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PLD- based circuits have been designed with the help of specific 
software tools. However, input formats of such tools (CUPL's input 
format, for example1) describe a circuit at a very low logic level. 
Moreover, they require an early selection of the target PLD devices 
which is particularly inconvement when more complex circuits are 
considered . Therefore, designing of large circuits with the help of 
these tools is tiring and time consuming. 

In the paper another concept is investigated. Behavioral descrip­
tion of a c1rcuit is formulated using procedur'al CHDL called 
UPLAND. Then, UPLAND source description is automatically 
translated into its corresponding target input format (CUPL's input 
format) where target PLD devices are optional. The paper intro­
duces UPLAND and outlines the principles of CUPLAND compiler 
work. 
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I. Introduction 

In recent years the volume of ICs implemented as ASICs has been constantly 
growing. One of technologies applied here ls the semi-custom one using PLD 
devices as standard components. It has proved its low costs and simplicity. 
Widely available, erasable and cheap PLDs are excellent for rapid development 
of prototypes, short series production and training- M uroga ( 1 982), Majewski, 
Luba, Jasinski, Zbiechrzowski (1992), Bolton (1990). 

PLDs must be programmed for each specific application (function). Software 
tools supporting PLD programming play a key role in the whole digital system 
design procedure. 

1 As an example P-CAD's CUPL was choosen for its wide popularity. However, input 
format of any such tool might be considered, as well. 
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P- CAD's CUPL is one of the most popular. tools for translating functional 
description of a circuit into its corresponding PLD structure , PCAD (1986). 
However, CUPL's input format describes a circuit at the very low logic level. 
Moreover, it requires an early selection of the target PLD devices which is 
particularly inconvenient when more complex circuits are considered. Therefore 
designing of large circuits with the help of CUPL is tiring and time consuming'. 

In this paper a behavioral level description compiler called CUPLAND is 
introduced, Deniziak, Sapiecha (1992). It can compile a behavioral level de­
scription of a system (circuit) into its corresponding CUPL input format where 
target PLD devices are optional. Flip- flops and asynchronous outputs are re­
ported which enables the choice of an optimum PLD set. 

Thereby, a system designer describes designed systems at the behavioral 
level (RTL-level), much higher logic level then CUPL does. A starting point of 
the designing procedure is shifted to the upper level of abstraction. Then the 
designing procedure is much easier and faster. 

Section 2 describes the main features of UPLAND "by example". Section 3 
presents principles of CUPLAND work. The paper ends with conclusions . 

2. Describing digital system behavior with UPLAND 

UPLAND, Sapiecha K., Deniziak S., Sapiecha J. (1991), is a procedural CHDL 
which refers to the behaviorallevel of the system (circuit) description, Harten­
stein (1987). It stems from a very popular and efficient technique of digital 
systems (circuits) designing which is based on a concept of a control graph and 
a microoperation, Chu (1972) . 

As a procedure any UPLAND description consists of two parts: a head and 
a body. The former declares all variables used in the description (IN :inputs, 
OUT:outputs, BUS:bidirectionallines, OWN:auxiliary variables (if necessary), 
CLOCK:main system clock and SUBCLK:subclocks (if any)) of the system ( cir­
cuit) . Synchronous and asynchronous assignments (microoperations) are dis­
tinguished using a specific declaration of SEQ:sequential variables . The latter 
describes an algorithm which is performed by a circuit. Moreover , the descrip­
tion may more or less adequately reflect the circuit structure. 

The UPLAND description of the algorithm consists of labeled microinstruc­
tions. Each microinstruction consists of an execution part and a control part, 
both containing synchronous, asynchronous, conditional and unconditional mi­
crooperations. 

The execution part refers to an operation unit of the system and comprises 
all operational microoperations which can be executed at the same clock cycle. 
The control part refers to the control unit of the system and points out to a 
microinstruction to be executed in the next clock cycle. It begins with 'NEXT' 
keyword and may be conditional. 

UPLAND enables the description of main functional blocks like registers , 
counters , multiplexers, adders etc. using a single assignment statement (single 
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microoperation). Moreover, it contains standard microoperations which make it 
possible to describe easily some more complicated functions like carry generation 
for adders, shifting, rotations etc .. Single-bit variables and vector (multi-bit) 
ones are available. 

Main features of UPLAND are the following: 
- procedural system description, 
- time factor, 
- labeled microinstructions describing main states of the system, 
- distingushed execution and control parts of each microinstruction, 
- both synchronous and asynchronous assignment microoperations, 
- numbering of pins, 
- multiclock timing, 
- standard microoperations, 
- input, output, bus, internal( own), external (when modules are distinguished) 

variables . 
As an example let us consider the description of the Intel 8214 interrupt 

controller. This chip has 8 inputs of interrupt request (IRO, . . . ,IR7) with fixed 
priority. When some interrupts are requested and the inputs INTE and ETLG 
of the controller have been activated then the interrupt with highest priority is 
selected provided that it is not masked . 

If this happens the output INT is activated for one CK clock cycle and the 
address of the selected interrupt appears on A2, ... ,AO outputs. An interrupt 
request is masked when the number loaded into the BR register equals or is 
higher then the address of an interrupt, and masking is enabled (BR3=0). 

States of the B2, ... ,BO and SGS inputs are loaded into the BR register during 
the rising edge of ECS clock. ECS also clears the interrupt disable register which 
is switched on when INT is active. The input ELR enables the A2, ... ,AO outputs 
(active low). ENLG output is used for disabling interrupts in other 8214 chips 
of the system (if more than 8 interrupts are serviced by 8214 controllers). 

The UPLAND description of the circuit begins with the following declara­
tions: 

BBOX: 18214; 
IN: ir(7:0), b(2:0), sgs, inte, ecs, elk, etlg, elr; 
OUT: a(2:0 ), int, enlg; 
OWN: br(2:0 ), br3, intdis, irqno(2:0 ), irq, no mask, intreq; 
CLOCK: clk=R; 
SUBCLK: ecs; 
SEQ: (intdis, br, br3) (ecs=R), irqno, irq; 

Auxiliary variables: irqno, irq, nomask and intreq are introduced for the 
description of intermediate variable functions. Registers: intdis, br and br3 are 
synchronized with the rising edge of the ecs clock, while latches irqno and irq 
are loaded during low level of intdis. 

The remaining part of the description of the 8214 controller consists of two 
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following microinstructions: 

O:intdis:=O, br:=b, br3:=sgs, 
COND (intdis): 
/0/: COND (ir(7}, ir(6 ), ir(5 ), ir(4), ir(3 ), ir(2}, ir(1 ), ir(O) ): 

/O,x,x,x,x,x,x,xj: irqno <= 7, irq<=1 
/1,0,x,x,x,x,x,xj: irqno <= fi, irq<=1 
/,l,l,O,x,x,x,x,xj: irqno <= 5, irq<=1 
/1,1,1,0,x,x,x,xj: irqno <= 4, irq<=1 
/1,1,1,1,0,x,x,xj: irqno <= 3, irq<=1 
/1,1,1,1,1,0,x,xj: irqno <= 2, irq<=1 
/1,1,1,1,1,1,0,xj: irqno <= 1, irq<=1 
/1,1,1,1,1,1,1,0/: irqno <= 0, irq<=1 

ELSE irq <=0 
END 

END, 
no mask <= (irqno> br) I br3, 
intreq <= irq & etlg & inte & !intdis & nomask, 
enlg <= !irq & etlg & br3, 
COND(elr,etlg,irq): 
/0,1,1/: a<= irqno 
ELSE a<= Z 
END, 
int <= Z 
NEXT COND(intreq): 

/0/: 0 
/1/: 1 
END; 

1: intdis <= 1, br:=b, br3:=sgs, 
int <= 0, enlg <= 0, 
COND(elr,etlg): 
/0,1/: a<= irqno 

ELSE a<= Z 
END, 
NEXT 0; 

END. 

S. DENIZIAK, K. SAPIECHA 

where ":=" and "<=" respectively denote synchronous and asynchronous as­
signments (microoperations), and Z denotes high impedance . 

First microinstruction (labeled 0:) describes the behavior of the controller 
while waiting for any request of nonmasked interrupt. When this happens the 
controller leaves the state #0 and reaches the state #1. The second microoper­
ation (labeled 1:) describes the behavior of the controller in this new state . INT 
output is active during only one CK clock cycle. 
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It is readily seen that descriptions of large digital circuits (digital systems) 
given in UPLAND are much shorter and much more understandable than the 
ones obtained using CUPL input format . Even a priority decoder (described 
above in UPLAND by one conditional microinstruction) or a comparator (de­
scribed in UPLAND by one assignment microoperation) require CUPL input 
formats comparable in lengths with the complete description of the controller. 

For example, CUPL input format of the decoder might be described as fol­
lows: 

IRQNO[O).ap = !INTDIS & !STATE & 
(!IR[7) # 
!IR[5) & IR[6) & IR[7) # 
!IR[3] & IR[4) & IR(5) & IR[6) & IR[7) # 
!IR[l) & IR[2) & IR[3) & IR[4) & IR[5) & IR[6) & IR[7)); 

IRQNO[O).ar =.!INTDIS & !STATE & 
(!IR[6) & IR(7) # 
!IR(4] & IR[5] & IR[6) & IR[7) # 
!IR[2) & IR[3) & IR[4) & IR[5) & IR(6) & IR[7) # 
!IR[O) & IR[l) & IR[2) & IR[3) & IR[4) & IR[5) & IR[6) & IR[7)); 

IRQNO[O).d=IRQNO[O); 

IRQNO(l).ap = !INTDIS & !STATE & 
(!IR[7) # 
!IR[6) & IR[7}·# 
!IR[3) & IR[4) & IR[5) & IR[6) & IR[7) # 
!IR[2) & IR[3) & IR[4] & IR[5] & IR[6] & IR[7)); 

IRQNO[l).ar = !INTDIS & !STATE & 
(!IR[5) & IR[6] & IR[7) # 
!IR[4] & IR[5] & IR[6) & IR[7) # 
!IR[l] & IR[2] & IR[3] & IR[4] & IR[5] & IR[6] & IR[7] # 
!IR[O) & IR[l) & IR[2) & IR[3) & IR[4) & IR[5) & IR[6) & IR[7)); 

IRQNO[l).d=IRQNO[l); ' 

IRQN0[2).ap = !INTDIS & !STATE & 
(!IR[7) # 
!IR[6) & IR[7) # 
!IR[5) & IR[6) & IR[7) # 
!IR[4] & IR(5] & IR(6) & IR(7)); 

IRQN0[2].ar = !INTDIS & !STATE & 
(IR[3] & IR[4] & IR[5) & IR[6) & IR[7) # 
!IR[2] & IR[3) & IR[4) & IR[5) & IR[6) & IR[7) # 
!IR[l] & IR[2) & IR[3) & IR[4) & IR[5] & IR[6) & IR[7) # 
!IR[O) & IR[l) & IR[2) & IR[3) & IR[4) & IR[5) & IR[6) & IR[7)); 

IRQN0[2).d=IRQN0(2); 

CUPLAND compiles an UPLAND source code into CUPL input format (ob­
ject code). In case of the decoder it automatically generates equations equivalent 
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to the above ones, starting from the description given in UPLAND. 
For the controller the CUPL input format which would have been writt 

(manually) by a designer would consist of 230 lines comparing with 40 lines:~ 
its structured UPLAND description given above. 

3. UPLAND to CUPL input format translation rules 

Each vector operation in a source code is compiled into a sequence of single- bit 
statements in the object code. 

Object code generation is performed in five steps: 
- generation of statements for combinational variables, 
- generation of statements for sequential variables, 
- generation of statements for clocks, 
- generation of statements for bidirectional lines, 
- machine state generation. 
For each combinational variable sequence of logic the following expressions are 
generated: 

APPEND var = exp & cond & state:state_i 

where: var is a name of variable; 
exp defines an expression corresponding to the right 

side of the microoperation: 
cond is an expression generated for conditional 

microoperations; 
state represents state variable; 
state_i is a constant which defines the state of 

activity of the involved microoperation. 

For example, the source t:ode 

4: COND(a,b,c): 
/O,x,l/: y <= d I e 

is translated into the following object code: 

APPEND y=(d # e) & (!a & c) & state:stak4; 

For each sequential variable one SEQUENCE statement is generated . It deals 
with all synchronous microoperations referring to the variable. The SEQUENCE 
statement includes a pair of NEXT statements for each of the involved micro­
operations. The first NEXT statement corresponds to the state 0 of the variable 
and the second one corresponds to the state J of it. The skeleton of the SE­
QUENCE statement is as follows: 

SEQUENCE var { 
PRESENT 'b'O 
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} 

IF exp & cond & state:state_i NEXT 'b'l 

DEFAULT NEXT 'b'O 
PRESENT 'b'l 

IF !exp & cond & state:state _i NEXT 'b'O 

DEFAULT NEXT 'b'l 
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For each sequential variable a sequence of logic expressions for all asynchronous 
microoperations is generated. Hence: 

APPEND var.AR = !exp & cond & state:state_i; 
APPEND var.AP = exp & cond & state:state_i; 

For example, the source code 

4:COND (a,b,c): 
/O,x,lj: q := d I e 
/0,1,0/: q <= f 

is translated into the following object code: 

SEQUENCE q { 
PRESENT 'b'O 

IF ( d # e) & (!a & c) & state:state-4 NEXT 'b'l 
DEFAULT NEXT 'b'O 

PRESENT 'b'l 

} 

IF !( d # e) & (!a & c) & state:state-4 NEXT 'b'O 
DEFAULT NEXT 'b'l 

APPEND q.AR = !f & (!a & b & !c) & state:state-4; 
APPEND q.AP = f & (!a & b & !c) & state:state-4; 

For each sequential variable synchronized with nonstandard clock signals a set 
of equations controlling programmable clock inputs is generated. 

Let us consider the following description: 

CLOCK: CK=F; 
SUBCLK: CK1,CK2; 
SEQ: Ql ,(Q2) (CK1=R),(Q3) (CK2=F); 

Timing signals of the Ql and Q2 registers are nonstandard. Hence, a PLD chip 
with programmable clocks must be applied and the following statements should 
be generated: 

Ql .CK = !CK; 
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Q2.CK = CKJ; 
Q3.CK = !CK2; 
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For each bidirectional line and a tri-state output a set of equations controlling 
an output enable line (OE) is generated . 

For example, the source code: 

OUT: Y2; 
BUS: Yl; 

0: I<= YJ, Y2 <= Z, 

1: COND(A,B): 
/0,1/: YJ <= C, Y2 <= Z 

2: Yl <= D, Y2 <= A, 

is translated into the following object code: 

Yl.OE = !A & B & state:state_J # state:state_2; 
Y2.0E = !(state:state_O #!A & B & state:state_l); 

For devices using more than one state (more than one microinstruction in UP­
LAND) a state machine (a control unit) is to be generated. For this purpose an 
n-bit STATE variable is created that holds 2n :S< number of states < 2n+1. To 
generate a SEQUENCE statement describing the state machine the following 
rules are applied: 

- unconditional NEXT i; is translated into a NEXT state_i; statement; 
- conditional NEXT i; is translated into a sequence of IF cond NEXT 

state_i; statements; 
- ELSE i; is translated into a DEFAULT NEXT state_i; statement. 

State encoding for a finite state machine (FSM) is performed 11sing a simple op­
timization procedure. This procedure is described in Deniziak, Sapiecha (1993) . 

4. Conclusions 

The application of UPLAND causes that designing of large circuits requires 
much less effort than when CUPL is used directly. However, shifting of a starting 
point of a digital circuit design procedure to the upper level of abstraction may 
sometimes result in a nearly optimal PLD-based structure. 

Non-optimality of the CUPLAND's work may be caused by two reasons: 
CUPLAND in the current version does not minimize boolean functions and it 
does not take into account all specific structural (schematic) features of all PLD 
devices. 

For a boolean function F CUPL enables only the description of the sets F 1 



A system for beha.viora.l level synthesis of P LD-ba.sed circuits 113 

and F 0 . If the function is partly specified (set Fx is not empty) then minimiza­
tion of the function should be done before the translation of its description into 
the CUPL input format. This may be easily achieved by enriching CUPLAND 
with an appriopriate minimization algorithm (ESPRESSO, for example). 

Internal XOR gates could be taken as an example of a specific structural 
feature of a PLD device which would not be optimally used by CUPLAND . 
Instead of an optimal expression F = Fi xor Fj an expression F = F xor 0 
might be generated. 

In the paper an example is given which illustrates CUPLAND efficiency. Usu­
ally, an UPLAND source code length is ten times smaller than its corresponding 
CUPL input code length, not mentioning their readability. 

The selection of PLD devices is shifted to the end of the design procedure 
which makes minimization of the structure possible . 

Finally, the source description of the design is much more understandable. 
Its correctness can be easily checked by simulation. 
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