing systems. For large dimensional systems the conven­
tional Kalman filter faces some computational difficulties, Kailath (1974), and 
moreover the processor loading grows steeply. However, as the size of the system 
increases the information exchanges between the subsystems increases rapidly, 
as does the cost of the telemetry system. Due to the physical configuration and 
high dimensionality of such large systems, a centralized state estimation scheme 
is neither economically feasible nor even necessary. To circumvent the above 
difficulty and in view of the advent of inexpensive computer hardware what is 
being done now is the introduction of minicomputer, microcomputer or micro­
processor at each subsystem level of decentralized state estimation . A great deal 
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of attention has been paid to the problem of decentralized state estimation of 
large scale systems and some interesting results have already been obtained by a 
number of research workers Venkateswarlu and Mahalanabis (1977), Sanders et 
al. (1978), Tacker and Sunders (1980), Davison and Chang (1986). Decentralized 
state estimation algorithms proposed by Tacker and Sanders (1980) for inter­
connected dynamic system still demand some information exchange amongst 
the subsystem estimators. Recently, Prasad et al. (1984) developed a state in­
teraction model based decentralized estimation scheme which avoids all kinds 
of information exchanges. But, on the other hand, their method involves a con­
siderable amount of computational burden while the state interaction model 
is augmented with the subsystem model, which in turn increases the order of 
subsystem estimators. 

This paper proposes a complete decoupled state estimation scheme for the 
i th subsystem and considers the effect of state interconnection terms of other 
subsystems using combined state and parameter estimation techniques , Tse and 
Wienert (1975) in order to improve the performance of the decoupled filters. 
Our proposed scheme does not require any augmentation with state interaction 
model and moreover it avoids the information exchanges between the subsys­
tems which in turn helps us to develop a decentralized state estimation of the 
composite hierarchical system. 

The rest of the paper is organised as follows. In Section 2, we state the 
problem studied here for hierarchical interconnected discrete time systems. In 
Section 3, we then derive the decentralized state estimation algorithms for the 
composite system. Some simulation results of the proposed algorithms are then 
presented in Section 4. Discussion of the result and conclusions are presented in 
Section 5. 

2. Problem statement 

Let us consider a composite of "N" hierarchical interconnected subsystems 
(S; :i = 1, 2, 3, ... ) described by 

X(k + 1) 
Y(k) 

where, X(k) 
U(k) 
w(k) 

AX(k) + BU(k) + fw(k) 

CX(k) + TJ(k) 

state vector 
input vector 

(1) 

(2) 

(n x 1); 
(p X 1); 
(p X 1 ); process noise vector; assumed to be white (un­

correlated) sequence with known covariance 
"Q". 

TJ(k) (m x 1); measurement noise vector; assumed to be 
white sequence with known convanance 
"R" structure and uncorrelated with w(k) 
sequences. 
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The matrices A, B, r and C have their proper dimensions, and the i th sub­
system which have all interconnections from the previous subsystems {Sj, j = 
1, 2, . .. , i - 1} can be described by the following pair of equations: S; : { i th 
subsystem}, fori = 1, 2, ... , N. 

X;(k + 1) 

y;(k) 

i-1 

A;X;(k) + L A j Xj(k) + B;U(k) + f;w(k) 
j=1 

i-1 

C;;X;(k) + L C;jXj (k) + TJ;(k) 
j = 1 

(3) 

(4) 

where X;(k) E Rn;x 1 is the state vector, U(k) is the control vector, TJ;(k) is the 
scalar measurement noise and y;(k) is the scalar output of the ith subsystem. 
We have assumed that the pair (A;;, C;;) is completely observable. Thoughout 
our discussion, we shall assume that the input to the system is zero (U(k) = 0). 
The problem that we will study in the next section is given as follows: 

For the given i th hierarchical interconnected subsystem model (3)-( 4) (with 
U(k) = 0), we first consider the implementation of the complete decoupled 
(omission of state interactions) but asymptotic stable state estimation scheme. 
We then propose another scheme to improve the performance of this estimator 
by simply processing the estimated output error of the i th subsystem to obtain a 
state variable model of the interaction term by adopting the state and parameter 
estimation techniques of Tse and Wienert (1975). This in turn, improves the 
performance of the complete decoupled estimator of the i th subsystem. 

3. Development of decentralized state estimator aigorithm 

We shall consider first the development of decoupled state estimation of the 
ith subsystem under consideration (described by equations (3) and (4)) and 
then discuss the improved version of this estimator by modelling the effect state 
interconnection terms in state variable form. 

3.1. Decoupled state estimation 

Scheme-1 

The desired decoupled estimators structure can be obtained by considering the 
set of "N = m" state estimators for the decoupled system (fori = 1, 2, .. . , m) 

X;a(k + 1) 

Yid( k) 

A;;X;a(k) + f;w(k) 

C;;X;a(k) + TJ; 

(5) 
(6) 

It is well known, Anderson and Moore (1979), the square-root Kalman filter for 
the above i th decoupled system can be written as: 
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Yid(k + 1/k) C;;X;d(k + 1/k) (8) 

where, K;p(k) = A;;K;(k) =predicted Kalman gain for the ith subsystem. The 
Kalman gain K;p(k) can be obtained by employing the following equations: 

[ (C;;P;(k/k- ~)C;; + R;) 112
' K;.(k) l S:(k/k) 

1/2' 
R; 0 

T1 [ 
s:(k/k + I)c;i S:(kjk- 1) l 

[ S:(k: 1/k) l 
K;p(k) 

where: T1, T2 

T [ S:(kjk)A;; l 
2 Q1/2'r: 

A;;K;.(k)[C;;P;(kjk- l)C;; + R;]- 112 

Householder transformation matrices, 
Error covariance matrices, 

(9) 

(10) 

(11) 

P;(kjk), P;(k/k- 1) 
S;(k/k), S;(kjk- 1) The square root matrices of P; ( k / k) 

and P;(k/k- 1), 
The input and output noise covariance 
matrices. 

The i th subsystem estimator (7) is a stable filter, if A;; is a stability matrix 
and the pair (A;;, C;;) is observable. This implies that all the eigenvalues of 
the (A;; - K;p(k)C;;) are inside the unit circle. Under the same condition, it 
can be shown that the set of the "m" estimators (7) constitutes a sub-optimal 
decoupled estimator of the composite system (1)-(2). The decoupled estimators 
(7) while asymptotically stable (for i = 1, 2, ... , m) are only sub- optimal for 
the composite system and it may be desirable to improve the filter performance 
by introducing some corrective measure for the state interaction terms . It may 
be noted that the 1st subsystem estimator is optimal due to the inherent mode 
of interconnection of subsystems (3)-( 4), for i = 1. Naturally, this is not equiv­
alent to improvement of the performance of the 1 st subsystem estimator. The 
improved version of scheme-1 for the remaining estimators is discussed in the 
next subsection. 

3.2. Improved version of decoupled state estimator 

Let us define the estimated output error of i th subsystem as 

Yie( k) Actual output of i th subsystem­
the estimated output of the same 
subsystem based on scheme-1. 

[y;(k)- Yid(k/k- 1)], for = 1, 2, ... , m(N) (12) 



Modelling hierarchical dynamic systems for decentralized state estimation 33 

The estimated output error sequences for the i th subsystem are mainly due 
to the omission of the interaction terms which can be modelled by a linear dy­
namic discrete time system and it is described by the following pair of difference 
equations: 

X;e(k + 1) 

Yie ( k) 

A;;,eXie(k) + (J";(k) 

C;;,eXie(k) + ~;(k) 
(13) 

(14) 

where X;e(k) E Rn;xl, Yie(k) is the scalar output from the system model 
(13)-(14) and ();(k) and ~;(k) are zero mean Gaussian noise with unknown 
covariances. Using the innovation theory, Kailath (1970), the state space model 
(13)- (14) with two white noise sources ((J";(k) and ~;(k)) can be replaced by an 
equivalent innovation representation with a single white noise source 1/J; ( k) . The 
system (13)-(14) is equivalently represented by the following innovation model: 

X;e(k + 1) 

Yie ( k) 

A;;,eXie(k) + K;e(k)'I/J;(k) 

C;;,eXie(k) + 1/J;(k) 

(15) 

(16) 

where 1/J; ( k) is the innovation sequence with the zero mean and unknown covari­
ances R'ie(k) and K;e(k) is the Kalman gain of the equations (13)- (14). Both 
Rie(k) and K;e can be calculated by adopting on- line procedure of Tse and 
Wienert (1975). The matrices A;;,e and C;;,e are assumed to have the following 
special structures: 

0 I(n;-l)x(n;-1) 

Cloi,2 ... 

and 

C;;,e = [1.0 0.0 . ........ O.Ohxn, 

The order of the system matrix A;;,e and its parameters are to be estimated by 
off-line computations. 

In order to estimate the parameters of the matrix Aii,e, Rie(k) and K;e(k), 
we adopt the following pr9cedure of Tse and Wienert (1975) for single output 
system. Let us denote P;e the covariance matrix of the states in (15) and define, 

r;(l) 

and the equations (15)-(17) imply the following relations: 

r;(O) 

r;(l) 

s; 

A;;,eP;eA;;,e + K;eR;eKI, 

C;;,ePieCii,e + R:e 

C;;,eA;~;s;, l>O 

A;;,ePieCii,e + K;eR'i.e 

(17) 

(18) 

(19) 

(20) 

(21) 
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For l = n;+r, the above equations (20)-(21), can be written together as compact 
form: 

r;(n; + r) 
ni-l 

L o:;jr;(j + r), 1, 2, ... , n; 
j=O 

while the expression for linearly independent test of vectors utilized is as: 

C An; 
ii ,e ii ,e 

From equation (22) one can write the following expression: 

R; = cjJ(n;)o:; 

where R; [r;(n; + 1), r;(n; + 2), ... , r;(2n;))' 

and 

cjJ( ni) 
[ 

r;(1) 
r;(2) 

r;(~;) 

r;(2) 
r;(3) 

r;(n; + 1) 

r;(ni) l 
r;(n;; + 1) 

r;(2n;- 1) 

(22) 

(23) 

(24) 

(25) 

This matrix c/J(n;) is known as Hankel matrix and it is useful to determine 
the order of the unknown system. Let us define, 

d;(n;) =I detcjJ(n;)l, fori= 2, 3, ... , m(N) 

and evaluate the value of d;(l), for l = 1, 2, ... , n;, n;+l,. 
If, 

d;(l) 0 (greater than zero), 
0, for l = ni+l 

for l = 1, 2, ... , n; 

or greater than n; 

then 'n;' indicates the order of the unknown system. The same procedure can 
be adopted to determine the structures of the interaction model of other subsys­
tems. After obtaining the structure of the unknown system, one can immediately 
calculate the elements of c/J;( n;) in the following manner: 

(26) 

where, N D = Sufficient large number of data points. 
Now, the estimate of a:; can be obtained from equation (24) 

R; = ;J;;(n;)&;, fori= 1, 2, ... , m(N) (27) 
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Using equation (20), we can calculates;, as given below: 

r 

r;(1) l r C;;,e l r;(2) C;;,eAii,e 
. = . Si = fi;S; =Si 

r;(~;) C;;,eA7;:; 1 

(28) 

We note that matrix li; is the unit matrix of dimension (n; x n;) due to the 
special structure of C;;,e and A;;,e. 

Finally, the matrices K;e ( k) and Rie( k) are calculated recursively by the 
following procedure: 

Rte(k) 

K;e(k) 

P;e(k + 1) 

r;(O)- C;;,ePie(k)Cii,e> P;e = 0 

[s;- A;;,ePieCii,eJR:e -l(k) 

A;;,ePieA;i,e + K;e( k )Rte( k )Kie( k) 

(29) 

(30) 

(31) 

The predicted estimated states for the i th subsystem interaction model (13)- (14) 
can be written as 

X;e(k + 1/k) 

X;e(k/k) 

A;;,eXie(k/k) (32) 

X;(k/k - 1) + K;e(k)[Yie(k)- C;;,eXie(k/k- 1)) (33) 

The improved version of decentralized state estimation of the i it subsystem 
(3)- ( 4) can thus be obtained by algebraic addition of the two equations (7) and 
(32). The schematic diagram of the proposed estimation algorithm is shown in 
Fig. 1. The proposed algorithm is described by the following sequence of steps: 

ALGORITHM: (For scheme-2): Fori = 1, 2, 3, ... , m(N) 

STEP-1: Estimate the state X;d(k/ k-1) of the i th decoupled subsystem (5)- (6), 
using the square-root Kalman filter equations (7)-(11). 

STEP-2: Compute the ith subsystem estimated output error data using the ex­
pression (12) (i.e.: y;(k)- Yid(k/k- 1)) 

STEP-3: The interaction terms involved in the ith subsystem (3)- (4) are model­
led in the state variable form (13)-(14), which are finally expressed by the in­
novation model (15)-(16). 

STEP-4: Order of the system (15)-(16) and the parameters of the system matri­
ces A;;,e and C;;,e are estimated by (off-line computation) utilizing the equations 
(24)-(28). 

STEP-5: Kalman gain I<;e ( k), noise covariance Rie( k) and state estimates X;e ( k+ 
1/ k) of the i th innovation model (15)- (16) are then obtained recursively by em­
ploying the equations (29)- (33) (on- line computation). 
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STEP-6: Compute, 

x;(k + 1/k) = xid(k + 1/k) + xie(k + 1/k) 

using the equations (7) and (32). 

STEP-7: Continue the steps 1, 2, 5 and 6 for on-line decentralized state estima­
tion for interconnected hierarchical systems (3)-(4). 

4. Results of simulation study 

In order to illustrate the effectiveness of the proposed algorithm of the pre­
ceding Section 3.2, let us consider a lOth order system model which arises out 
of hierarchical interconnections of three subsystems. The explicit model of the 
composite system (with U(k) = 0) is given as 

X(k + 1) = (34) 

0.0 1.0 0.0 0.0 0.0 0.0 0.0 : 0.0 0.0 0.0 

0.0 0.0 1.0 0.0 0.0 0.0 0.0 : 0.0 0.0 0.0 

0.0 0.0 0.0 1.0 0.0 0.0 0.0 : 0.0 0.0 0.0 

-0 .205 1.222 -2.727 2.7 0.0 0.0 0.0 : 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 1.0 0.0 : 0.0 0.0 0.0 
X(k)+ 

0.0 0.0 0.0 0.0 0.0 0.0 1.0 : 0.0 0.0 0.0 

-0 .101 0.101 0.0 -0.949:0 .336-1.46 2.1 : 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 : 0.0 1.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 : 0.0 0.0 1.0 

0.1 -0 .001 0.02 0.01 :-0.5 0.006-0.01:0.34-1.482.1 

+ [-0 .0590.00020.00150.0003-0.0002 0.0002 0.0 0.0 0.0 0.0 ] ~(k) 
0.0 0.0 0.0 0.0 0.0002 -0 .00020.0003 -0.0590.00020.0015 

[ 

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 l 
Y(k) = 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 X(k) + TJ(k) 

1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 
(35) 
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The above system has been simulated using the following initial data; while the 
Subsystem-!, 2 and 3 have the dimensions 4, 3 and 3 respectively. 

E{X(O)} (-0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0)' 

E{w(k)w(k)'} Q [ 0.01 0.0 ] . 
0.0 0.01 ' 

E{TJ(k)TJ(k)'} = R [ 
00~01 0~0°1 ~:~ l ; 
0.0 0.0 0.01 

We have considered the following initial data in order to obtain centralized and 
decentralized state estimate of the composite system. 

Initial data for centralized estimate: 

X(O/- 1) 

P(O/- 1) 

(0 0 0 0 0 0 0 0 0 0)' 

0.1 X hoxto 

With this data, we obtain the Kalman gain at 400 th iteration as given below: 

0.016 - 0.04 -0.02 
0.015 - 0.05 - 0.03 
0.016 -0.05 -0.03 
0.017 -0.04 -0 .03 

Kp = 
-0.06 0.5 - 0.029 
-0.1 0.65 -0.11 
- 0.1 0.79 - 0.21 
0.022 -0.5 - 0.57 
0.033 - 0.7 -0 .73 
0.061 - 1.0 - 0.83 

Initial data for complete decoupled state estimation, i.e. scheme-1: 

X;d(O/ - 1) 
P;d(O/- 1) 

(o o o o)' 
0.01 X In,xn;i fori= 1, 2, 3 

(36) 

(37) 

With the above initial data, we obtain the following 'Kalman gain' at 400 th 
iteration for subsystem-1 to subsystem-3. 

Ktp 

K2p 

K3p 

(0.047 0.044 0.042 0.04]' ; 
10-4 X (0.46 0.45 0.42]' ; 
(0.027 0.023 0.021]' ; 

Kalman gain for subsystem-1 
Kalman gain for subsystem-2 
Kalman gain for subsystem-3 

Initial data for scheme-2: We have used here the same initial data as in scheme-1 . 
It is logical to expect that the filter performance based on scheme-1 is suboptimal 
due to the omission of interaction terms in subsystems-2 and 3 (see equations 
(5)-(6)), while the subsystem-1 filter performance is optimal. The estimated 



Modelling hiera.rchica.l dynamic systems ior decentralized sta.te e11tima.tion 39 

output error data (for subsystems-2 and 3) based on scheme-1 are processed to 
compensate the modelling error by employing state and parameter estimation 
algorithm ofTse and Wienert (1975) . The corresponding model parameters and 
Kalman gain for subsystems-2 and 3 are given below: 
Estimated parameters and Kalman gains: 

(i) Subsystem-2: 

[ 

0.0 
A22, e = 0.0 

0.2009 

1.0 
0.0 

-1.299 

0.0 l 1.0 
2.088 

K2e = [ 1.349 2.114 2.924 ]', 

(ii) Subsystem-3: 

[ 

0.0 
A33,e = 0.0 

0.8301 

1.0 
0.0 

-2.619 

0.0 l 1.0 
2.787 

K3e = [ 2.569 4.877 8.354 ]', 

c22,e = [ 1.0 0.0 0.0 l , 

c33,e = [ 1.0 0.0 0.0 l , 

Figs. 2-6 shows the actual states and centralized estimates of the states X 1 ( k), 
X 5 (k), X 6 (k), Xs(k) and X 10(k) of the composite system. Decentralized state 
estimates based on scheme-1 and scheme-2 are also presented in the same figures 
to compare their results with the actual value and centralized estimates. 

5. Concluding remarks 

The decoupled state estimation algorithm based on scheme-1 has been tested 
by considering a hierarchical interconnected system of order 10. It has been 
noticed that the subsystem-1 estimated states based on scheme-1 are same as 
for the centralized scheme. But remaining subsystems state estimates (based on 
scheme-1) are inefficient compared to centralized scheme. It has been observed 
that the performance of decoupled filters (based on scheme-1) significantly im­
proved while each subsystem estimated output error is processed individually 
along with the combined state and parameter estimation technique of Tse and 
Wienert (1975). The improved version of proposed decoupled state estimation 
algorithm (scheme-2) does not require any information exchange between the 
sub-estimators which in turn reduces the instrumentation and telemetry costs 
compared to centralized scheme. Moreover, the algorithms proposed in Sec­
tions 3.1 and 3.2 show that as the number of subsystems increases, the com­
putational burden reduces very rapidly compared to the centralized scheme. 
The simulated results of all different estimation algorithms are compared and 
presented in Figs. 2-6. 



40 G. RAY,L.SUBRAHMANYAM 

,..; 

I 
E 
Q) 

~ 
Ill 
;:... 
Ill 

.g 
CJ 

1/) 

1l (0 (J (J 
Ill .r 
0 .jJ 

.D (J 11-V 0 . IJ .jJ 10 0 
Ill . .j.l 0 
ID IJ 0 E 

" 
(J 

( .j.l E ... N 
.jJ 

0 0 ... .j.l 0 
a. E .j.l 0) I 

., 
Ill ... 01 w (J CJ Ul 
(J 

.j.l w E '<t 
lr Ill 1l (J 1l 

w 1l (J £ 
(J 

E (J 

" 
N 0 .jJ 

IJ 1l N ... Ill A ll 
.jJ (J ... I I E 
fll N (J ll c 0 I ... 
" 

... 0 E L 0 (Tl I .j) 

Ill ... L 11 .jJ I Ill 
0 .jJ .r: ( 1l I w 

.... L c 0 (J 11 I 
0 .jJ IJ Ul 0 0) A "0 

J c 0 (J 0 ..1: ( 

.jJ 11 11 c 0 .D CJ V 0 
0 u 0 CJ N 
< X ...... 

Ill 0 . 1l J ... ( .jJ 
0 

0 < 
(J 

E . ... N 
1- . 

01 ... 
0 

u. 
0 •t e ·o g·o v ·o 2 ·o 2"0-

<------- tx 



Modelling hi e ra.rchica.l dy na.mic systems for decentra.liz ed sta.te est ima.ti o n 41 

I 
N 

I 
I 
E 

I 
Q) 

I 
+J 
(/) 

lJ . >. 

I 
(J 

I 
(/) 

(/) '§ 
0 

1J (/) 

V 

~ 0 0 () 

I ID +' +' L 
I 

IJ) () 0 0 " "' 
I 

( +' E E f\J 
I 0 0 ..... I 4-

I 0. E +' +' 0 

I 
(/) .... U) !11 (J 

I 0 +' w w E () 
n:: (I) 0 

.., 
I w "(] "(] L u ,., 

E () ... () 0 ~ ,., 
() "(] N N U1 U1 .r 

V 
.., (J 

X 
1/) N 0 r: "(] 

() >. 0 E 0 0 [J 

"(] U1 L () L ~ 

c 0 .j) L +' "(] 0 
L c 0 [ () E 

0 +' IJ U1 (J (I) 

0 
) c (J u 0 +' 

E +' IJ () ( (J .Ll 1/) 

u u 0 0 0 V w 
< 

"(] 

'<t ( 

0 
I 

"--m I 
0 i 

----- ~~· ) ___ __.) .., 
0 

N < 

0 
(TJ 

"2 · g- "2!- ·at- "1>'2- u. 

LL 

<-------- Sx 



42 G. RAY, L. SUBRAHMANYAM 

. 
N 
I 

I 
E 
Q) 
+l 

I 
Ul 

I 
:>, 

I "U Ul 

I 
(J -§ 0 
0 Ul 

.0 • . V 

I 
() 

(J () () .r 
Ill . "' "' "' c () 0 0 
0 "' E E " 4-n.. 0 N 0 
0 E ..., ..., I 
[J ... fll .ID [J (J 
lr "' lJJ lJJ E ..., 

11 () 0 
E w "U ,... "U .r ..., 
[J () ... (J 0 Ill ..., "U N N Ul 
111 0 ... ... "0 
>. N .... 0 .... c [J 

Ill ... 0 E 0 0 ..., .... L (J L Q 
0 ..., .r ..., "U E 

0 L c 0 c 01 
J ..., 0 Ul (J VJ "' .jl c 0 0 0 Ql 
0 [J (J c (J .0 lJJ < u "U 0 0 V 

"U . . . ( .... N (T) "<t 0 

--== Q 
:J 

"' 0 
N < .... 

'<t 
o· . 

"2 ·g- "2'[- ·et- ·v2- (1) 
.... 
LL 

<---------- gx 



Modelling hierarchica.l dynamic systems for decentralized sta.te estimation 43 

0 . 
0 M 

I 
(\) E w ...., 

Ill 
:>, 
Ill 

'§ 
Ill 

(J 
.I: 
~ 

(._ 

0 

(J 
~ 

1J 1J 
(J (J 

Ill 11 
0 0 

.D .D 
V V 

I . 
0 Ql 0 

Ol ~ .j.) 

[ (i 0 0 
0 .j.) E E • 
u. 0 ... ... 

r 

OJ E .j.) .j.) 

(J 0 (I! 

0:: .j.) LlJ LlJ 
0 
~ 
Ul 

1J 

Gl 
E LlJ 1l " 

1l 
" IJ (J .... (J (\) 

~ 1J N N I 
(I) (J ... ... 

(J 

~ 
0 
E .... 
~ 
(I) 

LlJ 

>.. N ..... (J ..... (J 
Ul ... 0 E 0 E .... L (J L (J 

0 .j.) .I: ~ .I: 
0 .. L . [ u [ u 
J .j.) IJ (/) (J (/) 
.j.) [ u 0 
u 0 0 [ (J [ 
< u 0 0 0 0 

1J 
[ 
0 .... ru ('I) .; 

=-
=--· ~ .--· -=------

0 
J 
~ 
0 
< 

Ol1E oat 
0 ID 

·az- m 002 

lL 

<---------- ux 



44 

(I 

ll1 
[ 
0 
n. 
ID 
(J 
!r 

E 
(J 
~ 
ll1 
>. 

(f) 

0 
J 
~ 
u 
< 

() 

+l 
0 
E ... 
~ 
Ill 
llJ 

11 
11 
N 

0 
L 
~ 
[ 
(I 
u 

, 
IJ 
ID 
0 
.n 
V 

(I 
~ 
0 
E ... 
.jJ 
ID 

l1J 

11 
11 
N ... 
0 
L 
.jJ 
[ 
(I 
u 
(I 

0 

,... 
.... 
I 

(J 
E 
(J 

.I:. 
0 
Ill 

[ 
0 

, 
(J 
11! 
0 
.n 
V 

IJ 
~ 
0 
E ... 
.jJ 
l/1 

l1J 

11 
(J 
N .... 

.... 
0 
l 
4l 
( 
(J 
u 
(I 

0 

I . 
I 

,... 
N 
I 

(J 
E 
(J 

.I:. 
u 
Ill 

c 
0 

,... N fTI ..; -----·-
N =---·--· -c--·-· 

.... 

DOE 002 

<----------- orx 

DOt 

G. RAY,L.SUBRAHMANYAM 

0 

(J 
.I:. 
~ 

4-
0 

G 
4l 
0 
~ 
(fJ 

11 
11 
~ 
0 
E 

~ 
Ill 
w · 

1J 
[ 
0 

0 
J 
+l 
0 
< 
(D 

"02- 01 

u. 



Modelling hierarchica.l dynamic systems for decentraJized state estimation 45 

References 

ANDERSON B.D.O., MooRE J .B (1971) Linear optimal control, Prentice-Hall 
Inc. 

DAVISON E.J., CHANG T.N . (1986) Decentralized controller design using pa­
rameter optimization methods, Control Theory and Advanced Technology, 
2, 2, 131- 154. 

KAILATH T. (1970) The innovation approach to detection and estimation the­
ory Proc. IEEE 58, 680- 695. 

KAILATH T. ( 197 4) A view of three decades oflinear filtering theory IT 20, 2, 
146-181. 

PRASAD R., AHSON S.l., MAHALANBIS A .K ., (1984) Decoupled state estima­
tion via interaction modelling Int. J. Syst . Sci ., 15, 12, 1341- 1352. 

SANDERS C.W., LINTON T.D., TACKER E.C. (1978) Information exchange 
in decentralized filters via interaction estimates, A link between science 
and applications of automatic, 2, 1, 1367- 1372. 

TACKER E .C., SANDERS C .W. (1980) Decentralized structure for state esti­
mation in large scale systems, Large scale system theory and applications, 
1, 1, 39- 49. 

TsE E ., WIENERT H.L (1975) Structure determination and parameter identi­
fication ofmultivariable stochastic linear systems, IEEE Trans. Automatic 
Control, 20, 603- 613. 

VENKATESWARULU K., MAHALANBIS A .K. (1977) Design of decentralized 
load frequency regulators, Proc. IEE., 24, 9, 817- 820. 




