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1. Introduction 

We shall be interested in the behavior of a set of "persons", called the players, 
each of whom strives to modify 'the state of a system or, as we shall say, the 
state of the game, in a most efficacious manner according to his own criterion. 
We shall first consider the case of games in which the rules assign .to each player 
a payoff function of all the players' decisions; that is, the rules of the game 
prescribe mappings 

W; 
N 

IT S; --+ fl;' z = 1' 2' ... N' 
i = l 

(1) 

where W; and S; is the payoff function and decision set, respectively, for player 
i in the set J = {h, ]z, ... JN }, and the fl;, i = 1, 2, ... N, are linear spaces. 

We wish to consider games for which a negotiated solution is envisaged. In 
general, cooperation entails bargaining for the reason that, in most cases where 
a cooperative mood of play exists, it is not unique. A decision N -tuple in the set 
of cooperative equilibria may be more desirable than another for some player. 
Accordingly, this player will try to convince the other players to choose that 
cooperation point. In practice, it appears that the efficiency of his argument 
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will depend on his "strength", that is, on the efficiency of the threats he can put 
forward. 

This problem was considered by Nash (1 953) ., and extended to differential 
games by Liu (1973). Here we shall use another approach based on the concept 
of C-optimality introduced in Blaquiere and Ray (1981). 

Cooperative and Competitive Games 

In the case where Di = R 1 , i = 1, 2, . .. N, we suppose, loosely speaking, that 
each player desires to attain the greatest possible payoff to himself. A large part 
of the literature on games is concerned with two moods of play, one coopera­
tive and the other competitive . These are due to economists Pareto (1909) and 
Nash (1951) , respectively. 

According to Pareto, a decision N -tuple is considered optimal if and only if 
one of two situations occurs: Adopting another decision N -tuple either results 
in no change in any of the payoffs (and hence there is no reason for adopting 
another decision) or it results in a payoff decrease to at least one player (which · 
is undesirable in view of the cooperative mood of play) . In other words, we have 

Definition 1 For prescribed mappings v;: fi{: 1 Si-+ R 1 , i = 1,2, . .. N , a 

decision N -tuple s* E fi{: 1 Si is Pareto-optimal (or a Pareto-equilibrium) if and 

only if for every s E fi{: 1 Si either 

V;(s) = V;(s*) i=1 , 2, .. . N , 

or there is at least one i E {i = 1, 2, . .. N} such that 

V;(s) < V;(s*). 

Later, we shall make use of the following lemma which embodies sufficiency 
conditions for Pareto-optimality: see Leitmann (1974) 

Lemma 1 Decision N -tuple s* E fi{: 1 S; is Pareto-optimal if there exist stric­
tly positive numbers ex;, i = 1, 2, ... N, such that. 

V;(s):::; V;(s*) 

N 
where V(s) = Li=l cxiViCs). 

N 

for all sE IT si, 
i=l 

If the players do not cooperate, that is if they are in strict competition, a 
rational behavior for each player is to strive to attain the maximum of his own 
payoff regardless of the consequences to the other players, under the assumption 
that each of his opponents is rational. This leads to 
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Definition 2 A decision N-tuple s* E IJ::1 S; is a Nash-equilibrium if and 
onlyifforalliE{i = 1,2, ... N} 

for all s; E S; 

2. C-optimality 

Now, in the more general case where the rules of the game prescribe mappings 
of the type (1), we have introduced in Blaquiere (1974), and further discussed 
in Blaquiere (1975), Blaquiere (1976a, b) the concept of C-optimality. This was 
motivated by the fact that, the concept of optimality being tied with the ones 
of preference and comparison, a preference relation and comparison relation 
need be associated with each player. Here, in general, the preference can not 
be defined by the natural ordering on the real line as in cases of the above 
paragraph. 

Let the preference relation of J;, i = 1, 2, ... N (reflexive, not necessarily 
transitive) be denoted by C:::); , n; => (;::::); ; and 

let ·~he comparison relation of J;, i = 1, 2, ·:. N (reflexive and symmetric) 
be denoted by C;, (f1;:1 S; )2 :J C;. 

Then we have 

Definition 3 A decision N-tuple s* E IJ::1 S; is C-optimal for player J; if and 
only if 

W;(s*) (2:)• W;(s) for all s C; s*, 

Definition 4 A decision N-tuple s* E IJ::1 S; is C- optimal if and only if it is 
optimal for all the players, that is if and only if 

W;(s*) (2:); W;(s) · for all sC; s*, 1,2, . .. N 

Example 1 
In order to illustrate the definition above, let us consider the case of a static 
game with the two players Jr and ]z . Let the game be represented by 

]z 
4,6 2,5 6,3 

Jr 4,3 1,4 7,2 
3,2 6,5 7,4 

Jr chooses a line s1 , and ]z chooses column Sz. The corresponding payoff for 
each player lies at the intersection of s1 and s2 : the first number is the payoff 
of Jr, and the second one is the payoff of ]z. Define C1 and Cz by 

(s1,sz)C1 (s~,s;) <=::::> Sz = s;, 
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h,s2)C2(s~,s;) {::::::::} s1 = s~. 
Let S11 = S12 = R1 and (2:)1 = (2:)z = (2:), where 2: is natural ordering in 
R1 . Then the C-optimal decision pairs (s 1 , s2) are those corresponding to the 
payoffs (4,6) and (6,5). We see that, in that case, the definition of a C-optimal 
decision pair coincides with one of a Nash equilibrium. 

Example 2 
Let us modify Example 1 by letting S11 = S12 = R2 and (2:)1 
where the preference relation (2:) is defined by 

[(x,y) E R 2
, (x',y') E R2(x,y)(2:)(x',y')] {:} 

[(x > x' and/or y > y') or (x = x' and y = y')] 

(2:)2 = (2:), 

Note that this preference relation is neither transitive nor antisymetric. 
Define C1 and C2 such that any (s1, s2) is comparable with any (si, si), for 

It and h; here C1 = C2. 
Then, there three C-optimal decision pairs ( s1, s2), namely those correspond­

ing to the payoffs (4,6), (6,5) and (7,4). We see that, in that case, the definition 
of a C-optimal decision pair coincides with the one a Pareto equilibrium. Note 
that the decision pairs corresponding to (4,6) and (6,5) are at once Nash and 
Pareto. 

We will see another illustrative example in the next paragraph. In Blaquie­
re (1 976, b) Definition 4 is used in the study of coalitions and for introducing 
the concept of diplomacy. 

3. C-optimal Threat Decision Pair 

From now on, we shall consider two-person games for which a negotiated solution 
is envisaged. Before such a settlement can be arrived at, we will suppose that 
the players exchange threats in an attempt to influence the final outcome of 
the game. Whether negotiations take place and what are the results of such 
negotiations will depend on the threats made. The problem of bargaining has 
been considered by Nash (1953), and extended to the differential games by 
Liu (1973). Our approach, reported in Ray and Blaquiere (1981) is different in 
that we define optimal threats independently of any negotiated stages, through 
the concept of C-optimality. 

Roughly speaking, we can think of a threat decision as a decision designed to 
inflict the greatest damage possible to the opponent. In so doing, each player will 
have to consider the possible reaction of his opponent. If the opponent behaves 
in the same way, then both players run to risk of having considerable losses. 
Thus, in choosing a threat decision, each player needs to consider the effect 
that it will have on the other player and also the risk to himself associated 
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with it. In order to make this idea more precise, let us start with the mappings 
V; : S1 ® S2 --+ R1 , i = 1, 2, and with the following facts: 

The selection of a decision ~1 E S1 by player J 1 has two consequences: it 
will put an upper bound on the (scalar) payoff of his opponent, namely 

V2(~1 , s~) = sup [V2(~1 , s2)], 
s,ES, 

and a lower bound on his own (scalar) payoff, namely 

V1 (.£1, s~) = inf [V1 (.£1, s2)]. 
s,ES2 

Since s~ # s~ in most cases, it will generally be necessary for a player h to 
find a compromise between defending his own payoff and attacking his opponent. 
A similar consideration holds for player It. 

The fact that each player is interested in threat-risk pair leads us to consid­
ering the mappings 

i = 1, 2, 

where W1(s1,s2) = W2(s1,s2) := (V1(s1,s2), V2(s1,s2)) for (s1,s2) E S1 ®S2. 
Then, the framework of C-optimality provides us with a way for defining C-opti­
mality of a threat decision pair: that is, we use Definition 4 with (2:); and C;, 
i = 1, 2 defined by 
(x, y) (2:h (x', y') {::} {x > x' 
(x, y) (2:)2 (x', y') {::} {x < x' 

(s1, s2)C1(si, s~) {::} s2 = s~, 
(s1 , s2)C2(si, s~) {::} s1 = s~. 

and/or y < y'} 
and/or y > y'} 

or { x = x' and y = y'}, 
or {x = x' and y = y'}, 

In other words, a response decision §.2 for player h against §.1 is optimal for 
h if and only if 

This makes sense, because, :f player h selects any other decisiqn s2 E S2, then 
either his own scalar payoff is reduced, or the (scalar) payoff of player It is 
increased, or both situations occur, unless there is no change in any of the 
payoffs. A similar consideration holds for player It; .that is, response decision §.1 

for player J 1 against §.2 is optimal for player J 1 if and only if 

for all S1 E s1. 

Then a threat decision pair (si, s2) is C-optimal if and only if it is optimal for 
both It and h. 

Noting that (x,y)(2:)t(x',y') {::} (x',y')(2:)2(x,y), we see that a threat 
decision pair (si, s2) is C-optimal if and only if 
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for all s1 E 51, and for all s2 E 52, where (2':) is written in place of (2':)! . 
As a direct consequence of the definitions of (2':) and of a Pareto-equilibrium, 

we have 

Lemma 2 (si , s2) E 51 ® 52 is a C-optimal threat decision pair if and only if 

(a) si is a Pareto-equilibrium of(V1(s1 , s2) , - V2(s1,s2)); and 

(b) s2 is a Pareto-equilibrium of(- V1(si,s2), V2(si,s2)). 

Lemma 1 together with Lemma 2 result in Lemma 3 and Corollary 1 which 
embody sufficiency conditions for C-optimality of a threat decision pair. 

Lemma 3 Decision pair (si, s2) E 51 ®52 is a C-optimal threat decision pair 
if there exists strictly positive numbers n:1, n:2, such that 
Vl(si,s2) - n:1V2(si , s2)) > V1(s1,s2) - n:1V2(s1,s2)), and 
V1(si,s2)- n:2V2(si,s2)) 2': Vl(si,s2)- n:2V2(si,s;)), 
for all (s1 , s2) E 51® 52. 

Corollary 1 Decision pair (si, s:J) E 51 ®52 is a C-optimal threat decision pair 
if there exists strictly positive number n: such that the saddle-point condition 

is satisfied for all ( s1, s2) E 51 ®52. 

4. Nash-Optimal Threat Decision Pair 

Again, consider the mappings 

i = 1, 2, 

where W1(s1,s2) = W2(s1,s2) = W(s1,s2) := (V1(s1,s2), V2(s1,s2)) 
for (s1,s2) E 51 ® 52. 
Let us denote by :Z:::::(sl, s2) the set 

Then we have 

Definition 5 A Nash bargaining solution associated with (s1,s2) E S1 ® S2, 
whenever it exists , is a pair ( 0'1, 0'2) E 2:::::( s1, s2) such that, either 

or 

(i) [V1(r! , r2) - V1(sl , s2 )][V2(r!,r2) - V2(s1,s2)] :::; 
[V1(1T1 ,1T2) - Vl(sl ,s2)](V2(1T1,1T2) - V2(s1 , s2)] 
for all (r!,r2) E l::::(s1,s2), 
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(ii) (cr1, cr2) = (s1, s2) if(s1 , s2) is a Pareto equilibrium (V1h, r2), V2(r1, r 2)), 
in which case there is no (cr1, cr2) satisfying condition (i). 

Denote by N ( s1, s2) the set of all N ash bargaining solutions associated with 
(SI' s2) E SI 0 82. One can see easily that if ( CTI' 0"2) E N ( Sl' s2), then ( CTI' cr2) 
is a Pareto equilibrium of (V1(r1, r2), V2(r1, r2)) . In the sequel, we shall assume: 

(A2) W(S1 0 82) is convex, 

which ensure existence and uniqueness of a Nash bargaining solution associated 
with (s1, s2), for all (s1, s2) E SI 0 82. 

From Definition 5 and elementary properties of convex sets, one obtains 

Lemma 4 Let (Al}, (A2} hold. Then the following conditions are equivalent: 

(ii} there exists a unique 11 > 0, such that 

(a) [VI(cri,cr2) - V1(s1,s2)] = fl [V2(cr1,cr2)- V2(si,s2)]; and 

(b) V1(cr1,cr2) + /-Nl(cri,cr2) 2 V1(r1,r2) + 11VI(r1,r2), 

Let (Al), (A2) hold. Let N denote the mapping which associates with each 
(si, s2) E S1 0 5 2, the Nash bargaining solution (cr1, cr2). Let Z =WoN; that 
is z: SI 0 52---+ R2, with Z;(si, S2v = [VI(N(si, s2)), V2(N(sl, s2))], i = 1, 2. 

Definition 6 A Nash-optimal threat decision pair is a Nash-equilibrium of the 
game with payoff functions zl' z2. 

From Lemma 4 and Definition 6, one can easily deduce the following: 

Lemma 5 Let (Al}, (A2} hold. Then (si, s;) is Nash-optimal threat decision 
pair if and only if the saddle-point condition 

From Corollary 1, we see that, under (Al) and (A2), a Nash-optimal threat 
decision pair is special case of a C-optimal threat decision pair. 



70 A. BLAQUIERE 

5. C-Optimal Threat Strategy Pairs in Two-Player Differ­
ential Game 

Consider now a two person-person differential game with state equations 

dx(t)jdt = f(x(t),p 1(x(t) ,p2(x(t))); (2) 

where x = (x1,x2, . .. xn) EX, Xn = t, X is a domain in Euclidean space En, 
and f is Borel measurable on X ® Ed, ® Ed2 • Let pi denote the space of all 
Borel measurable functions from X intoEd', i = 1, 2. A strategy pi :X-+ Ed' 
is admissible if and only if pi E pi and 

for all x EX, 

for given functions 

Ui : X -+ set of all nonempty subsets of Ed' 

We suppose that the target (} is a subset of &X. 
A strategy pair p = (p1 , p2) is playable at x0 if it is admissible and generates 

at least one terminating path x(.) : [to, t 1] -+ X U (}, solution of (2), such that 
x(to) = X 0

, x(tJ) EX for all t E [to ,tJ), and x(tJ) E e. Let J(x 0
) denote the 

set of all strategy pairs playable at x0
; we assume that J(x 0

) is nonempty. Let 
I( x 0

, p) denote the set of all terminating paths generated by p from x 0
• 

The payoffs corresponding to path x(.) : [to, tl] -+ X U (}, generated by a pair 
p E J(x 0

) from X
0

, are given by 

i
t, 

V;(x 0 ,p, x(.)) := hi(x(t),p(x(t))) dt, 
to 

i = 1, 2, 

where hi : X ® Ed, ® Ed2 -+ R1 are given real valued Borel measurable 
functions satisfying a polynomial growth condition. 

Definition 7 A pair p* = (ph, p2*) is a C- optimal threat strategy pair at x0 if 
and only if 

(i) p* E J(x 0
), and 

(ii) V;(x 0 ,p*,x*(.)) = V;(x 0 ,p*,x**(.)) := V;*(x 0 ,p*), i = 1,2, 
for all x**(.) E I(x 0 ,p*), 

(iii) (V1(x 0 ,ph,p2,x(.)), V2(x 0 ,ph,p2,x(.))) (2:) (Vt(x 0 ,p*), V2*(x 0 ,p*)) 
for all (ph,p2) E J(x 0

), and x(.) E I(x 0 ,ph,p2); and 

(iv) (Vt(xo,p*), V2*(xo,p*)) (2:) (Vl(xo,pl ,p2•' x(.)), V2(xo,pl ,p2•, x(.))) 
for all (p1 ,p2*) E J(x 0

), and all x(.) E I(x 0 ,pl,p2*). 
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Below we state a sufficiency theorem. Before giving the theorem we need 
some definitions. 

Definition 8 A denumemble decomposition D of a subset X of En is a denu­
merable collection of pairwise disjoint subset whose union is X. We shall write 
D = {X.~; : k E r} where r is a denumerable index set of pairwise disjoint 
subsets. 

Definition 9 Let X be a subset of En and D a denumerable decomposition 
of X. A continuous V : X -+ R 1 is continuously differentiable with respect to 
D if and only if there exists a collection {(Dk, Vk) : k E r} such that Dk is 
an open set containing X k, VK : Dk -+ R 1 is continuously differentiable, and 
Vk(x) = V(x) for X E xk. 

Now we are ready to state 

Theorem 1 A strategy pair p* = (ph, p 2*) E J ( x 0
) is a C-optimal threat strat­

egy pair at x 0 if there exists a denumerable decomposition D of X, two constants 
a 1, a2 > 0, and two continuous functions Vi* :X U B-+ R 1, i = 1, 2 which are 
continuously differentiable with respect to D, such that 

(i) ftt~ h;(x*(t),p*(x*(t))) dt = Vi*(x 0
) for all x*(.) E I(x 0 ,p*), 

where t;' is the terminating time for x*(.); 

(ii) h1(x,u,p2*(x))- a1h2(x,u,p2*(x)) 
+grad(Vtk- a1 V2*k)(x).f(x, u,p2*(x)) ~ 0 
for all X E xk, u E U1(x), k Er;' 

(iii) h1(x,ph(x), v)- a2h2(x,ph(x), v) 
+grad(Vtk - a2V2*k)(x).f(x,ph(x),v)?: 0 
for all X E xk, V E U2(x), k Er; 

(iv) Vi*(x) = 0 for all x E B, i = 1, 2; 
where {( Dk, Vi*k) : k E r} is a collection associated with Vi* and D = 
{Xk: k Er} for each i = 1,2. 

That theorem is straightforward consequence of Theorem 1 of Stalford and 
Leitmann (1973), and Lemma 3. 

6. Examples of C-Optimal Threat Strategies in Collective 
Bargaining 

Example 1 
Theorem 1 can be be easily applied to the differential game considered by Liu 
(1973). The state equations are 

dx 2(t)jdt = 1, 
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where u 1(t) = p1(x(t)), u 2(t) = p2(x(t)), x(t) = (x 1(t), x 2(t)), 

u1(t) E [-1, 0], u2(t) E [-1, 0], 

X= {(x1,x2): x1 > 0}, () = {(x1,x2): x1 = 0}. 

The payoff functions are 

where a > 0 is a constant. 

Theorem 1 gives sufficiency conditions for N ash-optimality of strategy pair 
p* = (ph ,p 2*) E J(x 0

) with respect to the pair of value functions 

Necessary conditions for Nash-optimality of that strategy pair are given by 
Theorem 1 of Stalford and Leitmann (1973). These necessary conditions will 
provide us with candidates to Nash-optimality; then, if we can verify that these 
candidates are indeed Nash-optimal, Lemma 3 tells us that p* is C-optimal. This 
invites us to first use the necessary conditions 

H1(x, u1, A') = -1 + ax1 + a1(1 + axt) + A'(u1 + p2*(x))::; 0, 
H2(x, u1, >.") = -1 + ax1 + a2(1 + ax1) + >."(ph(x) + u2) 2: 0, 

(3) 
(3') 

where x = x*(t), A'= A'(t), >." = >."(t), t E [t 0 , t1], from which follows that: 

ui(t) = 0 
ui(t) = -1 

if .A'(t) > 0 
if >.'(t) < 0 

u2(t) = -1 if .A"(t) > 0 
u2(t) = 0 if .A"(t) < 0, 

where ui(t) = ph(x*(t)), u2(t) = p2*(x*(t)) . 

(4) 

Disregarding the case (ui(t) = 0, u:J(t) = 0), for which the cotresponding 
strategy pair is not playable, one can readily deduce from (3), (3') and (4) that 

ph(x) = 0 
ph(x) = -1 
p 2*(x) = -1 
p 2*(x) = 0 

where 

if ax 1 > b, 
if ax 1 < b, 
if ax1 > c, 

if ax1 < c, 

1- a1 
b=--, 

1 + a1 

1- a2 
c- --

- 1 + a2 · 
(5) 

In the following, we shall assume that c < b, which ensures that p* = 
(ph, p 2*) is playable for each initial point. If b < c, playability is ensured for 
initial points x 0 such that ax]' < b, only. 
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To verify that p* is indeed N ash-optimal, and accordingly C-optimal, we 
apply Theorem 1. We define the decomposition 

where 

xl = {(xl,xz): xl > bja}, 
X2 = {(x1, xz) : c/a < x1 < b/a}, 
X3 = {(x1,X2): X1 < cja}. 

Calculating the payoffs Vj(x 0 ,p* , x*( .)), j = 1, 2, we find 

Vt(x) 
V2*(x) 
Vt(x) 
V2*(x) 
Vt(x) 
V2*(x) 

- x1 + axU2 + (b- c)j2a - (b 2
- c2)/4a, 

-x1 + axU2 + (b - c)j2a - (b 2
- c2 )/4a, 

-xl/2 + axU4 - cf2a + c2 /4a, 
- xl/2 - axU4 - c/2a- c2 /4a, 
- x 1 + axU2, 
- x1 - axU2, 

for X E xl, 
for X E xl' 
for x E Xz, 
for x E Xz, 
forxEX3 , 
for x E X3. 

One can readily verify that all requirements of Theorem 1 are satisfied, with 
a 1, a 2 given by (5). 

If b = c, then we have Vt (x) = - x1 + axU2, V2*(.x) = -x1 - axU2, for all 
x E X, and requirements of Theorem 1 are met if 

a 1 = a2 = (1 - b)/(1 + b) = (1 - c)/(1 +c). 

Thus, a 1 = a2 gives one special case of optimal threat strategies. In that case, 
Theorem 1 reduces to sufficiency conditions for p* to be a saddle-point of 

where a = a1 = az. 
Example 2 
Theorem 1 can be easily applied to a dynamic game model of lab or-management 
negotiations during a period that may but need not include a strike. 

Let [0, T] denote the unspecified interval during which negotiations take 
place. At t E [0, T], let o(t) denote the offer by management of total wages per 
unit time, d(t)the demand by labor for total wages per unit time, and k =const 
the gross profit of company per unit time. The evolution of the game is governed 
by differential equations 

do(t)jdt ::::; u(t), u(t) E [0 , 1], 
dd(t)jdt = -v(t), v(t) E [0, 1]. 

Starting from given initial conditions, settlement is reached the first time 
the offer equals demand, that is, at timeT such that d(T)- o(T) = 0. 

Thus, management chooses the rate of change of the offer, and the union 
chooses the rate of change of the demand. In addition, the union has the option 
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of calling, or not calling, a strike. We represent this by another control variable 
w for the union , where w E { 0, 1}. We take w = 1 to correspond to a strike and 
w = 0 to the absence of strike. 

The objective of management is to minimize the final offer o(T) and the 
profit lost during strikes, assumed given by 

1T { w(x(t))[k- d(t)]}dt. 

The union, for its part, wishes to maximize the final offer o(T) and minimize 
the wages lost during strikes, given by 

1T {w(x(t))o(t)}dt. 

We thus take the payoffs 

V1 (x 0
, u(.), v(.), w( .), x(.)) ::c -o(T)- a 1T {w(x(t))[k- d(t)]}dt, 

V2 (x 0
, u( .), v( .), w( .), x( .)) = o(T)- b 1T {w(x(t))o(t)}dt 

for the management and union, respectively, where a , b are positive constants. 
This example has been worked out by Ray (1981) from the point of view 

of C-optimal threat strategy pairs. The general conclusion is the following : (i) 
whether or not the union threatens to strike depends on whether the offer o*(t) 
is less or greater than a certain fraction of the potential profit k - d* ( i); and 
(ii) if a strike is threatened, then the union will also threaten not to lower 
the demand as termination is approached. This example has been discussed 
earlier by Leitmann (1973) who characterizes rational behaviour by saddle-point 
condition. It follows that Leitmann's solution is Nash-optimal threat strategy 
solution. 
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