
Control and Cybernetics

vol. 22 (1993) No. 3

A system for behavioral level synthesis
of PLD-based circuits

by

Stanislaw Deniziak and Krzysztof Sapiecha

Kielce University of Technology,
Department of Computer Science
Al. Tysiq,clecia Panstwa Polskiego 7,
25-314 Kielce
Poland

PLD- based circuits have been designed with the help of specific
software tools. However, input formats of such tools (CUPL's input
format, for example1) describe a circuit at a very low logic level.
Moreover, they require an early selection of the target PLD devices
which is particularly inconvement when more complex circuits are
considered . Therefore, designing of large circuits with the help of
these tools is tiring and time consuming.

In the paper another concept is investigated. Behavioral descrip­
tion of a c1rcuit is formulated using procedur'al CHDL called
UPLAND. Then, UPLAND source description is automatically
translated into its corresponding target input format (CUPL's input
format) where target PLD devices are optional. The paper intro­
duces UPLAND and outlines the principles of CUPLAND compiler
work.

Keywords: PLD-based systems, behaviorallevel synthesis, de­
sign automation, ASICs.

I. Introduction

In recent years the volume of ICs implemented as ASICs has been constantly
growing. One of technologies applied here ls the semi-custom one using PLD
devices as standard components. It has proved its low costs and simplicity.
Widely available, erasable and cheap PLDs are excellent for rapid development
of prototypes, short series production and training- M uroga (1 982), Majewski,
Luba, Jasinski, Zbiechrzowski (1992), Bolton (1990).

PLDs must be programmed for each specific application (function). Software
tools supporting PLD programming play a key role in the whole digital system
design procedure.

1 As an example P-CAD's CUPL was choosen for its wide popularity. However, input
format of any such tool might be considered, as well.

106 S. DENIZIAK, K. SAPI ECHA

P- CAD's CUPL is one of the most popular. tools for translating functional
description of a circuit into its corresponding PLD structure , PCAD (1986).
However, CUPL's input format describes a circuit at the very low logic level.
Moreover, it requires an early selection of the target PLD devices which is
particularly inconvenient when more complex circuits are considered. Therefore
designing of large circuits with the help of CUPL is tiring and time consuming'.

In this paper a behavioral level description compiler called CUPLAND is
introduced, Deniziak, Sapiecha (1992). It can compile a behavioral level de­
scription of a system (circuit) into its corresponding CUPL input format where
target PLD devices are optional. Flip- flops and asynchronous outputs are re­
ported which enables the choice of an optimum PLD set.

Thereby, a system designer describes designed systems at the behavioral
level (RTL-level), much higher logic level then CUPL does. A starting point of
the designing procedure is shifted to the upper level of abstraction. Then the
designing procedure is much easier and faster.

Section 2 describes the main features of UPLAND "by example". Section 3
presents principles of CUPLAND work. The paper ends with conclusions .

2. Describing digital system behavior with UPLAND

UPLAND, Sapiecha K., Deniziak S., Sapiecha J. (1991), is a procedural CHDL
which refers to the behaviorallevel of the system (circuit) description, Harten­
stein (1987). It stems from a very popular and efficient technique of digital
systems (circuits) designing which is based on a concept of a control graph and
a microoperation, Chu (1972) .

As a procedure any UPLAND description consists of two parts: a head and
a body. The former declares all variables used in the description (IN :inputs,
OUT:outputs, BUS:bidirectionallines, OWN:auxiliary variables (if necessary),
CLOCK:main system clock and SUBCLK:subclocks (if any)) of the system (cir­
cuit) . Synchronous and asynchronous assignments (microoperations) are dis­
tinguished using a specific declaration of SEQ:sequential variables . The latter
describes an algorithm which is performed by a circuit. Moreover , the descrip­
tion may more or less adequately reflect the circuit structure.

The UPLAND description of the algorithm consists of labeled microinstruc­
tions. Each microinstruction consists of an execution part and a control part,
both containing synchronous, asynchronous, conditional and unconditional mi­
crooperations.

The execution part refers to an operation unit of the system and comprises
all operational microoperations which can be executed at the same clock cycle.
The control part refers to the control unit of the system and points out to a
microinstruction to be executed in the next clock cycle. It begins with 'NEXT'
keyword and may be conditional.

UPLAND enables the description of main functional blocks like registers ,
counters , multiplexers, adders etc. using a single assignment statement (single

A system for beha.viora.l level synthesis of PLD-ba.sed circuits 107

microoperation). Moreover, it contains standard microoperations which make it
possible to describe easily some more complicated functions like carry generation
for adders, shifting, rotations etc .. Single-bit variables and vector (multi-bit)
ones are available.

Main features of UPLAND are the following:
- procedural system description,
- time factor,
- labeled microinstructions describing main states of the system,
- distingushed execution and control parts of each microinstruction,
- both synchronous and asynchronous assignment microoperations,
- numbering of pins,
- multiclock timing,
- standard microoperations,
- input, output, bus, internal(own), external (when modules are distinguished)

variables .
As an example let us consider the description of the Intel 8214 interrupt

controller. This chip has 8 inputs of interrupt request (IRO, . . . ,IR7) with fixed
priority. When some interrupts are requested and the inputs INTE and ETLG
of the controller have been activated then the interrupt with highest priority is
selected provided that it is not masked .

If this happens the output INT is activated for one CK clock cycle and the
address of the selected interrupt appears on A2, ... ,AO outputs. An interrupt
request is masked when the number loaded into the BR register equals or is
higher then the address of an interrupt, and masking is enabled (BR3=0).

States of the B2, ... ,BO and SGS inputs are loaded into the BR register during
the rising edge of ECS clock. ECS also clears the interrupt disable register which
is switched on when INT is active. The input ELR enables the A2, ... ,AO outputs
(active low). ENLG output is used for disabling interrupts in other 8214 chips
of the system (if more than 8 interrupts are serviced by 8214 controllers).

The UPLAND description of the circuit begins with the following declara­
tions:

BBOX: 18214;
IN: ir(7:0), b(2:0), sgs, inte, ecs, elk, etlg, elr;
OUT: a(2:0), int, enlg;
OWN: br(2:0), br3, intdis, irqno(2:0), irq, no mask, intreq;
CLOCK: clk=R;
SUBCLK: ecs;
SEQ: (intdis, br, br3) (ecs=R), irqno, irq;

Auxiliary variables: irqno, irq, nomask and intreq are introduced for the
description of intermediate variable functions. Registers: intdis, br and br3 are
synchronized with the rising edge of the ecs clock, while latches irqno and irq
are loaded during low level of intdis.

The remaining part of the description of the 8214 controller consists of two

108

following microinstructions:

O:intdis:=O, br:=b, br3:=sgs,
COND (intdis):
/0/: COND (ir(7}, ir(6), ir(5), ir(4), ir(3), ir(2}, ir(1), ir(O)):

/O,x,x,x,x,x,x,xj: irqno <= 7, irq<=1
/1,0,x,x,x,x,x,xj: irqno <= fi, irq<=1
/,l,l,O,x,x,x,x,xj: irqno <= 5, irq<=1
/1,1,1,0,x,x,x,xj: irqno <= 4, irq<=1
/1,1,1,1,0,x,x,xj: irqno <= 3, irq<=1
/1,1,1,1,1,0,x,xj: irqno <= 2, irq<=1
/1,1,1,1,1,1,0,xj: irqno <= 1, irq<=1
/1,1,1,1,1,1,1,0/: irqno <= 0, irq<=1

ELSE irq <=0
END

END,
no mask <= (irqno> br) I br3,
intreq <= irq & etlg & inte & !intdis & nomask,
enlg <= !irq & etlg & br3,
COND(elr,etlg,irq):
/0,1,1/: a<= irqno
ELSE a<= Z
END,
int <= Z
NEXT COND(intreq):

/0/: 0
/1/: 1
END;

1: intdis <= 1, br:=b, br3:=sgs,
int <= 0, enlg <= 0,
COND(elr,etlg):
/0,1/: a<= irqno

ELSE a<= Z
END,
NEXT 0;

END.

S. DENIZIAK, K. SAPIECHA

where ":=" and "<=" respectively denote synchronous and asynchronous as­
signments (microoperations), and Z denotes high impedance .

First microinstruction (labeled 0:) describes the behavior of the controller
while waiting for any request of nonmasked interrupt. When this happens the
controller leaves the state #0 and reaches the state #1. The second microoper­
ation (labeled 1:) describes the behavior of the controller in this new state . INT
output is active during only one CK clock cycle.

A system for beha.vioral level synthes is of PLD-bo.sed circuits 109

It is readily seen that descriptions of large digital circuits (digital systems)
given in UPLAND are much shorter and much more understandable than the
ones obtained using CUPL input format . Even a priority decoder (described
above in UPLAND by one conditional microinstruction) or a comparator (de­
scribed in UPLAND by one assignment microoperation) require CUPL input
formats comparable in lengths with the complete description of the controller.

For example, CUPL input format of the decoder might be described as fol­
lows:

IRQNO[O).ap = !INTDIS & !STATE &
(!IR[7) #
!IR[5) & IR[6) & IR[7) #
!IR[3] & IR[4) & IR(5) & IR[6) & IR[7) #
!IR[l) & IR[2) & IR[3) & IR[4) & IR[5) & IR[6) & IR[7));

IRQNO[O).ar =.!INTDIS & !STATE &
(!IR[6) & IR(7) #
!IR(4] & IR[5] & IR[6) & IR[7) #
!IR[2) & IR[3) & IR[4) & IR[5) & IR(6) & IR[7) #
!IR[O) & IR[l) & IR[2) & IR[3) & IR[4) & IR[5) & IR[6) & IR[7));

IRQNO[O).d=IRQNO[O);

IRQNO(l).ap = !INTDIS & !STATE &
(!IR[7) #
!IR[6) & IR[7}·#
!IR[3) & IR[4) & IR[5) & IR[6) & IR[7) #
!IR[2) & IR[3) & IR[4] & IR[5] & IR[6] & IR[7));

IRQNO[l).ar = !INTDIS & !STATE &
(!IR[5) & IR[6] & IR[7) #
!IR[4] & IR[5] & IR[6) & IR[7) #
!IR[l] & IR[2] & IR[3] & IR[4] & IR[5] & IR[6] & IR[7] #
!IR[O) & IR[l) & IR[2) & IR[3) & IR[4) & IR[5) & IR[6) & IR[7));

IRQNO[l).d=IRQNO[l); '

IRQN0[2).ap = !INTDIS & !STATE &
(!IR[7) #
!IR[6) & IR[7) #
!IR[5) & IR[6) & IR[7) #
!IR[4] & IR(5] & IR(6) & IR(7));

IRQN0[2].ar = !INTDIS & !STATE &
(IR[3] & IR[4] & IR[5) & IR[6) & IR[7) #
!IR[2] & IR[3) & IR[4) & IR[5) & IR[6) & IR[7) #
!IR[l] & IR[2) & IR[3) & IR[4) & IR[5] & IR[6) & IR[7) #
!IR[O) & IR[l) & IR[2) & IR[3) & IR[4) & IR[5) & IR[6) & IR[7));

IRQN0[2).d=IRQN0(2);

CUPLAND compiles an UPLAND source code into CUPL input format (ob­
ject code). In case of the decoder it automatically generates equations equivalent

110 S. DENIZIAK, K. SAPlECHA

to the above ones, starting from the description given in UPLAND.
For the controller the CUPL input format which would have been writt

(manually) by a designer would consist of 230 lines comparing with 40 lines:~
its structured UPLAND description given above.

3. UPLAND to CUPL input format translation rules

Each vector operation in a source code is compiled into a sequence of single- bit
statements in the object code.

Object code generation is performed in five steps:
- generation of statements for combinational variables,
- generation of statements for sequential variables,
- generation of statements for clocks,
- generation of statements for bidirectional lines,
- machine state generation.
For each combinational variable sequence of logic the following expressions are
generated:

APPEND var = exp & cond & state:state_i

where: var is a name of variable;
exp defines an expression corresponding to the right

side of the microoperation:
cond is an expression generated for conditional

microoperations;
state represents state variable;
state_i is a constant which defines the state of

activity of the involved microoperation.

For example, the source t:ode

4: COND(a,b,c):
/O,x,l/: y <= d I e

is translated into the following object code:

APPEND y=(d # e) & (!a & c) & state:stak4;

For each sequential variable one SEQUENCE statement is generated . It deals
with all synchronous microoperations referring to the variable. The SEQUENCE
statement includes a pair of NEXT statements for each of the involved micro­
operations. The first NEXT statement corresponds to the state 0 of the variable
and the second one corresponds to the state J of it. The skeleton of the SE­
QUENCE statement is as follows:

SEQUENCE var {
PRESENT 'b'O

A 3ystem for beha.viora.l l evel synthesis of PLD-based circuits

}

IF exp & cond & state:state_i NEXT 'b'l

DEFAULT NEXT 'b'O
PRESENT 'b'l

IF !exp & cond & state:state _i NEXT 'b'O

DEFAULT NEXT 'b'l

111

For each sequential variable a sequence of logic expressions for all asynchronous
microoperations is generated. Hence:

APPEND var.AR = !exp & cond & state:state_i;
APPEND var.AP = exp & cond & state:state_i;

For example, the source code

4:COND (a,b,c):
/O,x,lj: q := d I e
/0,1,0/: q <= f

is translated into the following object code:

SEQUENCE q {
PRESENT 'b'O

IF (d # e) & (!a & c) & state:state-4 NEXT 'b'l
DEFAULT NEXT 'b'O

PRESENT 'b'l

}

IF !(d # e) & (!a & c) & state:state-4 NEXT 'b'O
DEFAULT NEXT 'b'l

APPEND q.AR = !f & (!a & b & !c) & state:state-4;
APPEND q.AP = f & (!a & b & !c) & state:state-4;

For each sequential variable synchronized with nonstandard clock signals a set
of equations controlling programmable clock inputs is generated.

Let us consider the following description:

CLOCK: CK=F;
SUBCLK: CK1,CK2;
SEQ: Ql ,(Q2) (CK1=R),(Q3) (CK2=F);

Timing signals of the Ql and Q2 registers are nonstandard. Hence, a PLD chip
with programmable clocks must be applied and the following statements should
be generated:

Ql .CK = !CK;

112

Q2.CK = CKJ;
Q3.CK = !CK2;

S. DENIZIAK, K. SAPIECHA

For each bidirectional line and a tri-state output a set of equations controlling
an output enable line (OE) is generated .

For example, the source code:

OUT: Y2;
BUS: Yl;

0: I<= YJ, Y2 <= Z,

1: COND(A,B):
/0,1/: YJ <= C, Y2 <= Z

2: Yl <= D, Y2 <= A,

is translated into the following object code:

Yl.OE = !A & B & state:state_J # state:state_2;
Y2.0E = !(state:state_O #!A & B & state:state_l);

For devices using more than one state (more than one microinstruction in UP­
LAND) a state machine (a control unit) is to be generated. For this purpose an
n-bit STATE variable is created that holds 2n :S< number of states < 2n+1. To
generate a SEQUENCE statement describing the state machine the following
rules are applied:

- unconditional NEXT i; is translated into a NEXT state_i; statement;
- conditional NEXT i; is translated into a sequence of IF cond NEXT

state_i; statements;
- ELSE i; is translated into a DEFAULT NEXT state_i; statement.

State encoding for a finite state machine (FSM) is performed 11sing a simple op­
timization procedure. This procedure is described in Deniziak, Sapiecha (1993) .

4. Conclusions

The application of UPLAND causes that designing of large circuits requires
much less effort than when CUPL is used directly. However, shifting of a starting
point of a digital circuit design procedure to the upper level of abstraction may
sometimes result in a nearly optimal PLD-based structure.

Non-optimality of the CUPLAND's work may be caused by two reasons:
CUPLAND in the current version does not minimize boolean functions and it
does not take into account all specific structural (schematic) features of all PLD
devices.

For a boolean function F CUPL enables only the description of the sets F 1

A system for beha.viora.l level synthesis of P LD-ba.sed circuits 113

and F 0 . If the function is partly specified (set Fx is not empty) then minimiza­
tion of the function should be done before the translation of its description into
the CUPL input format. This may be easily achieved by enriching CUPLAND
with an appriopriate minimization algorithm (ESPRESSO, for example).

Internal XOR gates could be taken as an example of a specific structural
feature of a PLD device which would not be optimally used by CUPLAND .
Instead of an optimal expression F = Fi xor Fj an expression F = F xor 0
might be generated.

In the paper an example is given which illustrates CUPLAND efficiency. Usu­
ally, an UPLAND source code length is ten times smaller than its corresponding
CUPL input code length, not mentioning their readability.

The selection of PLD devices is shifted to the end of the design procedure
which makes minimization of the structure possible .

Finally, the source description of the design is much more understandable.
Its correctness can be easily checked by simulation.

References

BoLTON M. (1990) Digital Systems Design with Programmable Logic,
Addison- Wesley Publishing Company.

CHU Y. (1972) Computer Organization and Microprogramming, Prentice- Hall .
DENIZIAK S ., SAPIECHA K. (1992) CUPLAND-Behavioral Level Description

Compiler for Designing of PLD-based Circuits, Proc. International Con­
ference of Microelectronics, Sept. 1992, 205-212.

DENIZIAK S., SA~IECHA K. (1 993) State Encoding Optimization Procedure
for Synthesis of PLD-based Circuits, Technical Report No. 1/93, De­
partment of Computer Science, Kielce University of Technology.

HARTENSTEIN R.W. (ED.) (1987) Hardware Description Languages, Elsevier
Science Publishers B.V. North-Holland.

Intel Component Data Catalog, INTEL Corp., 1980.
MAJEWSKI W., LUBA T., JASINSKI K., ZBIECHRZOWSKI B. (1992) Progra­

mowalne moduly logiczne ~ syntezie uklad6w cyfrowych, WKiL, War­
szawa.

MuROGA S. (1982) VLSI SYSTEM DESIGN, John Wiley & Sons, Inc.
PCAD (1986) CUPL User's Manual, Personal CAD Systems , Inc., June 1986.
SAPIECHA K., DENIZIAK S., SAPIECHA J . (1991) MESSMATE-Modular

Economical System for designing, verifying And TEsting of digital sys­
tems, ResComp, 1991.

