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A parameter- optimization problem for obtaining a reduced­
model of an unknown parameter system with the use of a quadratic 
input-error criterion is formulated . An auxiliary optimizatiOn prob­
lem using an assumed model is also formulated to obtain a solution 
of the earlier one. The parameters of the system and its optimal 
reduced-model are found in terms of the assumed-model parame­
ters in the optimal projection equations. Three optimal projectors 
are found, coupling each other by -their factors. ' 

1. Introduction 

The parameters of a system (S) are usually estimated with the use of criterion 
imposed on an error, Nath and Nguyen (1991a), Soderstrom and Stoica (1989), 
Unbehauen and Rao (1987), Young (1981), in a cost function to be minimized. 
The minimization of the cost function w.r.t. the parameter vector of a model 
gives rise to a (linear) transformation on the model parameters into the space 
of the S parameters. The obtained S pan,ameter vector is seen to belong to the 
set (linear manifold, Israel and Greville (1974), Rao and Mitra (1971)) result­
ing from the above transformation. Similarly, there exist various criteria in the 
form of functional cost for model reduction, Lastman and Sinha (1985), Nath 
and San (1991b), Sinha and Lastman (1989) . The minimization of the cost 
function w.r.t. the parameters of a reduced-order model (RM), Haddad and 
Bernstein (1988a,b), Hyland and Bernstein (1985), also gives rise to a trans­
formation between the Rl\J parameter space and that of the S parameters. 
Another manifold thus appears. As the two manifolds may have nonempty in­
tersection, it is expected that the parameters of the S and RM are expressible 
in terms of the model parameters. 
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For a controllable and observable S, there exists a set of controllable and 
observable RM s of different orders. The optimal parameters of the RM at 
a particular order have to satisfy a rank condition and two coupled modified 
Lyapunov equations in the optimal projection equations, Hyland and Bern­
stein (1985). This coupling effect has been interpreted to be an additionally con­
strained condition, Hyland and Bernstein (1985), to the £ 2-optimization model 
reduction problem. Later a sufficient condition in the context of a global opti­
mum for the model reduction has been obtained by putting the £ 2- optimization 
problem under a preassigned Hoo limit, Haddad and Bernstein (1989). However, 
it is found that apart from that, due to reduction , the error arising on the out­
put side cannot be accepted in many practical situations, the obtained so far 
optimal projection equations demand the knowledge of the S configuration, fur­
ther, that S is to be controllable and observable. The parameters corresponding 
to the mentioned part of the system have to be estimated first , which, in turn , 
requires the S input to be persistently exciting, Astrom and Bohlin (1965,66). 
This resriction can hardly be overcome in the real- time estimation by employing 
error other then the input one. The input-error approach to the S parameter 
estimation has been developed, Nath and San (1991a), to cope with the same, 
independent of the form of the S input. The input- error was either directly 
obtained by using a model-inverse, Nath and San · (1991a), a suitable transfor­
mation of the state, Francis (1987), or indirectly obtained by using convolution 
operator, Haddad and Bernstein (1989), Hyland and Bernstein (1985), Nath 
and San (1991b), Wilson (1985,1989). Mreover, one can observe that with the 
use of input and output data, obtaining the RM is but a misorder case of the 
S parameter estimation, Nath and San (199lb). The result of the parameter 
estimation (S and RM) problem depends on the measured data relating to the 
input and output of the S but not on the model. Then, in the development of 
optimal projection equations for reducing the order of an unknown parameter 
S, one may have right to think of using an assumed mode_l (AM) for escaping 
troublesome parameter estimation in the S. The relationship between the S, 
AM and RM in the optimal projection equation form has to be established . 

In the present paper, a parameter-optimization problem for model reduction 
of an nth order, unknown parameter S, is formulated with the use of an error 
defined on an input side of the model reference technique for ensuring a total 
match at the output side. Through an auxiliary optimization problem formu­
lated with an nth order AM having known parameters, an attempt is made to 
express the parameters of the S and its rth order optimal RM as functions of 
that of the AM. Solving the auxiliary problem, an optimal projector of order 
(n + r) appears. The parameters of the S and RM are either obtained in an 
augmented form or individually obtained in terms of that of the AM. It is found 
that with a particular choice of generalized inverse of the optimal projector, the 
augmented parameters have to satisfy two modified Lyapunov equations which 
are then transferred into the standard-like ones. The augmented S having the 
determined parameters is shown to be stabillzable and detectable independent 
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of the input and output of the S. That is, subject to any bounded input, the 
S is well replaced by theRM to deliver any desired output. Further, the aug­
mented S is shown to be settled at the equilibrium point, which gives rises to 
two other optimal projectors and all the three are coupled to each other by their 
factors. This permits one to pick two out of the S, RM and AM to form an 
augmented S, whose parameters are related with those of the rest in optimal 
projection equations. Hence, optimization is generally permitted to be carried 
out w.r.t. any one amongst them. 

The use of an AM in the present optimal projection equations is found 
applicable for estimating the S parameters and for reducing an S whose data 
are either parameters or are accessible by means of input and output terminals. 
The suitable choice of the generalized inverse of the optimal projector makes 
the modified Lyapunov equations become the standard-like ones, leading to a 
simple computation to be adopted. The optimal error that is referred to on the 
input side may be made available by a linear feedback for a total match at the 
output. 

2. Notations, lemm;;1s and definitions 

Throughout the paper, the subscripts s, m, r stand for the S, AM and RM 
respectively. 

~, ~rxn real number, (r x n) valued real matrix 

.. e(-); tr(-); (-)T rank; trace; transpose of a matrix 

u- 1 ; (-)9; u+ inverse; generalized inverse; pseudo inverse of 
a matrix 

stable matrix matrix having all eigenvalues on L.H.S of the 
S-complex plane 

nonnegative definite matrix symmetric matrix with nonnegative eigen­
values 

positive definite matrix ·symmetric matrix with positive eigenvalues 

nonnegative semisimple matrix 

positive semisimple matrix 

input 

u,(t); Um(t); Ur(t) 

Ys (t); Ym (t); Yr (t) 

H,(t); Hm(t); Hr(t) 

A,,Am; E,, Em; C,, Cm 

Ar; Er; Cr 

matrix similar to a nonnegative definite 
matrix 

matrix similar to a positive definite matrix 

either a deterministic signal or a white noise 
with nonnegative definite intensity 

~P x 1 input vector 

~qx 1 output vector 

~qxp impulse reponse matrices 
~nxn;~nxp;~qxn 

~rxr; ~rxp; ~qxr 
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X(t); X(t) 

Q 

A;B;C 

R 

t J eA;(t-T) B;u;(r)dr 

0 
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[xrr(t)ix;r(t)]T; [xrm(t)lx~m (t)lx;m (t)JT 

lim X(t)XT (t) or lim IE[X(t)XT (t)] corresponding 
t~oa t--+oo 

to a deterministic or white noise input ur(t) 
- -T -

lim X (t)X (t) or lim IE[X(t)XT (t)] corresponding 
t--+ oo t--+oo 

to a deterministic or white noise input um(t) 

[ ~s 1r ] ; [ ~; ] ; [ Cs -Cr ] 

[ 
As 0 0 ]· [ B. ] · [ -C. Cm 0 Am 0 , Em , O 

-Cm 0 0 Ar Er . 
lp or lim IE[ur(t)ur (t)] E ~pxp corresponding to in-

t-+= 

put Ur (t) 

lp or lim IE[um(t)u;:.(t)] E [RPXP corresponding to 
l-+00 

input um(t) 
[RPXP positive definite matrix 
00 00 J ll.ij}(t- r)lldr; J liH,:+-(t- r)lldr; 

0 0 
a 8 Ra8 ; a 8 Rar; arRar; 

partial derivative of£(-) w.r.t. Z 

LEMMA 2.1 Let the full column eT E !Rnxr and full row r E !Rrxn rank ma­

trices (r < n) be given with reT = Ir I a projector er of order n is obtained. 
Further, eT and r are expressible in full rank factorization and out of the eT 's 
and r 's factors a positive semisimple M E !Rrxr can be formed. Then non­
negative definite matrices Q, P E !Rn xn can be found such that their product is 
a factorization of (eT Mr). 

PROOF: If ref = Ir' then 

(eTr)2 = eTreTr = eTr E [Rnxn (2.1) 

eTr = er is a projector of order n. Conversely, as eT' r are the matrices of 
full column and rank, respectively, the eweT = ff'l = Ir holds, where ew 
and f'7 are the respective left and right generalized in verses of eT and f, then 
multiplication on (2.1) on the left by ew and on the right by f'7 gives reT = Ir. 

It follows from theorem 5.6, Israel, Greville (1974), that there exists a sym­
metric matrix <I> E !Rrxr and a matrix I; E wxn both of the rank r such that eT 
and r can be expressed in full rank factorization as eT = E~<I>c and r = <I>rEr . 
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Since <I>a and <I>r are invertible, rGT = Ir implies L.aL.f = <I>01<I>r 1 E 
IRrxr and thus a semisimple matrix M can be formed as M = <I>01<I>r 1

. With 

GT Mf = L.~<I>aL.aL.f<I>rL.r, one can assign L.~<I>aL.a = Q and L-f<I>rL.r = P. 
It can be seen that Q, PE JRn?<n but e(Q) = e(P) = r < n hence e(QF) = r 

and Q, P are nononegative definite matrices. 
Conversely, suppose Q, P E IRnxn are nonnegative definite - then QP is 

nonnegative semisimple. In addition, if e(QF) = r < n, then there exists G, rE 
wxn and positive semisimple ME wxr such that QF = GT Mf and fGT = lr. 
The converse follows from the lemma 2.1, Hyland, Bernstein (1985). 

REMARKS 2.1 
1. Whenever r = n, Q and Pare not only nononegative but also positive definite 
matrices . 
2. As one will see in the proof of the main result (appendix) two matrices GT 
and f with fGT = lr are first obtained from the partial derivative w.r.t. Am 
of a Lagrangian form and then M can be formed and Q and P follow. The 
Lemma 2.1 is, hence, a direct consequence and the same lemma in Hyland, 
Bernstein (1985) should be conversely used . 

PROPOSITION 2.1 Let the full column GT and row f rank be given and nonneg­
ative definite matrices Q, PE IRnxn be assigned as stated in lemma 2.1. Then 
the following identities can be obtained 

L-a= rQ, L-r = cP, <I>01 = r(JrT, <I>r 1 = cPcT, 

Q = crQ = QcrT, P = crT P = Per 
(2.2) 

PROOF: Substituting expressions for G, r, L-a, L.r, <I>c, <I>r and P, Q, from 
lemma 2.1 into (2.2), the identities are verified . 

DEFINITION 2.1 The projector obtained from the necessary conditions for a 
function to be an extremum is an optimal one and the corresponding nonnega­
tive definite matrices Q, P are also optimal if a factorization of QP is formed 
out of the optimal projector components in the sense of lemma 2.1. 

3. Formulation of the problem 

3.1. Idea of the input-error in the model reference technique 

The output- error approach to the solution of the S parameter estimation prob­
lem requires the S input to be persistently exciting, Unbehauen, Rao (1987), 
Sonderstrom, Stoica (1989), Astrom, Bohlin (1965,66), which is often not the 
case in a normal operating records (real- time). Moreover, the error inherently 
arising due to a reduction that is on the output side, Hyland, Bernstein (1985), 
Haddad, Bernstein (1989), cannot be accepted in a problem like the one of pro­
jective controls where a perfect matching at the output side may be desired and 
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for this a direct adjustment on the tracking side is not at all possible. In such 
cases, one may think of making use of the term of input-error in the model 
reference technique. 

An RM is considered in parallel with aS in the model reference technique. 
Let the response Ys(t) of the S to an input us(t) be given. For ensuring the 
output Yr(t) of theRM to be the same as that of the S, theRM should have 
an input ur(t) other than u8 (t). An error given by u8 (t) - ur(t) at the input side 
(input-error), thus appears reflecting the mismatch between the parameters as 
well as the orders of the two. It can be seen that if the parameters of the RM 
are changed so that the input-error reaches the minimum value, corresponding 
to which a set of optimal parameters of the RM is then obtained. That is, a 
quadratically weighted input-error to be minimized can be defined as 

J = forus(r)- ur(r)f R[us(r) - ur(r)]dr = foli[us(r) - ur(r)JII~ (3 .1) 

where subscript R of the norm sign indicates the norm weighted. 

The functional cost J defined in (3.1) represents the total difference in the 
optimal energies for realising the match at the output if the S and RM have 
respectively a strictly proper transfer function and the optimal energy criterion 
is considered for obtaining each input from the knowledge of a desired output. 

3.2. Statement of the problem 

Given an nth order causal, linear time-invariantS by its bounded response to a 
bounded input, determine an rth order (q :S r < n) controllable and observable 
RM that minimizes (3.1). 

Although the knowledge of internal structure of the S is not available but the 
access to the S is by means of input and output terminals. This emphasizes the 
fact that with the given input and output data, the parameters constituting the 
controllable and observable part of the S in the state variable description have 
to be first estimated if the optimal projection equations established in Hyland, 
Bernstein (1985) are to be used. The error referred on the output side, however, 
is non-uniquely transferred to the input side as many different errors on the 
input side can give the small effect, for the trajectory between two outputs is 
not well specified. Hence, some more conditions may have to be used in addition 
to that established in Hyland, Bernstein (1985). 

Further, although both u8 (t) and ur(t) are the inputs, the minimization 
of (3.1) can be carried out if the input-error is expressed in terms of variables 
(the parameters of theRM). The following steps are used for expressing (3.1) 
as a variable function. 
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3.3. Impartition of the problem 

The convolution integral describing the input-output behaviour of an nth order 
causal, linear, time-invariant S is 

(3.2) 

where Ys(-) E !Rqxl and u.(-) E !Rpxl are the output and input vector, H.(-) E 
!Rqxp is the transfer function matrix, As E !Rnxn, Es E !Rnxp and Cs E !Rqxn are 
the parameters in the state representation . 

As thesis causal, c.eA ,(t-r) n. = 0 for (t - T):::; 0, (3.2) can be rewritten 
as 

(3.3) 

Equation (3.3) is valid when both Us(-) and Ys (-) are vectors of integrable 
functions in L 2 , Wilson (1985), Wilson (1989), Francis (1987), and implies that 
only the controllable and observable part of the S is of interest . 

A similar expression is written for causal, linear, time-invariant, controllable 
and observable RM of order r with subscript r as 

Yr(t) = 100 

Hr(t - T)ur(T)dT = 100 

CreAr(t -r )Erur(T)dT (3.4) 

where Yr(-) E !Rqxl, ur(-) E !Rpxl and Hr(-) E !Rqxp are the output, input 
vector and the transfer function matrix respectively. Ar E !Rr xr, Er E !Rrxp and 
Cr E !Rqxr are the parameters. The expression is also valid when both ur(-) and 
Yr (-) are integrable functions in L 2 . 

Let the output of the RM be matched with that of the S. From (3.3) and 
(3.4) a convolution integral is obtained for tha said matching condition. Since 
the distribution property holds in a convolution integral, H.(-) is the transfer 
function of a bounded input-bounded output Sand ur(-) is integrable function 
in L 2 , H.(-)ur(-) can be considered in addition to the integral obtained earlier. 
The expression related to the input-error is obtained as 

100 

[us(T)- Ur(T) jdT 

100 

H;(-) [C
3
eA,(t - r) Es- CreAr(t -r) Er ]ur(T)dT (3.5) 

where the left generalized inverse of H.(-) actually appeared, which, under the 
assumption made on the S (the bounded input-bounded output condition is 
equivalent to specified rank one, Israel, Greville (1974), Rao, Mistra (1971), is 
the same as the pseudoinverse Hf ( ·). 

It is clearly seen from (3.5) that the input-error under integral sign on the 
L.H.S. accounting for the mismatch in parameters as well as in orders between 
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the S and RM on the R.H.S. has a minimum value whenever the parameters 
of the RM are optimised w.r.t. that of the S. 

With reference to the Holder's inequality for the integral, (3.5) is further 
written as 

100 

ll(u.(r)- ur(r)JIIdr 

{oo {oo 11 [ eA,(t-r) B l 11 :S Jo 11Hi'(-)lldr·II(Cs-Cr]llj
0 

eAr(t-r)B: Ur(r) dr (3.6) 

With the view of the Hankel operator norms, the first integral on the R.H .S. 
of (3.6) is positive and its value depends on the norm used. Let this value be 
cx 8 • If the Eucledean norm is used, cx 8 presents the maximum eigenvalue of the 
controllability and observability gramians of the S, Wilson (1989). 

If the state of an augmented system is defined as 

i t [ eA,(t-r) B l - s T T T 
X(t) = ( _ ) Ur(r)dr = [xsr(t) Xrr(t)] 

0 eAr t T Br 
(3 .7) 

where XsrO E IRnxl and XrrO E wxl are the respective state vectors of the s 
and RM corresponding to ur(-), then by derivating (3.7) the dynamics of the 
said augmented system is obtained 

X(t) = Ax(t) + Bur(t) 

and the output equation is 

y(t) = CX(t) 

where 

or 

y(t) = Ys(t)- Yr(t) and C = [Cs - Cr] E IRqx(n+r) 

Referring to (3.6), (3.7), (3.9) and (3.11), (3.1) becomes either 

J :S lim XT (t)CT a.Ra.CX(t) 
t-+OO 

J :S lim IE[XT(t)CT cx 8 Rcx.CX(t)] 
t-+oo 

(3.8) 

(3.9) 

(3 .10) 

(3 .11) 

(3.12) 

(3 .13) 

corresponding to the respective cases where Ur (-) is either a vector of deter­
ministic signals or white noises with nonnegative definite intensity v;.. When 
t-+ =, (3.12) and (3.13) are equivalent, and then (3.1) is 

J :S trQ · R (3.14) 
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where R = (;T a 5 RasC E R(n+r)x(n+r) and Q is either limt-+oo X(t)X(tf or 
limt-+oo IE[X(t)X(tf] E IR(n+r)x(n+r) corresponding to each case of ur(-). 

As A, is a stable matrix (S is bounded input, bounded output) and Ar is 
also stable (RM ~s ~o be con~ro_!lable and observable) hence, from (3 .10), A is 
stable. Further, (A, B) and (A, C) are respectively controllable and observable, 
corresponding to which Q is the unique solution of Lyapunov equation 

AQ +QAT+ f3v,.f3T = 0 (3.15) 

where Vr is either Ip for deterministic ur(t) or limt-+oo IE [ur(t)u;!'(t)] E IRpxp for 
white noise ur(t), respectively. 

A finite value of J will be obtained independently of the iJ).it ial conditions 
of (3.8) if (3.14) is minimized subject to (3.15). 

The problem is restated as: Given an nth order causal, linear, time-invariant 
S through its bounded response to a bounded input, determine an rth order 
(q :S r < n) RM such that the cost function (3.1) is minimized within the 

Ll. - - - -
set :J = {S/ RM : stabilisable & detectable (A, B) : controllable, (A, C) : 
observable} so that a finite value of J can be obtained. 

If the parameters of the controllable and observable part of the S are known, 
then the problem can be easily solved and the optimal projection equations for 
computing the optimal par am< 1 ( rs of the RM would be almost the same as 
that obtained in Hyland, Bernstein (1985) . However, in view of (3.14) one can 
state that the maximum value of the present input-error would be the value of 
an input-error obtained by transferring from the output-error. This is due to 
a, of which is but an additional condition put on the L 2-optimization problem. 

The parameters of the S are not known, the technique adopted in Hyland, 
Bernstein (1985) cannot be employed in the present case, until the parameters 
of the mentioned part of the S are estimated . In such a problem of real- time 
estimation of the S parameters, different points arise. First, an S parameter 
estimation problem itself is an approximate one for which the solution is ob­
tained depending upon the criterion used . Secondly, the input of the S is not as 
desired to be, persistently exciting, and the S like a bio-system or a chemical 
reaction process can not be excited by a pseudo random binary sequence. This 
makes the estimation of the S parameters a difficult task. Further, it is clear 
that the controllable and observable (constraint) conditions would be put twice 
on the S parameters, one in the estimation and other on the augmented S in 
the reduction. The double use of a constraint condition in the matrix form (like 
the Lyapunov equation) is a burden from the computational point of view. 

A question thus arises, whether an AM having known parameters can be 
used to link the parameters of the S and those of the RMin order to escape 
estimation of the S parameters. If it is the case, then what are the relationships 
between the parameters of the three? It is described in the next section how 
to bring an AM into the picture and the relationships are established in the 
section of main result . It will also be shown that inviting an AM will be useful 
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not only for the problem of model reduction of an unknown parameter S but 
also for that of the S identification. 

4. Formulation of the auxiliary problem for minimization 

An nth order AM having known parameters is introduced in parallel with the 
S and RM in the model reference technique with an error on the input side. 
It can be observed that two errors appear; one is between the input of the S 
and that of the AM reflecting the mismatch between their parameters, and the 
other is between the inputs of the AM and the RM due to the differences in 
their orders and parameters. 

If the first error is minimized, parameters of the S are obtained, expressed in 
terms of AM. Likewise, theRM parameters are also derived if the second error 
is minimized . The outcome of the two minimization processes is that via the 
AM parameters it is possible to establish a relationship between the parameters 
of the S and the RM although none of them is known. 

If two manifolds resulting from the said two minimization processes have 
nonempty intersection, then the only the process of minimization is required. For 
this, it needs a functional cost consisting of both errors, which is now described. 

as 
The cost function (3.1) is eqiuvalently written incorporating the AM input 

J = 1T.us( r) - um( r) +um( r)-ur( r)f R[us( r)-um( r)+um( r)-ur ( r) ]dr 

= 1"'h um(r) - Us(r)f[ - um(r) + ur(r)f] [ ~:] R · 

·[Iq I ] [ um(r) - u.(r) l dr 
q -um(r ) + Ur(r) 

( 4.1) 

Similarly to (3.3) for an nth order (causal, linear, time-invariant) control­
lable and observable AM with subscript m we can write 

Ym(t) = 100 

HM(t - r)um(r)dr = 100 

CmeA=(t - r)Bmum(r)dr (4.2) 

where YmO E IRqxl and Um(-) E wxl are the output and input vectors, Hm(-) E 
IRqxp is the transfer function matrix, Am E IRnxn, Em E IRnxp and Cm E IRqxn 

are the parameters. The expression is also valid when Ym (-) and Um (-) are the 
vectors of L2 integrable. 

Let YmO = y.(-). Considering an additional term H9 (-)um(-) in the integral 
obtained from (3.3) and ( 4.2), the relation related to the difference between the 
inputs of the S and AM is obtained as 

loo ll[u.(r) - Um(r) ]il dr 
~o 
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1
oo 1oo [ eA,(t -r) B l 

~ IIHt(-)lidr · li[Cs- Cm]ll ( _ ) 
8 

Um(r) dr (4 .3) 
a a eAm t T Bm 

Similarly, as Ym(t) = Yr(-) and considering one more term Hr(-)um(-) one 
obtains from (3.4) and ( 4.2) 

loo ii[ur(r)- Um(r)]iidr 

{oo {oo 11 [ eA;(t -r )B l 11 ~ la II H,:I-(-) ii dr · li[Cr - Cm] ll la eAm(t - r);m Um(r) dr (4.4) 

With reference to the Hankel operator norms, the first integral on the R.H.S. 
of ( 4.4) is a positive quantity denoted by ar, whose value depends on the norm 
used. . 

Assume that the norm used in (4.4) is that of (4.3), one has 

loo {i l[u.(r) - Um(r)JII + ii[ur(r)- um(r)] li }dr 

~ [Iq Iq]ll [- asCs :•Cm 0 ] 11 {oo [::~;::~)~m] um( r) 
0 arCm arCr la ( ) 

eAr t-T Br 

dr( 4.5) 

Define 

[

eA,(t-r)B8 l 
X(t) =it eAm(t-r)Bm Um(r)dr = ~;m(t) 

eAr(t-r) Br 

(4.6) 

where XsmO, XmmO E IRnxl and XrmO E w xl are state vectors of the s, 
AM and RM corresponding to Um ( ·). 

The dynamics of the augmented system consisting of all the three is obtained 
as 

.X(t) = A..X(t) + Bum(t) 

fi(t) = c.X(t) 

where A = E IR(2n + r)x(2n + r); iJ = 
[ 

Aos Aom 00 l 
0 0 Ar 

and C = [ -C. Cm 0 l E 1Rqx(2n+r). 
0 -Cm Cr 

For a similar argument as made for (3 .14), (4.1) is written as 

j ~ trQR 

(4.7) 

(4 .8) 

E IR(2n+r) Xp 

(4.9) 
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where R = [-a.C. asCm 0 ]T [Iql R[Iq Iq] [-a 8 C 8 asCm 0 l E 
0 -arCm arCr Iq 0 -arCm arCr 

IR( 2n+r)x( 2n+r) and Q is either limt-. 00 X(t)XT(t) or limt-. 00 IE[X(t)XT(t)] E 
IR( 2n+r) x (2n+r) corresponding to Um ( · ) a vector of either deterministic signals 
or white noises with nonnegative definite intensity V m. 

As (A, B) is controllable, the matrix Q consisting of the auto- and cross­
relations between the states corresponding to Um ( ·) satisfies the Lyapunov equa­
tion 

(4.10) 

in which Vm is either Ip or limt-.ooiE[um(t)uT(t)] corresponding to a determin­
istic signal or white noise input respectively. 

This ensures that the control law Um(-) will be linear w.r.t. the defined 
state X(t). Moreover, as um(-) is bounded, a finite value of J will be obtained, 
independent of the initial conditions of the augmented system described by ( 4. 7) . 

The problem of reduction of the order of an unknown parameter S stated in 
(3 .2) has been transferred into that minimizing ( 4.9) subject to the constraint 

(4.10) . This means that the minimization of (4.1) is restricted to the set J ~ 
{ S/ AM/ RM : stabilisable & detectable, (A, B) : controllable, (A, C) : 
observable }. 

5. The main results 

Solving the auxiliary minimization problem, two theorems are stated as 
I 

THEOREM 5.1 1. -For a controllable and observable S of order n there exists 
a set of controllable and observable AM s of order n and a set of controllable 
and observable RMs of order r (r < n). With a chosen AM, there exists an 
optimal projector (T2 = arr2 of order ( n+r)' the optimal augmented parameters 
are expressible as functions of the AM parameters and the components of the 
projector as 

A-- 9 GTA f 9 
- CT2 2 m 2CT2 

B-- 9 GTB - -CT2 2 m 

n [ ~· ~r ] = -n [ ~: ] Cmf2u~ 
where R = [(Rsr- Rs) (Rsr- Rr)]. 

(5 .1) 

(5 .2) 

(5 .3) 

2. - There exist two optimal positive definite matrices of order ( n + r) Q and 
P in the sense of the definition 2.1 such that with u2 as a prticular choice for 
u~, the conditions to be satisfied are 

I?(Q) = e(P) = I?(QP) = (n + r) (5.4) 
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- Rsr ] [ Iq ] C r = 0 
Rr lq m 

2 

PROOF: The proof of the theorem is given in the appendix. 

REMARKS 5.1 
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(5.5) 

(5 .6) 

1.- For a matching condition between the outputs of the AM and S, the AM 
input is seen to be a persitently exciting one independent of the form of the S 
input due to the involvement of the state transition matrices of the S and AM. 
The matrix R is clearly seen to be nonzero . With these conditions, the optimal 
augmented parameters are obtained in (5.1)-(5.3). Hence (5 .5) and (5.6) follow, 
although in these equations Vm and n can be zero. 
2. - (5.5), (5.6) are referred to as the modified Lyapunov equations. In these 
equations, the matrices Q and P play the analogous roles as that played by the 
controllability and observability gramians of the augmented systems but they 
are not these gramians (appendix), hence Q and Pare termed the controllability 
and observability anagramians. 
3. - It is noted that the factors G2 and f 2 of the optimal projector are di­
mensionless. However, with u2 chosen for d, each amongst d GI and r 2 u~ 
is related with only a quantity presenting the controllability and observability 
gramian respectively and so are Bin (5.2) and C in (5.3). This leads (5.5) and 
(5.6) , the two modified Lyapunov equations, to be in the standard- like form 
without coupling. However, the effect of decoupling of two modified Lyapunov 
equations leads to a simple computation to be adopted. 
4. - Pre- and post-multiplying of (5.5) by r 2 and r'f and of (5.6) by G2 and G'f 
respectively, with r2GI = G2ri = In, the two modified Lyapunov equations 
become 

- Rsr l [ lq l _ Cm - 0 
Rr Iq 

Two standard Lyapunov equations applicable to the AM are 

Am Wmc + WmcA;, + Bm VmB'!:. = 0 

A'!:. Wmo + WmoAm 

eT [ Iq ] [ Rs + m lq 
- Rsr 

(5.7) 

(5.8) 

(5.9) 

(5.10) 
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where Wmc and Wmo are the respective controllability and observability grami­
ans of the AM. (5 .9) and (5.10) are easily computed yielding 

(5.11) 

(5.12) 

Referring to proposition 2.1, Q = (J'Q = Q(J'T, P = (J'T P = P(J' , pre- and 
post-multiplying on (5.11) by GT and G, and on (5.12) by rT and r respectively 
gives 

(5.13) 

Thus, instead of computing Q and P from respective (5.5) and (5.6), one 
can use (5.13) after computing Wmc and Wmo from the standard equations 
applicable to the AM, i.e., (5.9) and (5.10). 
5. - Several remarks and propositions regarding the change of bases stated 
in Hyland, Bernstein (1985), Haddad, Bernstein (1989), can be made in the 
present case with the change of the AM basis, with that of projector's basis, 
the Drazin group inverse, Israel, Greville (1974), Hyland, Bernstein (1985), i.e., 
different criteria adopted to obtain different forms of the presently obtained 
result, which may facilitate construction suitable algorithms, in the context of 
a global optimum, for computation. 

The parameters of the augmented S, Sand RM are obtained in the following 
corollaries. 

COROLLARY 5.1 Assume that relations (5.1} through (5.3} hold, then the aug­
mented parameters are given by 

A = G{ Amf 2 , f3 = - G{ Em, [ ~· -~r ] =- [ ~: ] Cmr2 (5.14) 

PROOF: Following the property (e) [Boullion, Odell (1971), p.7], (J'2 is chosen 
for (J'~. With reference to the proposition 2.1 and to the choice for (J'~, the first 
and second identities are readily obtained from (5.1) and (5.2) respectively. The 
third one is obtained from (5.3) with a condition that the matrix R be nonzero. 

The third result stated in the above corollary is equivalently obtained consid­
ering two input-errors, which were defined as the difference between the inputs 
of the AM and S and that between the AM and RM inputs, to be uncorre­
lated. In the correlated input-errors case, the parameters of the S and RM are 
separately stated in the following corollaries . 

CoROLLARY 5.2 Assume that the augmented parameters are expressed in (5.1)­
(5. 3 ), then the parameters of the S are given by 

(5.15) 
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-[In (5.16) 

-[Iq (5.17) 

PROOF: It is readily seen that As = [In Onxr]A [ In ] and Es = - [In 
Orxn 

Onxr]B. Using A and B as given in (5.1) and (5.2), (5.15) and (5.16) are then 
obtained. It is noted that with the choice of (}'g mentioned earlier, (5.3) is written 
in another form as 

Hence, (5.17) is derived. 

CoROLLARY 5.3 Assume that the augmented parameters are expressed in (5.1)­
(5.3), then the parameters of theRM are given by 

Ar [Orxn Ir ]GIAmr2 [ 
Onxr l (5 .18) 

Ir 

Er -[Orxn Ir ]GI Em (5.19) 

Cr -[(Rsr - Rr)- 1(Rsr - Rs) Iq ] [ ~: ] Cmf2 [ 
Onxr l (5.20) 

Ir 

PROOF: Similar to corollary 5.2. 

REMARKS 5.2 
1. - In the case where only the estimation of the S parameters is of in­

terest, the blocks related to the RM with subscript r of R in ( 4.2) and 3 of 
Q and P in the appendix are considered to be absent. 6 out of 15 equations 
((7.2)-(7.16)) disappear in addition to that the first three ((7.2)-(7.4)) con­
sist only of the quantities related to the S and RM. P* = P 12 , Q* = Q12, 
r2 = p2-:} P'{; and er = Q12Q2i are n X n matrices . The optimal projector 
(}'2 = Q12Q"22

1 P2-.} P'{; is of order n having the rank n, hence (}'~ becomes (}'2 1 

The anagramians Q = Q12Q;.}Qf2 and P = P12P2-:} P'{; consist only of quan­
tities related to the respective gramians of the augmented S and so on . The 
theorem is dealing with the optimal projector equations for parameters which 
have the responsibility for the controllable and observable part of the S. This 
part of the S, although is not uniquely described by the state-variable represen­
tation, is expected to be obtained using a similarity transformation on the AM 
parameters. However, the result of the S parameter estimation problem does 
not depend on parameters of the AM because the data used for the purpose 
are those related with the controllability and observability gramians of the S 
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in Q12 and P 12 , respectively. For the estimation purpose, the linear dynamical 
operator, Unbehauen, Rao (1987), Sonderstrom, Stoica (1989), supplying the 
required data has to be the type of the state-observer based. 
2. - In the case where the parameters of the S to be reduced are known, 
the parameters of the RM only are of interest. The relationship between the 
parameters of the S and RM can be found out by the use of the results stated 
in corollaries 5.2 and 5.3. Alternatively, since the S parameters are known, the 
S is chosen as an AM, the blocks with subscripts s of R in ( 4.2) and l of Q and 
P in the appendix are interpreted to be absent. The matrices· R, Q and P are of 
the order (n+r). Only 9 out of 15 equations ((7.2)-(7-16)) are present involving 
the quantities for the AM (presently S) and RM. P* = P[s , Q* = QI3 are 
r x n matrices, f2 = P2-/ P23, G2 = Q22

1Q23 are n x r matrices. In this case a-~ 
becomes also a-2 1 and the anagramians Q = QI3Q22

1Q23 and P = P[sP2-./ P23 
are of the order r having rank r . The present result is the same as that obtained 
by Hyland and Bernstein in [Hyland, Bernstein (1985)] whereas the S was in 
the balanced optimal projection basis. 
3. - In the context of a global minimum, the present result can be used 
along with other criteria which may be the principle of cost-ranking, Skelton, 
Yousuff (1983), the internally balanced condition, Mustafa, Glover (1991), etc .. 
However, a sufficient condition for the auxiliarly formulated problet:n can also 
be obtained if one puts the problem under a preassigned Hoo limit. 
4. - If a set of the parameters in the state variable description is defined as 
M :,= (A, B, C), then upon minimizing £(-) w.r.t. the set of the AM there 
exist transformations T. and T,. 

(5.21) 

such that, 

(7;.+ Mr -1/ Ms) E (N(T.) + N(T,.)) (5.22) 

for the existing set of common solutions, with the view of corollary 3 [Israel, 
Greville (1974), p.209], which is one of the following equivalent manifolds 

T/ Ms + PN(T,) [PN(T,) + PN(Tr)]+[1;_+ Mr- T/ M,]+ [N(T,) nN(T,.))(5.23) 

T/ Mr - PN(Tr)[PN(T,) + PN(Tr) ]+[1;.+ Mr- T/ Ms] + [N(T,) nAf(T,.))(5.24) 

(5.25) 

where r,.+, T/ stand for the generalized inverse of the triansformations Tr, 
T. respectively; N(-) and PN() are respectively denoted the null space of the 
transformation and the transformation into null space of the transformation and 
the symbol n stands for the intersection of two null spaces. 

The conditions to be satisfied by the parameters of the S and RM for ensur­
ing the manifold of the common solutions are nonempty can, hence, be derived. 



The system - assumed-model - reduced-model r_ela.tionship 63 

Further, it may be possible to show that Ts, Tr are not only the transforma­
tions but also the projections and each is a partial isometry of the augmented 
transformation. In addition to that, Tr is a partial isometry of Ts, which can be 
easily seen if the diagonalization of Ts and Tr is performed. 

It has been shown that the optimal parameters of the S and RM are related 
to those of the AM by the optimal projection equations. It is found that the 
optimal parameters of the three are trangularly coupled each other via three 
optimal projectors. If one set of the parameters is known the other sets can be 
obtained. The following theorem states the manner of coupling of the optimal 
projectors instead of different analysis are to be carried out in connection with 
the theorem 5 .1. 

THEOREM 5.2 Let the augmented parameters be given according to the theo­
rem 5.1, then there exist two nonnegative definite matrices Q and P both of 
order ( n + r) such that in addition to the optimal projector two more projectors 
appear and all the projectors are coupled to each other via their factors. 

PROOF: Define (n+r)x(n+r) matrices Q = [ Q~1 
Q

13
], f5 = [ p~ p

13
], 

. Q13 Q33 p13 p33 

Q = Q - Q and P = f5- P. It is readily seen that Q and f5 are nonnegative 
definite. Referring to the theorem 5.1, the system of matrix equations consisting 
of (7.14), (7.15), (7.15)T and (7.16) (Appendix) is written as AQ + QAT+ 
BVmBT = 0. This equation, with reference to defined Q, is also written as 
AQ +QAT = 0, which gives a unique solution . Since A is to be a stable matrix, 
the unique solution is zero matrix. 

Similarly, referring to the theorem 5.1 and P, the system of equations (7.8), 
(7.9), (7.9f and (7.10) (Appendix) leads to equation AP +PAT = 0, whose 
unique solution is also zero matrix. 

Since Q and P are zero matrices and Qu, Q22, Q33, Pu, P22, ?33 are in­
vertible (Appendix), the identities f1Gi = r2G§ = In and f3G§ = Ir are 
easily obtained where f1 = P1-;.

1[P12 PIJ], G1 = -Q~11 [Q12 Q13], f2 = 
P2:/[P{; P23], G2 = -Q22

1[Qf2 Q23], f3 = P331[P{;; Pi;] and G3 = -Q33
1 

[Qf3 Q§3). It follows from lemma 2.1 that the optimal projectors are 0'1 = 
Gff1, 0'2 = G§f2 and 0'3 = G§r3. It can be seen that the three optimal 
projectors are coupled to each other by their factors. 

REMARKS 5.3 
1. - Due to the extremal conditions to be achieved w.r .t. the AM parameters 
in the problem, the optimal projector 0' 2 appears and is used for obtaining the 
optimal parameters of the S and RM in the augmented form. The parameters 
of the S and RM are obtained individually with a choice of the generalized 
inverse of 0'2. The two other optimal projectors are made to appear and all the 
three couple to each other by their factors. The optimal projectors are called 
"jointly optimal projectors". 
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2. - It can be easily shown that the jointly optimal projectors are uniquely 
determined in the sense that knowing leads to deducing the other two. (If the 
optimization is carried out w.r.t. the S parameters, a-1 would appear and the 
optimal parameters of the AM and RM would be related with that of the S 
in the same manner as stated in the theorem 5.1 with a suitable change in the 
quantities of its expressions). This implies that optimization can be carried out 
w.r.t. the parameters of anyone amongst the S, AM and RM. Fact is that 
"the transformation from one space to another due to the process of optimiza­
tion is bi-directional within the generalized concept. The intersection space of 
two transformations can always be made non-empty due to a large number of 
possibilities for choosing a generalized inverse of the jointly optimal projectors . 
3.- Futher, it is found that the optimal projectors also appear within the factor 
of each pair formed amongst the S, AM and RM. This implies that to estimate 
the S parameters, a model of any order can be chosen and the S parameters 
are obtained by minimizing the error. The order of the model is then increased 
for finding the minimum of the minimized errors. If the estimation process is 
performed up to a certain order, an optimal reduced model corresponding to 
that order is then obtained. 

4. - If a change of the basis of the AM is made, the bases of the S and RM 
are accordingly changed due to the coupled optimal projectors. It can be shown 
that if the AM is transferred into the balanced optimal projection basis, with 
respect to which the optimal projector 0"2 is unitary and two anagramians are 
diagonalized, then the other two a-1 , a-3 are also unitary and two corresponing 
pairs of the anagramians are also diagonalized. This implies that the Sand RM 
are also transferred into the balanced optimal projector basis. 

5. -If two (n + r) x (n + r) matrices Q, P in the proof of the theorem 5.2 
were defined as Q = Q + Q, P = P + P, two modified matrix Riccati equations 
would appear. A close-loop treatments can then be carried out with the help of 
the said Riccati equations, Haddad, Bernstein (1989). 

6.- It is clear that the theorem 5.1 has been analysed by theorem 5.2 because 
the optimality in the problem of S parameter estimation was reconfirmed to be 
achieved and so in the reductipn . 

6. Discussions and conclusions 

In order to match the output of the model (AM and RM) with that of the 
S, the model should have an input other than the S one, the input-error is 
thus brought in. In the case where AM is different from RM, the augmented 
system consists of all of the three. An optimal projector appears and the other 
two are derived coupling with the earlier one. The parameter estimation (RM 
or S) can be carried out following the projection equations of which the pro­
posed development hides behind an idea of bringing the reduction problem to a 
misorder case of the S parameter estimation. 
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Instead of direct minimization of the input- error appearing in the auxil­
iary problem, the problem can be well tackled with the use of linear quadratic 
method , i.e., the Riccati-equation approach . The input- error can be made avail­
able by a linear feedback, which, in turn, can be thought of as a linear regulator 
problem. This permits to get the idea that the theory established for the linearly 
optimal regulator can be applied to reduced $ in a closed-loop. 

7. Appendix 

As the uniqueness in state variable description does not obtain, a set of AM s 
and that of RMs can, hence, be obtained for a given S. 

For minimizing (4.4) subject to (4.5), a Lagrangian function is formed as 

£(Am, Em, Cm, Q, P, -X)= tr [-XQR + (AQ + Q.-F + BVmiF)P] (7 .1) 

where multipliers ,\ ~ 0 and P E R( 2n+r)x( 2n+r) should not simultanously be 
zero. Moreover, to ensure the constraint conditions to be effective and the system 
of equations inside the trace to be linear independent, P should be a positive 
definite matrix. The matrix Q is symmetric, nonnegative definite. Perform a 
partition of Q and P as 

[

Q 11 Q 12 Q 13 ] [Pu P12 P13] [(n x n) (n x n) (n x r)l 
Q = Qf2 Q22 Q23 , P = P~ P22 P23 E ( n X n) ( n x n) ( n x T') 

Qf3 QI3 Q33 P~ P[s P33 (r X n) (r x n) (r x r) 

The optimal augmented parameters are the parameters of the AM resulting 
from the first- order necessary conditions for (7 .1) to be an extremum. Taking 
partial derivatives of£(-) w.r .t . the unknowns [Athans (1968)] and equating the 
results to zero , one obtains 

LAm(-) = P22Q22 + P~Q12 + P23QI3 = 0 

LBm(-) = (P~Bs + P23Br + P22Bm)Vm = 0 

£cm(-)= A {(R;r- Rs)CsQ12 + (Rsr- Rr)CrQI3 

(7 .2) 

(7.3) 

-(R;r- Rs + Rsr- Rr)CmQ22} = 0 (7.4) 

LQ 22 (-) = A;;,P22 + P22Am + _xc;:,.(Rs- R;r + Rr- Rsr)Cm = 0 (7 .5) 

£Q, 2 (-) =A:[ P12 + P12Am --XC'[ (Rs- R:[r)Cm = 0 (7.6) 

LQ 23 (-) = A;;,P23 + P23Ar- _xc;:,.(Rr- Rsr)Cr = 0 (7 .7) 

LQ 11 (-) =A; Pu + PuAs +-XC'[ R.C. = 0 (7.8) 

LQ13 (·) =A;' P13 + P13Ar- -XC'[ RsrCr = 0 (7.9) 
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.CQ33 (-) = A: ?33 + P33Ar - >.C'[ RrCr = 0 

.Cp,,(-) = AmQ22 + Q22A;;. +Em VmB;;. = 0 

.Cp12 (-) = A,Q12 + Q12A;;. + B, VmB;; = 0 

.Cp,3 (-) = AmQ23 + Q23A: +Em VmB'f = 0 

.CP11 (-) = A,Q11 + Q11A'; + B, VmB'[ = 0 

.CP13 (-) = A,Q13 + Q13A: + B, VmB'{.' = 0 

NGUYEN N. SAN 

(7.10) 

(7 .11) 

(7 .12) 

(7.13) 

(7 .14) 

(7.15) 

.CP33 (-) = ArQ33 + Q33A'{.' + Br VmB'{.' = 0 (7.16) 

It is seen from (7.8), (7.5) and (7.10) that A,, Am and Ar are required to 
be stable matrices, if).. = 0, then P11, P22 and ?33 are also zero matrices. This, 
together with the Lagrange multipliers' rule and the argument made earlier (F 
should be a positive definite) makes that ).. cannot be assigned to zero. Let 
).. = 1. The positive definiteness of P11, P22 and ?33 can also be seen from the 
earlier mentioned Lyapunov equations, hence they are invertible. Referring to 
(7.14), (7.11) and (7.16), Q11 , Q22 and Q33 are also invertible. 

Two (n + r) x n matrices P* = [ p~ ] and Q* = [ Q~2 ] are defined . 
p23 Q23 

It is seen from (7.2) that f2GI =In, where f2 = P 2-.}p*T E IRnx(n+r) and 

G§ = -Q*Q22
1 E IR(n+r)xn . It follows from the lemma 2.1 and the defini­

tion 2.1 that the optimal projector is u2 = Gif2 E IR(n+r)x(n+r). The equality 
er M2r2 = QP is formed in accordance with the lemma 2.1, where the positive 
semisimple M2 = -Q*T P* = Q22 P22 and the two nonnegative definite matrices 
are assigned as Q = Q*Q?}Q*T , P = P* P2-.} P*T Further , it follows from the 
standard Sylvester 's inequality that g( Q) = g( Q23) + g( Q23) = ( n + r) and 
g(P) = g(P23)+ g(P23) = (n + r) which are their dimensions, hence Q and P 
are positive definite . 

Referring to the defined matrices Q*, P* , proposition 2.1, (7.2) and (7.4) 
and using (7 .5) x Q22 + (7 .6) x Q12 + (7.7) x Q§3, (5.1) is derived. (5.2) and 
(5.3) are obtained from (7.3) and (7.4) respectively. (5.1) is also derived using 

P22 X (7.11) + P'{z X (7 .12) + P23 X (7.11)T 
The first two rank conditions of (5.4) are already proved for Q and P to 

be positive definite. The third part follows also from the standard Sylvester's 
inequality. 

Referring to corollary 5.1 and 5.2 and proposition 2.1 and using ((7 .12) + 
(7.13)) x G 2 , (5.5) is obtained. (5.5) is also derived from (7.11) with reference 
to proposition 2.1. 

Similarly, with reference to proposition 2.1 , (5.6) is obtained either using 
(7.4) or using ((7 .6) + (7.7)) x f 2 with the corollaries 5.1 and 5.3: 

It can be seen that (7.8), (7.9), (7.10), (7.14), (7.15) and (7.16) do not 
intervene in the proof of theorem 5.1, however , and are used for theorem 5.2 , 
hence there is no overdetermination. 
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