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Stability of solutions to cone-constrained optimization problems 
in Banach spaces is investigated in the situation where the so called 
norm discrepancy takes place . A two- norm approach is proposed, in 
which an additional information on regularity of solutions is used. 

The obtained abstract stability results are applied to control and 
state constrained optimal control problems for nonlinear o.d.e .. 

1. Introduction 

Stability of solutions to finite dimensional mathematical programs has been 
studied for many years and the obtained results are fairly complete (cf. e.g., 
Auslender,Cominetti,1990; Bonnans,1992; Gauvin, Janin,1988; Gollan,1981; 
Jittorntrum,1984; Kojima,1980; Robinson,1987). 

In recent years there appeared also several papers devoted to stability anal
ysis of cone- constrained optimization problems in Banach space (cf. Alt, 1990A; 
Alt,1990B; Dontchev,Hager,1993; Dontchev at al.,1994; Ioffe,1991; Ito,Kunisch, 
1992; Malanowski 1992; Malanowski,1993; Malanowski,1994; Shapiro,1992; 
Shapiro,1994; Shapiro,Bonnans,1992; Troltzsch,1991). Some of these papers 
present applications to optimal control. 

However, there are serious difficulties in a direct application of stability re
sults for abstract mathematical programs to nonlinear optimal control problems. 
These difficulties are due to the phenomenon of the so called norm discrep
ancy, which is intrinsicly connected with nonlinear optimal control problems 
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mittee for Scientific Research]. 
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(cf. loffe, 1979; Maurer, 1981). Namely, the differentiability properties as well 
as constraint qualifications used in stability analysis are satisfied in a stronger 
norm (of £ 00-type), whereas the second order sufficient optimality condition, 
which is also needed, holds in a weaker norm (of £ 2-type) . 

A method to overcome these difficulties was proposed in Malanowski (1993), 
Malanowski (1994), where a modification of Robinson's generalized implicit 
function theorem, Robinson (1980), was used . This method is called two- norm 
approach since it uses both norms at the same time. The crucial role is played 
here by the regularity of optimal solutions, which has to be additionally studied. 
Therefore, the method is quite complicated technically. 

The purpose of this paper is to present the very essence of the two-norm 
approach , which is rather simple and to emphasize the relations to finite dimen
sional mathematical programs. 

Accordingly, only th'e general outlines of the proofs are given, and for tech
nicalities the reader is refered to the original papers. Most of the presented 
results are contained in the papers by the author himself Malanowski (1992), 
Malanowski (1993), Malanowski (1994). The material related to second or
der sufficient optimality conditions can be found in papers by Dontchev,Hager 
(1993) and Dontchev et al. (1994). 

The organization of the paper is the following. In Section 2 stability of 
solutions to linear- quadratic problems with respect to additive perturbations 
is analysed . In Section 3 the same class of problems is considered but in the 
situation of norm discrepancy. 

Section 4 is devoted to nonlinear problems . It is recalled how Robinson's 
implicit function theorem for generalized equations, Robinson (1980), allows to 
reduce local stability analysis of nonlinear sytems to such an analysis for linear
quadratic problems with respect to additive perturbations, which was discussed 
in Section 2. 

N onlinear optimization problems in case of the norm discrepancy are con
sidered in Section 5. It is shown that, if an additional information on regularity 
of the solutions is available, then a modification of Robinson's theorem together 
with the results of Section 3 can be used in stability analysis . 

Finally in Section 6 the abstract stability results obtained in Section 5 are 
applied to control and state constrained optimal control problems for nonlinear 
ordinary differential equations. 

Some used notation: 
X, Y, Z, ... denotes Banach spaces and X, Y, Z, ... Hilbert spaces. Asterisks de
note dual spaces. L(X, Y) is the Banach space of linear continuous operators 
from X into Y. 
The norms in Banach and Hilbert spaces are denoted by 0 · 0 and 11 · 11, respec
tively, with a subscript refering to the space. 
(-, ·)x denotes the duality pairing between X and X*. 
Rn is the n- dimensional Euclidean space with the inner product denoted by 
(x,y) and the norm lxl = (x,x)! . 
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L2(0, T; Rn) is the Hilbert space of square integrable vector functions, with the 
inner product 

(x, y) = 1T (x(t), y(t)) dt 

and the norm 

llxll2 = (x , x)~ · 

M 2(0, T; Rn) denotes the Hilbert space of square integrable vector functions 
that assume a finite value at t = 0, with the inner product 

(x, Y)M = (x(O), y(O)) + (x, y). 

L00 (0, T; Rn) is the Banach space of essentially bounded vector functions with 
the norm 

llxlloo = max ess sup lxi(t)l. 
' tE[O,T] 

C 0 (0, T; Rn) and C 1 (0, T; Rn) are the spaces of continuous and continuously 
differentiable vector functions, respectively, equipped with the usual norms. 

p = 2, oo, 

denote the Sobolev spaces of absolutely continuous functions with the norms 

and 

llxlh, oo = max{ lx(O)I, llxlloo}, 

respectively. 

2. Stability analysis of linear-quadratic problem 

In this section we are going to analyse stability of solutions to cone-constrained 
linear- quadratic problems of optimization in Banach spaces subject to linear 
perturbations. 

Let Z and Y be two Banach spaces, space of arguments and constraints, 
respectively. Moreover there are given Hilbert spaces Z and Y. We assume 

z c z = Z* c Z*, y c y = Y* c Y* (2.1) 

with all embeddings being dense and continuous. 
In the space Y there is given a closed cone K with the vertex at the origin, 

which induces a partial order in Y. We denote 

K+ ={A E Y* I(>., y)y 2: 0 for all yE K}. 
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Let us denote X = z X y•' X* = z· X Y, 8 = (a, b) E X* and let (JP c X* 
be the open ball of radius p around the origin. 

There are given two linear continuous operators 

Q E L(Z, Z*), DE L(Z, Y), 

and elements q E Z*, e E Y. 
We consider the family of the following optimization problems depending on 

the additive parameter 8 E X* : 

minwEZ { HQw, w)z + (q +a, w)z} 

subject to 
Dw + e +bE K. 

We are going to investigate local stability of solutions to (L6)· More precisely, 
we are looking for sufficient conditions under which there exists p > 0 such that 
for each 8 E (JP Problem (L6) has a unique solution W6, which is a Lipschitz 
continuous function of 8. 

Let us assume for a moment that the following two conditions are satisfied: 

DZ = Y, i.e. DE L(Z, Y) is surjective, 

(Qw , w)z 2:: aOwO~, a> 0 

for all w E <I> := {wE Z I Dw E K + ( -K)}. 

(2.2) 

(2.3) 

If some additional conditions are satisfied (see Theorem 11.10 in Brezis,l983), 
in particular if Z and Y are Hilbert spaces, then by (2.2) there exists a right 
invers T E L(Y, Z) of D . For the sake of simplicity we assume, in this section, 
that Z = Z* and Y = Y* are Hilbert spaces. Let us introduce the change of 
variables putting: 

v=w+T(e+b). 

In terms of v Problem (L 6) takes on the form: 

minv E z 0 (Qv, v) z + ( q' + a', v) z } 

subject to 
Dv EK, 

where 

q' = q- QTe, a'= a- QTb. 

(2.4) 

(2.5) 

(2.6) 

By (2.2) the feasible set of (2.5) is non empty and by (2.3) there exists a unique 
solution v6 of (2.5), which is characterized by the following variational inequality: 

(Qv6 + q1 +a', V- V6)Z 2:: 0 for all feasible v. 
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Let v0,, Vb, be the solutions to (2.5) corresponding to the values 81 and 82 of 
the parameter. We have 

(Qvo, + q' +a~, Vo 2 - vo,)z 2 0, 
(Qvo 2 + q' +a~, vo,- Vo 2 )z 2 0. 

Adding these inequalities and using (2.3) we obtain 

i.e ., in view of (2.6). 

(2.7) 

By (2.2) there exists a unique Lagrange multiplier p, 0 such that the following 
Kuhn- Thcker conditions hold: 

Qvo + q' +a' - D* P,o = 0, 
(JI.o,D*vo)y=O, P,oEK+. 

In view of (2.2), the first equation in (2.8) yields 

f.1.6 1 - P,6 2 = T*(Q(vo, - Vo 2 ) +(a~ - a~)), 

i.e., by (2 .6) and (2.7) 

OJ.I.o, - Jl.o2 OY· :S .B0c5I - 82 Ox·· 

(2.8) 

(2.9) 

Thus we have obtained Lipschitz continuity of the solutions to (L 0 ) and of the 
associated Lagrange multipliers. 

The assumptions (2.2) and (2 .3) are very strong and we would like to weaken 
them as much as possible, still preserving the above Lipschitz continuity prop
erties. 

Before doing that, let us recall some stability results for quadratic pro
gramming problems in finite dimension, i.e., let us assume for a moment that 
Z = Rn, Y = Rm and /{ C Rm is the non-negative octant. Then problem 
(Lo) takes on the form: 

minwERn { ~(Qw, w) + (q + a, w)} 

subject to 
(di, w) + ei + bi 2 0, i = 1,2, ... ,m. 

Let w 0 be the solution to (M Po). Denote by 

I= {i E {1,2, ... ,m} I (di,wo) + ei = o} 
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the set of indices of constraints active at v0 and by DJ the matrix with rows 
di, i E I. We say that the condition of linear independence of the gradients of 
active constraints (LIC) is satisfied if 

DJ is of full rank. (2.10) 

If (2.10) holds, then there exists a unique Lagrange multiplier 

( 1 2 m) f.-La= f-lo ,f-lo, ··· ,f-lo 

associated with va. Denote J = {i E I I f-Lb > 0}. We say that the strong second 
order sufficient optimality condition (SOC) holds if 

(Qw, w) 2: alwl 2 (2.11) 
for.all wE {wE Rn I (di,w) = 0, i E J}. 

Let us modify (M P0) as follows: 

(MPo) minvERn {~(Qv, v) + (q +a, v)} 

subject to 
(di, v) + ei + bi = 0, 
(di, v) + ei + bi 2: 0, 

i E J, 
iEI\1. 

It ie easy to see that if (LIC) and (SOC) hold then for (M P0) conditions (2.2) 
and (2.3) are satisfied, so there exists a unique solution v0 of (M P 6 ) and a 
unique associated Lagrange multiplier v0 . Both v6 and v6 are Lipschitz contin
uous functions of b. 

Certainly vo = wo and vo = f.-La. Moreover, by Lipschitz continuity of v0 and 
v0 , for b > 0 sufficiently small we have 

(di,vo)+ei+bi>O 

V~> 0 

for i (j. I, 

for i E J. 
(2.12) 

It implies that v0 = w0 and v0 = f.-Lo , 1.e. , w0 and /-l6 are locally Lipschitz 
continuous functions of b. 

An idea similar to that presented above will be also used in stability analysis 
of solutions to infinite dimensional problems (L 0 ). 

Let us start with such a reformulation of the definitions of (LIC) and (SOC), 
which would fit to infinite dimensional situations. 

For y E ]{ and f-l E ]{+ define the subspaces: 

My= (K + [y]) n (-K + [y]) c Y, 

NI-' = (I<++ [f.-L]) n ( -K+ + [f.-L]) c Y*, 
(2.13) 

where [y] = {x:y lx: E R 1 
}, and denote Mo = My 0 , No= Ni-'o> where Yo = Dwo+ 

e, and Nrf = {y E Y I (f.-L, y)y = 0 for all f-l E No}. It can be easily checked 
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that in case of (M P0 ), M0 is the subspace generated by nonzero components 
Yb of the vector Yo, while Nrf ={yE Y I(/}, y) = 0, i E J}. Hence conditions 
(2.10) and (2.11) can be rewritten in the form 

(LIC) 

(SOC) 

DZ+Mo =Y, 

(Qw, w)z 2: aOwO~ for all wE {wE Z I Dw E Nrf }. 

In finite dimensional case conditions (LIC) and (SOC) are stable under small 
perturbations, in the sense that they are preserved if we substitute M0 and No by 
My and N>.. with yE K and J..l E !{+sufficiently close to Yo and J..Lo, respectively. 
This fact has been reflected in (2.12). Such a stability is not automatic in infinite 
dimensional spaces. To assure it we will strengthen conditions (LIC) and (SOC) 
introducing some "margin of freedome". Namely we assume: 

(I 1) There exists a closed subspace M C Mo and a linear continuous mapping 
II : Y ~--+ M such that 

DZ + IIY = Y (2 .14) 
and moreover there exists a neighborhood Yo of Yo such that 

M c My for all y E Yo n K (2.15) 
(I 2) There exists a closed subspace N C N 0 and a constant a > 0 such that 

(Qw, w)z 2: a OwO~ for all z E {z E Z I Dz E N.J..} (2.16) 

and moreover there exists a neighborhood A0 of J..Lo such that 

Ao n (K+ + N) C K+. (2.17) 

The modified problem (Lo) analogous to (MP 0 ) and corresponding to ( L0 ) is 
defined as follows : 

minvEZ {~(Qv, v)z + (q +a , v)z} 

subject to 

Dv + e + b E K := ( J{ n N .1.) + M. 

In order to assure that condition (2.2) is satisfied, we enlarge the space of 
arguments to Z x Y and modify (io) as follows: 

min(v,u)EZxY {~[(Qv, v)z + (u, u)y] + (q +a, v)z} 

subject to 

Dv + II u + e + b E K. 

Due to the additional term in the cost functional the coercivity condition (2.3) 
is satisfied. Hence by (2.7) and (2.9) the solutions (v 0 , u0 ) of cL~) and the 
associated Lagrange multiplers v0 are Lipschitz continuous functions of 8. 

On the other hand, in view of the definitions of II and K it can be shown (cf. 
Lemma 3.7 in Malanowski,1992 as well as Lemmata 4.3 and 4.4 in Malanowski, 
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1993) that a pair ( v, u) E Z x Y is feasible for (L~) if and only if v E Z is feasible 

for (L 6 ). Hence, it follows from the form of the cost functional in (L~) that for 

any 8 EX* the solution to (L~) has the form (v 0 , 0), where v0 is the solut ion to 

(L 6 ) . Certainly also the Lagrange multiplier !10 is the same for (L~) and (L 0 ) . 

At the reference point 8 = 0 we have 

vo = wo, vo = J.l.o, 

where w 0 is the solution to (Lo) and p0 - the associated Lagrange multiplier. It 
is shown in Malanowski (1993) (cf. Lemmata 4.3 and 4.4) that for 8 sufficiently 
small this property is preserved, i.e ., we have 

vo = wo, llo=wo. (2.18) 

Hence we finally obtain: 

THEOREM 2 .1 If Z and Y are Hilbert spaces and assumptions (I 1), (I 2) are 
satisfied, then there exists a constant p > 0 such that for all 8 E (JP there is a 
unique solution w0 of ( L 0 ) and a unique associated Lagrange multiplier p 0 , and 
both w 0 and p 0 are Lipschitz continuous functions of 8. • 

In order to illustrate the nature of assumptions (I 1) and (I 2) as well as the 
reason why for 8 sufficiently small the solutions to (Lo) and (L 6 ) coincide, let 
us consider the following simple example. 

EXAMPLE 2.2 Let Z = Y = L00 (0, 1), J{ C Y be the cone of non-negative 
functions , 

(Qw, w)z = 11 

g(t)w2 (t)dt, (Dw)(t) = d(t)w(t), where g, dE C 0 (0, 1). 

Assume that Wo and J.l.o are given by functions of class C0 (0, 1). 
For c 2: 0 and TJ 2: 0 we define the sets (see Figure 1) : 

ne= {t E [0, 1]1 Yo(t) := Dwo(t) + e(t) > <}, 
3'7 = {t E [0, 1]1 po(t) > TJ} . 

Let us introduce the following subspaces: 

M£= {yE L00 (0, T) I y(t) = 0 for all t E [0, 1] \ne}, 
N'7 = {p E L00 (0, T) I p(t) = 0 for all t E [0 , 1] \ 3'7}. 

It is easy to see that for any c >0 and TJ > 0 we have M£ C Mo and N'7 C N 0 . 

Let us choose any c > 0 and TJ > 0 and define M = Me, N = N'7. Note 
that M and N are closed in L00 (0, 1), but N is not closed in the space Y* = 
(L 00 (0, 1))*- this fact will be discussed later on. 
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We define 

{ 

y(t) 
ITy(t) = O 

ift EM' 

if t tf_ M' 

It is easy to see that ( 2.15) is satisfied if we choose 
( 

Yo ={yE L00 (0, 1) lly(t)- Yo(t)i < 2 for all t E [0 , 1]} 

while (2.14) holds if d(t) -:f 0 for all t E [0, 1] \ S12e. 

69 

Coercivity condition (2.16) is never satisfied in the norm of the original space 
L00 (0, 1). However, it is satisfied in the weaker norm of the space £ 2 (0, 1), 
provided that g(t) > 0 for all t E (0 , 1] \ 3 11 • 

y j.1 

I'<> .,-- ..... ;r--
" ', 

/ ' 
/ ' 

Yo 

/ ' 

Figure 1 

Constraints in (Lo) have the form: 

{ 

- 0 
d(t)v(t) + e(t) + b(t) 2: 0 

arbitrary 

for t E 3'1, 

for tE((O,l] \311)\n' 
for t E Sl'. 

(2.19) 
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To illustrate the reason why for 8 sufficiently small the solutions to ( L0 ) and 

(L6 ) coincide, let us note that since v0 -+ vo, for 8 = (a, b) sufficiently small 

d(t)vo(t) + e(t) + b(t) = d(t)vo(t) + e(t) + b(t) + d(t)(vo(t)- vo(t)) > 0 

fort E QE. Hence constraints (2 .19) can be changed as follows: 

{ 
- 0 for t E ';;'f/ 

d(t)v(t) + e(t) + b(t) 2 0 for t E ~' ,1] \ 311. (2.20) 

Certainly this mechanism has worked because we assured a" margin of freedom" 
choosing f > 0 in the definiton of M. For f = 0 it would not work anymore. 

Assume for a moment that (2.17) holds in the sense of L00 (0 , 1)-topology, 
i.e., A0 is a L00 -neighborhood of JJo and [{+ = {JJ E L00 (0, 1)1 JJ(t) ~ 0} . If 
v6 -+ JJo in L00 (0, 1) (which. does not follow from (2.9)!) then, for 8 sufficiently 
small we would have V 0 > 0 for t E 311 . This means that on the set 311 the 
equality type constraints could be substituted by inequality constraints and 
(2.20) could be rewritten as 

d(t)v(t) + e(t) + b(t) ~ 0 for. t E [0, 1], (2.21) 

which shows that for 8 sufficientlly small problems ( Lo) and (L6 ) coincide . 

• 
3 . Linear-quadratic problem with norm discrepancy 

Example 2.2 iqustrates the fundamental role of the topology in which Problem 
( L 6 ) is considered. This role can be seen in several points: 

(i) Stability of constraint qualifications (2.14) is satisfied in L00 (0, 1), but it 
would fail in L 2 (0, 1). 

(ii) Coercivity condition (2.16) never holds in L00 (0, 1), but it could be satis
fied in L 2 (0, 1) . 

(iii) Condition (2 .17) (stability of coercivity) is never satisfied in the space 
(L 00 (0, 1))*, but it could be satisfied in L00 (0, 1) . 

The phenomenon that constraint qualifications are satisfied in a stronger 
topology and coercivity condition in a weaker one is called the norm discrepancy 
and it is typical for optimal control problems (cf. loffe,1979; Maurer,1981). The 
presence of the norm discrepancy creates a serious difficulty in stability analysis 
of optimal control problems, especially for nonlinear systems. We will discuss 
it in details in this and next sections. 

To cope with this difficulty we will work with two norm simultaneously, 
using the so called two-norm approach, Malanowski (1993), Malanowski (1994), 
in which regularity of the solutions plays a crucial role. 

In this section we will apply this approach to linear-quadratic problems. To 
do so we have to reformulate Problem ( L 0 ) . 

Let us denote by K the closure of [{ in Y. Furthermore we assume that 

Q E L(Z, Z) n L(Z, Z), DE L(Z, Y) n L(Z, Y), q E z, e E Y. (3.1) 
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For 8 EX = Z x Y we consider along (L6) the following problem: 

minwEZ { HQw, w)z + (q +a, w)z} 

subject to 

Dw + e +bE K, 
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which is identical with ( L6) except that it is considered in Z, Y rather than in 

Z, Y spaces. Certainly each solution to (L6) is also a solution to (L6), provided 
that W6 E Z. 

Assume that there exists a unique solution woE Z of (La), i.e., also of (La), 
and the following conditions analogous to (I 1) hold: 

(11 1) There exists a subspace M C M 0 closed in Z, and a linear continuous 
mappmg 

rr E L(Y, Y) n L(Y, Y), 
such that 

DZ + IIY = Y, 
~ ~ ~ 

DZ + IIY = Y. 

II: Y---+ M, 

Moreover there exists a Y - neighborhood Yo of y0 such that 

(3.2) 

(3.3) 

M c My for all y E Yo n K (3.4) 

By (3 .2) there exists a unique Lagrange multiplier f.lo E Y* ~sociated with w0 . 

We assume that f.lo is more regular namely 
(11 2) f.lo E Y. 

Instead of (I 1) we introduce the following condition, which reflects the norm 
discrepancy: 

(11 3) There exists a subspace N C No C Y* and a constant a > 0 such that 

(Qw,w)z 2:: allwlli for all wE {wE Z I Dw E N .L} (3.5) 

and moreover there exists a Y -neighborhood Ao of /10 such that 

Ao n (K+ + N) C K+. (3.6) 

By the same reasoning as in Section 2 we can find that the solution w6 of (L6 ) 

and the associated Lagrange multipliers 116 are Lipschitz continuous in the sense 
of Z - norm, and Y - norm, repectively: 

llw6, - W62llz' ll/16,- /162lly:::; cll81- 82ll_x, 

provided that 

and /16; E Ao i = 1, 2. 

(3.7) 

(3.8) 

Certainly (3.7) does not assure that (3.8) is satisfied for all variations 8 from 
any arbitrary small ball OP in X. In order to get (3.8) we should assure that 
convergence in the weaker norm X implies convergence in the ·stronger norm X. 
This would hold if ( W6, /16) belong to a certain set r compact in X. We can not 
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expect it for all variations 8 from any ball in X, because it would mean that 
the mapping 

P:x ~ x, P(8) = (wo,J-lb) (3.9) 

is compact, which is not true . 
Therefore, to assure that ( w0 , J-lb) belong to a compact set we must restrict 

ourselves to a certain set ~ of more regular variations. We assume that such. a 
set exists, namely : 

(II 4) There exists a closed convex set ~ c X and a convex .set r compact in 

X such that for any 8 E ~' (w 0 , J-Lo) E f. 

From the above considerations we obtain: 

THEOREM 3.1 If assumptions (II 1}-(II 4} hold then there exist constants p > 0 
and c > 0 such that for all 8 E ~ n OP there exists a unique solution w 0 of ( L 0 ) 

and a unique associated Lagrange multiplier J-lo such that 

4. Stability analysis for nonlinear problems 

(3 .10) 

• 
This section is devoted to stability analysis of nonlinear cone-constrained op
timization problems. In this analysis the stability results for linear-quadratic 
problems presented in Section 2 will be applied. 

The same notation as in the previous section will be used. In addition, let us 
introduce a Banach space H, called the space of parameters, and let G C H be 
an open set of admissible parameters . On Z x G there are defined two functions 

r.p: ZxG~Y. 

We consider the family of the following optimization problems depending on the 
parameter h E G : 

minzEZ F(z, h) 

subject to 
r.p(z, h) E KC Y. 

Let h be a fixed reference value of the parameter. 
We assume: 

(III 1) There exists a (local) solution zr, of (Pr,), 
(Ill 2) F(·, ·)and r.p(-, ·) a.re two times Frechet differentiable, 
(III 3) The point zr, is regular in the sense of Robinson, i .e., 

Dz<p(zr,, h)Z - [{ + [r.p(z;; , h)] = Y. 
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Let us introduce the following Lagrangian associated with (Ph): 

.CC,·, ·): ZxY* xGf-tR1
, .C(z, >.,h)= F(z, h) - (>., lfJ(z, h))y. 

By (Ill 3) there exists a Lagrange multiplier Aii associated with Zii such that 
the following Kuhn-Tucker conditions hold: 

Dz.C(zii, Aii, h)= DzF(zii, h)- Dztp*(zii, h)>.ii = 0, 

(>.ii, ~p(zii, h))y = 0, Aii E !{+ C y•. 

We are going to investigate the existence, local uniquness and stability with 
respect to h of Kuhn- Tucker points Xh = (zh, Ah) E X of (Ph), i.e., of points 
which satisfy conditions: 

( 4.1) 

To this end we will use Robinson 's implicit function theorem for generalized 
equations, Robinson (1980). To apply this theorem we need (cf. Malanowski, 
1992) the following linear-quadratic approximation to (Pii), perturbed by the 
parameter b =(a , b) EX* : 

where 

(LPo) minwEZ { ~(Qw, w)z + (q +a, w)z} 

subject to 
Dw + e +bE K, 

Q = D;z.C(zii, Aii, h) , D = Dz~p(z'ii, h) , 

q = - Qzii + DzF(zii , h), e = ~p(zii, h)- Dzh. 
(4.2) 

Following Robinson (1980), we call ( Pii) strongly regular at the point (zii, Aii) if: 

(A) There exists p > 0 such that for all b E QP there is a unique . pair 
(w6 , J.Lo) E Z x y • , where w0 is the solution to (LP0 ) and J.Lii -the asso
ciated Lagrange multiplier and ( w 0 , J.Lii) is a Lipschitz continuous function 
of b. 

The following fundamental theorem is due to Robinson (1980) :-

THEOREM 4.1 Suppose that (A} is satisfied, then there exist a neighborhood 
Gii C G of h and a neighborhood Xii C X of Xii such that for any hE G/i, (4 .1} 
has a solution Xh unique in Xii, which is a Lipschitz continuous function of h . 

• 
Theorem 4 .1 allows us to reduce stability analysis of nonlinear problem (Ph) to 

such an analysis_ of the linearized problem ( LP0 ). Cerainly (LP0 ) coincides with 
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Problem (L6) considered in Section 2. By Theorem 2.1 we find that condition 
(A) is satisfied if assumptions (I 1) and (I 2) hold. 

It is easy to see that wo = zh, po = >..h , Yo = Dwo + e = <p(zh, h). Hence, by 
(2.13) the subspaces M 0 C Y and N 0 C Y* are given by 

Mo = (K + [<p( zh, h)]) n ( -K + [<p( zh, h)]), 

We assume: 
(Ill 4) Condition (I 1) holds with Mo given in (4.3), 
(Ill 5) Condition (I 2) holds with N 0 given in ( 4.3). 

(4.3) 

It follows from Theorems 2.1' and 4.1 that if (Ill 1)-(111 5) hold, then for 
hE eh the solutions to (4.1) exist and are Lipschitz continuous functions of h. 

On the other hand, it follows from Lemma 8 in Dontchev, Hager (1993) (cf. 
also Lemma 1 in Dunn,Tian,1992) that (Ill 5) together with (Ill 4) constitutes 
a (strong) second order sufficient optimality condition. In view of Lipschitz 
continuity of (zh, >..h), using the same argument as in the proof of Lemma 5.3 
in Malanowski,1993, we find that conditions (Ill 4) and (Ill 5) are satisfied at 
(zh, >..h, h) for h sufficiently close to h. This means that Zh is a (local) solution 
to (Ph) and >..h - the associated Lagrange multiplier. Thus we obtain : 

THEOREM 4.2 If Z and Y are Hilbert spaces and assumptions (Ill 1}-(III 5} 
hold, then there exist a neighborhood eh c e of h and a neighborhood Zh c Z 
of zh such that for each h E eh there is a unique in zh solution Zh to (ph) and 
a unique associated La grange multiplier >..h. 

Moreover, Zh and >..h are Lipschitz continuous functions of h. • 

5. Nonlinear problems with norm discrepancy 

The notion of norm discrepancy was introduced in Section 3. Now we are going 
to discuss stability of solutions to optimization problems for nonlinear systems 
in presence of the norm discrepancy. To illustrate better the nature of the norm 
discrepancy we start with the following classical example. 

EXAMPLE 5.1 In (2.1) let us choose Z = L00 (0, 1) and Z = L2 (0, 1). Consider 
the integral functional 

F(z) = 11 

(z2(t)- 1) 2dt . 

It is easy to see that F is well defined and differentiable on Z, but not on Z. 
However for z E Z 
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is a quadratic form well defined and continuous on Z. 
Any function z, such that lz(-)1 = 1 is a global minimizer ofF on Z. Let us 

take as the minimizer z(-) :::: 1. We have 

(5.1) 

however does not exist c > 0 such that 

(D;zF(Z)y, y) ~ ciiYII;, for ally E Z = L00 (0, T). 

Just this phenomenon is called the norm discrepancy. Moreover, note that if 
for any E E (0, 1) we put 

fortE[O,c) 

fortE [c, 1] y, = { ~ 
then we have llz- z,ll2 ---+ 0 for E---+ 0 and 

(D;zF(z,)y,, y,) = 0, 

fortE [O,c) 
fort E [c, 1] 

which shows that coercitivity condition (5.1) is not stable under small pertur
bations in £ 2(0, 1), but it is stable under small perturbations in L00 (0, 1) . 

• 
We are going to analyse stability of solutions to (Ph) in the situation of the 
norm discrepancy using the two- norm approach introduced in Section 3. In a 
similar way as in Section 4 we assume: 

(IV 1) There exists a (local) solution zr, E Z of (Pr,), 
(IV 2) F(-, ·) and <p(-, ·) are two times Frechet differentiable on Z x G. 

Moreover we introduce the following conditions: 

(IV 3) Ji'or each hE G, z E Z and >. E Y the following compatibility conditions 
hold: 

DzF(z, h) E 2, 
D;zF(z, h) E L(2, 2), 
Dzcp(z, h) E L(2, Y), (5.2) 

Dzcp*(z, h)>. E 2, 
D;zcp*(z, h)>. E L(2, 2). 

Moreover 
limiiD;zF(zl, hl)- D;zF(z2, h2)IIL(Z,Z) = 0, 

lim IIDz cp( z1, hl) - Dz cp( z2, h2)IIL(z,Y) = 0, (5.3) 

limjjD;zcp*(z1, h1)>.1- D;zcp*(z2, h2)>.2IIL(Z,Z) = 0, 
for Oz1- z20z---+ 0, 0>.1- >.20Y---+ 0, Oh1- h20H-+ 0. 
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(IV 4) Let M0 be given in (4.3). There exists a subspace MC Mo closed in Z, 
and a linear continuous mapping 

II E L(Y, Y) n L(Y, Y), II: Y f-* M, 
such that 

Dzip(z/i, h)Z + IIY = Y, 
Dzip(Z/j, h)Z + IIY = Y. (5.4) 

Moreover there exists a Y-neighborhood Yo of Yii = ip(zii, h) such that 

M c My for all y E Yo n I<. (5.5) 

By (IV 4) there exists a unique Lagrange multiplier >.li E Y* associated with 
Zii. We assume that >.li is more regular, namely: 

(IV 5) >.li E Y. 

(IV 6) There exist a subspace N C N 0 C Y* and a constant a > 0 such that 

2 - 2 ' (DzzC(z/i, >./i, h)w, w)z ~ a!!wllz (5.6) 

for all wE {wE Z I Dzip(z!i,h)w E N.L} 

and moreover there exists a Y -neighborhood A0 of >.li such that 

Ao n (J<+ + N) c J<+. (5.7) 

For 6 = (a, b) E X we consider the following linear-quadratic problem (LP 6 ) 

associated with ( Pli) and analogous to ( L6) : 

(iP6) minwd { ~(Qw, w)z + (q +a, ~)z} 
subject to 

Dw + e +bE I<, 

In order to be able to use Theorem 3.1 we still have to assume condition (11 4), 
which takes on the for~: 

(IV 7) There exists a: closed convex set ~ c X and a convex set r compact in X 

such that for any 6 E ~, ( W6, J.l6) E r, where W6 is the solution to (LP 6) 
and J.l6 - the associated Lagrange multiplier. 

Under the above conditions, (3.10) holds for (LP6)· However, it is not enough 
to allow application of Robinson's theorem 4.1. To see it let us briefly recall the 
idea of the proof of that theorem. 

Define the following mappings: 

P: QP f-* X, P(6) := Y6 := (w6, J.lb), 
g(-,·): X X Gf-*X*, £(-,·):X X Gf-*X* 

( h) ·- ( Dz£(z,>.,h)) 
g x, .- ~P(z, h) ' 
f(x, h):= g(x/i, h)+ Dxg(x/i, h)(x- x!i)- g(x, h). 
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By (A) the mapping P is well defined and Lipschitz continuo•Is. On the other 
hand, by continuity of£(-,·) there exist u > 0 and Gli such that for all h E 
GJi, £(-,h) maps B~ := {x EX I Ox- XJiOx::::; u} into (JP. Hence for ali hE Gli 
there is the well defined mapping 

<I>h(x) := P(f(x, h)), 

as it is illustrated in Figure 2. 

Figure 2 

It can be checked that x = <I>h(x) if and only if the Kuhn-Tucker conditions 
(4.1) are satisfied, i.e., solving (4.1) is equivalent to finding a fixed point of <I>h. 
It is shown in Robinson (1980), that if (A) is satisfied, then for sufficiently small 
u > 0 and Gli, <I>h is a contraction self-map on B~ for all h E Gli. 

By the contraction principle there exists a unique fixed point x h of <I> h. 

Lipschitz continuity of Xh follows from the contraction estimates. 
In the situation of the norm discrepancy, where instead of (A) we have (3 .10), 

<I> h is no longer a self-map on any closed ball either in X or in X. 
Rather than on a ball we can try to use the fixed point argument on the set 

f defined in (IV 7) .. However, to be able to do so we still have to assure that 
f(x, h) ELl for all x E f and hE Gli (cf. Fig. 2) . 

We assume: 
(IV 8) There exists u > 0 and Gli such that 

f( X, h) E Ll for all X E r and h E Gli, (5.8) 

where r = r n.B~, with B~ := {x EX lllx- XJillx::::; u}. 

By (IV 7) and (IV 8) we can repeat the fixed point argument on the set r and 
we obtain ( cf, Corollary 5.2 in Malanowski,1993): 
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THEOREM 5.2 If {IV 1}-{IV 8) are satisfied then there exist a neighborhood 
Gli C G of h and constants rJ > 0 and c > 0 such that for any h E Gli there 

exists a solution Xh = (zh,>.h) of (4.1}, unique in r = r nB~ and 

llzh,- zh2llz, ll >.h ,- >.h2ll¥ ~ c Oh1- h20H (5.9) 

• 
To show that zh and >.h are actually the solutions and the Lagrange multipliers 
of (Ph) we have to show that a sufficient optimality condition is satisfied at Zh. 

First of all note that by (5.9) and by compactness of the set r C X we have: 

limOzh- zliDz = 0, lim O>.h- >.liDY = 0. 
h~h h~h 

Hence, using (IV 6), (IV 7) and the argument similar to that in the proof of 
Lemma 5.3 in Malanowski,1993, we find that condition (5.6) is preserved under 
small perturbations of h, i.e., there yxists a neighborhood Gli of h such that for 
each hE Gli 

2 a I 2 (Dzz.C(zh, >.h, h)w, w)z- 2: 2l wllz- (5.10) 

for all wE {wE Z I D2 cp(zh,h)w E NJ.} 

On the other hand, it follows from (5.7) that there exists a constant "' > 0 such 
that 

for all y E f{ n N. (5.11) 

Moreover, for any y E Y we have 

llvll9 = (y, Y)y :S 0Y0Y· OYOY, Le., 

llvii9/Dv0Y· ~ DvDY· (5.12) 

In view of (5.11) and (5.12) it follows from Theorem 1 in Dontchev et al. (1994), 
that (5.10) constitutes a sufficient optimality condition and that there exist a 
constant (3 > 0 and a constant <; > 0 such that 

F(z, h) 2: F(zh, h)+ f311z- zhll} (5.13) 

for all z E Zh feasible for (Ph) and for all hE GJi, where 

z~ = {.21 E z I Oz- Zh0z < <;}. 

From Theorem 5.2 and from (5.13) we obtain: 

CoROLLARY 5.3 If {IV 1}-{IV 8} are satisfied then there exist a neighborhood 
Gli C G of h and a neighborhood Zli C Z of ZJi such that for each h E Gli 
there is a unique in Zli solution zh of (Ph) and a unique associated Lagrange 
multiplier >.h. Moreover, there exists a constant c > 0 such that 

llzh, - Zh2llz-, ii>.h, - >.h2ll¥ ~ c Oh1 - h20H 

for all h1, h2 E Gli. • 
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6. Optimal control problems 

In this section the obtained abstract stability results will be applied to state and 
control constrained optimal control problems for nonlinear ordinary differential 
equations. 

As before G C H denotes an open set of admissible parameters and for each 
h E G we consider the following optimal control problem: 

where 

(Oh) find (uh , Xh) E L00 (0, T; Rm) X W 1•00 (0, T ; Rn) such that 

F(uh, Xh, h)= minu,x { F(u, x, h):= I: r (u(t), x(t), h) dt} 
subject to 
x(t) = f(u(t),x(t),h) 
x(O) = xo(h), 
() (u(t), h)~ 0 
v (x(t), h)~ 0 

for a.a. t E [0, T], 

for a .a. t E [0, T], 
for all t E [0 , T], 

B(-,·):RmxG,..._.Rk, v(-,·):RnxG,..._.R1. 

In order to represent (Oh) in the form (Ph) we put : 

Z = L00 (0, T; Rm) x W1•00 (0, T; Rn), 
y - L00 (0 T· Rn) X Rn X L00 (0 T· Rk) X W 1•00 (0 T· R 1) 

- ' ' ) ' ' ' ' 
K = K1 x K2 x Ka x K4, 
J{l = {0}, /{2 = {0}, 
K 3 = { u E L00 (0, T; Rk) I ui(t) 2:: 0, i = 1, ... , k for a.a. t E [0 , T]}, 
J(4 = {X E W 1•00 (0 , T; R 1) I xJ (t) 2:: 0, j = 1, ... , l for all t E [0, Tl} 
F(z, h) = F(u, x, h), 
<p(z, h)= (x- f(u, x, h), x(O) - xo(h), -B(u, h), -v(x, h)). 

As in Section 3 we introduce the Hilbert spaces 

Z - L2(0 T· Rm) x W 1•2 (0 T· Rn) and - ) ' ' ) ' 
Y = L2(0, T; Rn) x Rn x L2(0, T; Rk) x W 1•2(0, T; R 1). 

As in (2.1) we treat Y as the pivot space putting Y = Y*, but for technical 
reasons it will be more convenient not to identify Z with Z* but to introduce 
a:nother pivot space: 

V= L2 (0, T: Rm) X M 2 (0, T: Rn). 

We have 

z c z c V = V* c Z* c Z* 

and the considerations of Sections 3 and 5 remain virtually intact, if in (IV 3) 
the spaces Z, L(Z, Z) and L(H, Z) are substituted by V, L(Z, V) and L(H, V), 
respectively. 
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In order to apply Theorem 5.2 we have to verify all assumptions of this 
theorem. 

To simplify notation let us put: 

A(t) := Dxf(ur.(t), xr.(t), h), 
B(t) := D..,f(ur.(t), xr.(t), h), 

0(t) := D..,O(ur.(t), h), 
l'(t) := Dxv(xr., h). 

We assume: 

(V 1) There exi.sts a (local) solution ( ur., xr.) of (Or.), which satisfies the following 
regularity condition: 

(ur., xr.) E C0 (0, T; Rm) x C1 (0, T; Rn), 

(V 2) jG(-, ·, ·), f(-, ·, ·), 8(-, ·), v(-, ·)and Dxv(-, ·)are two times Frechet differen
tiable in all arguments, and the respective derivatives are locally Lipschitz 
continuous in u, x, 
x 0 ( · ) is Frechet differentiable. 

(V 3) h does not depend on t. 

Certainly (V 1) implies (IV 1). On the other hand, it is easy to check that 
(IV 2) and (IV 3) are satisfied by (V 2). 

Let us pass to constraint qualifications. For c > 0 we introduce the sets: 

w~ : = { t E [ o, T] 1 - ei ( u r. ( t), h) > c} J i = 1 , .. . , k, 

n{ : = { t E [ o, T] 1 - vi ( x r. ( t) , h) > c} , i = 1, ... , z, 

and define the following continuous functions (see Figure 3): 

and 

if t E Ill~ 
if t et w~, 

if t En{ 
if t et n{. 
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Figure 3 

We introduce the following ( k x k) and ( l x l) diagonal matrices 

U,(t) = diag 1/J!(t) T,(t) = diag w{(t) 

and define ( k + l) x (m + k + l) matrices 

[ 
e(t) u,(t) o J 

V,(t) = Y(t)B(t) 0 T,(t) . 

In addition to (V 1)-(V 3) we assume: 

(V 4) vj (xo(h), h) <.0, for j = 1, 2, ... , l, 

(V 5) there exists 'fJ > 0 such that 
1Vo(t)V0*(t)(1 2: 'fJ I( I for all ( E Rk+1 and all t E [0, T]. 

81 

Roughly speaking condition (V 5) has the meaning that all gradients of the 
active control constraints (Ji ( uh (t), h) ::::; 0 and all gradients of the active state 
constraints vj (xii(t), h) = 0, transformed into the space Rm by means of the 
mapping B* (t) : Rn ---+ Rm, are jointly linearly independent, uniformly on 
[O,T] . 

By (V 2) and (V 5) (cf. Lemma 7.2 in Malanowski,1993), there exists E > 0 
such that 

for all ( E Rk+1 and all t E [0, T]. (6.1) 

The subspace M C Y needed in (IV 4) is define as follows: 
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where 

M1 {0}, M2 = {0}, 

M3 { u E L00 (0, T; Rk) I ui(t) = 0 for a.a. t E [0, T] \ wi~, i = 1, ... , k}' 

M4 {X E W 1
•
00 (0, T; R 1

) I xi(t) = 0 for all t E [0, T] \ n~, j = 1, .. . , z}' 
and f is given in (6.1). 
It is easy to see that for any f > 0, M C M 0 , where M 0 is given by (4.3). 
Moreover, if we choose as Yo C Y the open ball of radius f j 4 about -<p( zr., h), 
then (5.5) holds. 
The mapping II: Y f-+ M is defined by· 

ill = 0, II2 = 0, 
(II3y)(t) = U~(t)u(t), (II4y)(t) = T~(t)x(t). 

It follows from Lemma 4.3 in Malanowski (1994), that for the above difinition 
of M, condition (V 4) and (V 5) imply (5.4), i.e., (IV 4) is fully satisfied. 

Let us define the following Lagfangian associated with (Oh): 

£ : L00 (0,T;Rm) X W 1•00 (0,T; Rn) X (L00 (0,T;Rn))*x 

xRn x (L00 (0, T; Rk))* x (W1•00 (0, T; R 1))* x G f-+ R 1 , 

£(u, x, q, p, K., v, h) F(u, x, h)+ (q, x- f(u, x, h))+ 

+ (p, x(O)- x0 (h)) + (K., O(u, h))+ 
+ (v(O), v(x(O), h))+ (Dxv*(x, h)v, f(u, x, h)). 

By (IV 4) there exist unique Lagrange multipliers (qr., Pr., K'.h,, vr.) associated 
with (ur., xr.). Using (V 1) and (V 5) it can be shown (cf. Corollary 4.6 in 
Hager,1979), that the multipliers are more regular. Namely: 

qr. E C 1(0, T; Rn), Pr. ERn, K.r. E C0 (0, T; Rk), vr. E C 1(0, T; R 1
), 

i.e., in particular (IV 5) holds . 
Let us define the following augmented Hamiltonian: 

1i(t) = f 0 
( ur.(t), xr.(t), h) - (.qr.(t), f ( ur.(t), xr.(t), h)) + 

+(Kr.(t), O(ur.(t), h)) + (Dxv*(xr.(t), h)f;,r.(t), f(ur.(t), xr.(t), h)) . 

In order to introduce a second order sufficient optimality condition, for TJ > 0 
we define the sets 

3~ = {t E [0, T]l K.k(t) > TJ} . 

Let us introduce the following subspaces: 

U'7(t)={uERmi(Oi(t),u)=0 fortES~, i=1,2, ... ,k}, 
u1) = {u E L2 (0,T;Rm) I u(t) E U1)(t) for a.a. t E [O,T]} . 

We assume: 
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(V 6) There exists 1 > 0 such that 

(u, D~uH(t)u) ?: 1lul2 (6.2) 

for all u E Uo(t) and all t E [0, T]. Moreover 

1T ([uT(t),xT(t)] [ D~uH(t) D~xH(t)] [ u(t) ]) dt > 
o DxuH(t) D;xH(t) x(t) -

?: I (llull~ + llxlli,2) , (6 .3) 

for all pairs ( u, X) E Uo X W 1•
2(0, T; Rn) satisfying 

x(t) A(t)x(t) + B(t)u(t), 

x(O) 0. 

Note that it follows from (V 6) that there exists TJ > 0 such that (6.2) and (6.3) 
hold with 1 substituted by 'Y /2 for the subspaces U11 (t) and U11 , respectively (see 
Dontchev et al.,1994). Using this fact it can be shown that condition (IV 6) is 
satisfied with the subspaces N = N1 x N2 x N3 x N4 defined as follows: 

N = L00 (0 T Rn) 
1 ' ' ' 

N3 = {u E L00 (0,T;Rm) I u(t) E [U!!.(t)].l..}, 
2 

Note that the cone Kt polar to [{4 is given by the closure in (W1•00 (0, T; R 1))*
topology of the cone 

Rt = {v E W 1
•
2 (0, T; R 1)lvi(t)?: 0, i)(t)- is non-increasing, 

and 0 :=:; i) (t) :=:; vi (0), j = 1, 2, ... , l}. 

Hence we can not expect that (5.7) is satisfied for a non-trivial subspace N. For 
that reason we have chosen N4 = {0} . 

To apply Theorem 5.3 it remains to verify assumptions (IV 7) and (IV 8) 
concerning regularity of the solutions. To this end, for a given value of the 
parameter 

b = (a1,a2,h,b2,b3,b4) E Z x Y =X, 
let us introduce the linear-quadratic problem (wo) corresponding to ( o1J and 
analogous to (LP 0 ): 

(LOo) find (wo, Zo) E L2 (0, T; Rm) X W 1
•
2 (0, T; Rn) such that 

I(w0 ,z0 ,b) = min {I(w,z,b) := 
(w,z) 

·- ( ( 1 [ T( ) T( )] [ D~uH(t) D~xH(t) ] [ w(t) ] + 
.- }

0 
2 w t 'z t D;u H(t) D;x H(t) z(t) 

+(qf(t) + a[(t))w(t) + (qi(t) + ai(t))z(t)) dt}, 
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subject to 

where 

z(t)- A(t)z(t)- B(t)w(t) + e1(t) + b1(t) = 0, 

z(O) + e2 + b2 = 0, 
e(t)w(t) + e3(t) + b3(t) ::; 0, 

!(t)z(t) + e4(t) + b4(t) ::; 0. 

q1 = -D~,Jl.ur,- D~.,1ixr, + D,..J0 (ur,, xr,, h), 
q2 = -D';u1iur,- D';.,1ixr, + D.,JD(ur,, xr,, h), 
e1 = -xr, + Axr, +Bur, , 
e2 = -xr,(O) , 
e3 = B(ur,, h)- 8ur,, 
e4 = v(xr,,h) -1xr,. 

K. MALANOWSK! 

Note that conditions (V 1)-(V 6) imply the following regularity of the solution 
and Lagrange multipliers of (Or,) (cf. Lemma 5.2 in Malanowski,1994): 

are Lipschitz continuous on (0, T]. (6.4) 

By (V 2) and (6.4) the functions q1 , q2 , e1 , e2 , e3 , e4 are uniformly bounded and 
Lipschitz continuous on (0 , T] . Let h > 0 be the Lipschitz modulus joint for all 
these functions, i.e., 

Moreover let 

As the set of variations ~ we choose the set of uniformly bounded and Lipschitz 
continuous functions 8 E X with the bound m1 and the Lipschitz modulus /1 . 

This set is convex and compact in X. 
Let ( r8, T/8 , 1f8, X8) denote the Lagrange multipliers associated with ( W8, Z8). It is 
shown in Malanowski (1994) (cf. Propositions 6.6 and 6.7) that, after possible 
shrinking of~, X8 := (w8,Z8 , r8 , 1f8 , X8) are bounded and Lipschitz continuous 
uniformly with respect to 8 E ~. Let m2 and /2 be the bound and the Lipschitz 
modulus, respectively for all these functions. 

The set r needed in (IV 7) is chosen as the set of functions X E X with 
the above bound and Lipschitz mudulus. Certainly f is convex and by the 
Arzeli-Ascola theorem it is compact in X, i.e., condition (IV 7) is satisfied. It 
is shown in Section 7 of Malanowski (1994), that also condition (IV 8) holds. 
Hence all assumptions of Theorem 5.2 and Corollary 5.3 are satisfied and by 
that corollary we obtain: 
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THEOREM 6.1 If assumptions (V 1}-(V 6} are satisfied then there exist a neigh
borhood Gh C G of h and a neighborhood ZJi C Z of ( UJi, XJi), such that for each 
hE Gli there is a unique in ZJi solution (uh, zh) of(Oh) and a unique associated 
Lagrange multipliers ( qh, Ph, Kh, vh). 

Moreover, there exists a constant c > 0 such that 

lluh, - uh2lb llxh, - xh2ll1,2 ~ c Oh1 - h20H, 

llqh,- qh2ll1,2, !Ph,- Ph2l, IIKh,- Kh2ll2, llvh, -vh2lh.2 ~ c Oh1- h20n, 
for all h1, h2 E Gli· • 
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