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We propose several definitions of well-posedness for vector opti
mization problems in topological vector spaces. These definitions are 
based on the properties of ~-minimal solutions to vector optimiza
tion problems and can be viewed as generalizations of the classical 
approach to well-posedness existing in scalar optimization. In the 
resulting classes of well-posed problems stability of minimal solu
tions is investigated. 

1. Introduction 

The notion of well- posedness and its various generalizations appear to be very 
fruitfull in scalar optimization especially in investigating different stability and 
sensitivity problefi?.S. Well-posedness plays also an important role in establishing 
convergence of algorithms for solving scalar optimization problems. 

In vector optimization there is no a commonly accepted definition of well
posed problem. Some attempts in this direction has been already done, see eg 
Lucchetti 1987, Bednarczuk 1987, Bednarczuk 1989. 

In this paper we define well-posedness in vector optimization via ~-minimal 
solutions. This can be viewed as a generalization of the ideas from scalar opti
mization. The definitions we introduce are analysed mainly from the point of 
view of their usefulness in establishing stability under perturbations of solutions 
to vector optimization problems. 

Let Y be a topological vector space ordered by a partial ordering relation :::S 
generated by a closed convex pointed cone K, K n ( -K) = {0} with nonempty 
. . . ,_.. .../.. 0 d def ,_.. 
m tenor, mt"' r , an x :::S y ~ y - x E "'. 
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Let f : X -+ Y be a function defined on a topological space X , and let 
Ao C X be a subset of X. 

The minimization problem 

(P) K- minimize f on Ao 

is defined as the problem of finding the set S(f, Ao IK) of all minimal solutions, 
ie. all i_ E A 0 such that there is no x E Ao satisfying f(~)- f(x) E K \{a} . 
The image of the set S(f, Ao) under the mapping f is called the minimal set 
of(P) and is denoted by Min(f,AoiK). 

If, in the above definitions, instead of cone K we use cone K1 = {a} U 
intK, we obtain weak minimal solutions W S(f, A 0 IK) and weak minimal 
points W M in(!, Ao IK). Whenever possible we shall use the simplified notations 
S, Min, WS, WMin. 

In the sequel we shall often use €-minimal solutions of (P), as defined 
eg. in Kutateladze 1976 and Loridan 1984. We recall that a point r. E Ao is an 
€-minimal solution of (P) if there is no r E A 0 such that f(r.)- €- f(r) E 
K \{a}. The set of all €-minimal solutions will be denoted by Se(!, A 0 IK) and 
the set of all the €-minimal points (ie. the image of the Se(!, AoiK) under f ) 
will be denoted by Mine(!, Ao IK), or shortly Se, Mine. 

2. Domination property and its variants 

It has been already observed by many authors that in stability and sensitivity 
analysis for vector optimization problems some properties are important which 
are specific for these kind of problems. Among those properties is the domina
tion property. 

DEFINITION 2.1 The domination property (DP) holds for A C Y if 

A c Min(AIK) + K. 

The domination property is widely used to investigate vector optimiza
tion problems in finite dim~nsional spaces (see eg. Henig 1986). In infinite
dimensional problems it was investigated by Luc 1989, Luc 199a, and in the 
context of stability in vector optimization by Tanino, Sawaragi, Nakayama 1985. 

We have introduced another property which can be regarded as a domination
type property. This property has been investigated in a more detailed way in 
Bednarczuk 1992B. 

DEFINITION 2.2 (Bednarczuk 1992B) We say that A has the containment 
·property (GP) if the following condition is satisfied: for each a- neighbourhood 
W in Y there exists a a- neighbourhood V in Y such that for each y E A we 
have 

yE Min(AIK) + W or y +V c Min(AIK) + K. 
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Equivalently, ( C P) holds for A if for each a-neighbourhood W there exists 
a a-neighbourhood 0 such that for each y E A 

yEW 

or 

y = TJ + k , where TJ E M in(!, Ao IK) , k + 0 E K . 

Observe that (CP) does not imply the equality M in(AIK) = W M in(AIK). 

EXAMPLE 2.3 Let nt denote the nonnegative orthant in the plane. Let 

A= {(x, y)l1 ~ x ~ 2, y = -x + 2} U (a, 1) U {(x, y)lx ~ 3/2, y = 1/2}. 

The set A has the containment property but W Min(Aint) = {(x, y) E I y = 
-x + 2, 1 ~ x ~ 2} u (a, 1), and Min(Aint) = WMin(Aint) \ (1, 1). 

DEFINITION 2.4 We say that A has the strong domination property (SDP) 
if there exists a closed convex cone P, P\ {a} C intK such that A CM in(AIK)+P 
and cone p has the property that for each a-neighbourhood 0 in y there exists 
a a-neighbourhood W in Y such that for each p E P we have 

pEO or p+WcK. (*) 

In other words, 

(P\O)+WcK. (*) 

Observe that in condition ( *) the choice of W is independent of p which 
means that cone P is placed sufficiently deeply in intK . 

It is easy to see that (SDP) implies (GP) . 
Obviously, (SDP) implies (DP) and for any cone P, P \{a} C intK we 

have the inclusion Min(AIK) C Min(AIP). When A has the strong domination 
property the opposite inclusion holds. Namely, we have 

PROPOSITION 2.5 If a subset A ofY has the strong domination property, then 
for any convex closed cone C such that P C C C X: we have M in(AIC) = 
Min(AIK). In particular, Min(AIK) = WMin(AIK), ie. the set of minimal 
points is equal to the set of weakly minimal points. 

PROOF. Suppose on the contrary that Min(AIC) \ Min(AIK) =P 0, ie. there 
exists !f E M in(AIC) \M in( A IX). We also have !f E M in( AlP). Since the strong 
domination property holds, there exists y E M in( A IX:) such that !f E y + P. 
Hence, it must be !f ='!/_which contradicts the fact that !f fj. M in(AIK) .- • 

This proposition can be interpreted as a certain kind of stability of solutions 
under perturbations of the domination st:ructure. 
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REMARK 2.6 Let Y = R. Then any subset A ofY such that Min(AIK) #- 0 has 
the domination property, the containment property, and the strong domination 
property with P = K. 

REMARK 2. 7 Let Y be a Banach space, Y = (Y, 11·11). Then condition ( *) means 
that cone P allows plastering K. Let us recall that cone P allows plastering P1 

if a cone P 1 can be found such that every nonzero element x0 E P is an interior 
point ofP1 and x 0 is contained in P 1 together with a spherical neighbourhood of 
radius bllxoll, where b does not depend on the element xo (see eg. Krasnosel'skii 
1 964). In the context of vector optimization this kind of conical neighbourhoods 
of cones where considered by Wierzbicki 1977. 

REMARK 2.8 Let us observe that if the strong domination property is satisfied, 
then M in(AIK) = GE(AIP), where GE(AIP) denote the set of properly efficient 
points as defined by H enig 1986 and Luc 1989. 

3. Definitions and preliminary results 

We adopt the standard definitions of lower (l .s .c.) and upper (u.s.c .) semicon
tinuities as defined eg . by Kuratowski 1966. Following Nikodem 1986 we use 
K-semicontinuities. We say that a multifunction F : X :::::t Y is K-upper 
Hausdorff continuous (K- u.H. c. ) at Xo if for every a- neighbourhood V in 
Y there exists a neighbourhood W of x 0 in X such that 

F(x) c F(xo) +V +K 

for all x E W. {a}-upper Hausdorff continuity is called upper Hausdorff 
continuity. In the context of vector optimization K- semicontinuities has been 
used by Sterna-Karwat 1989. 

We also use the following variants of lower semicontinuity. A multifunc
tion F : X :::::t ·Y is inf- lower continuous (i .l.c.) at (x 0 , y0 ) if for each 
0- neighbourhood V in Y there exists a neighbourhood W of x 0 such that for 
each X E w one has F(x) n (Yo +V+ K) i- 0. A multifunct ion F is sup
lower continuous (s .l.c.) at (xo, Yo) if one has F(x) n (yo +V- K) #- 0 for all 
x E W. The above definitions were introduced by Penot, Sterna- Karwat 1986 
(see also Penot, Sterna- Karwat 1989). Moreover, a multifunction F : X :::::t Y 
is uniformly sup-lower continuous at xo if foi: each a-neighbourhood V in 
Y there exists a neighbourhood W of x0 such that for each y0 E F(x 0 ) we have 
F(x)n(y0 + V -K) #- 0. This property can also be considered on proper subsets 
of F(x 0 ) . In a similar way we can also define uniform inf-lower continuity. 

Let us note that for the sake of consistency of terminology one may reffer 
to K-upper Hausdorff continuity as to inf-upper Hausdorff continuity and to 
( -K)- upper Hausdorff continuity as sup- upper Hausdorff continuity. A func
tion f :X -+ y is K- lower continuous at Xo if for each a-neighbourhood w 
in Y there exists a a- neighbourhood 0 in X such that f(x) E f(xo) + W + K 
for all x E x 0 + 0 . 
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A function f : X --+ Y is K- upper continuous at x 0 if for each 
a-neighbourhood w in y there exists a a-neighbourhood 0 in y such that 
f(x) E f(xo) + W- K for all x E xo + 0. 

THEOREM 3.1 Let X, Y and U be any topological vector spaces. Let f : X--+ Y 
be a K-upper continuous (respectively, K-lower continuous) function on X and 
let n : u :::t X be a lower semicontinuous multifunction at Uo E u. Then 
the multifunction :Fn : U :::t Y defined as :Fn(u) = f(R(u)) for u E U, zs 
sup-lower continuous (respectively, inf-lower continuous) at u0 . 

PROOF . Let y0 E :F1l(u0 ). Let us take any a--:neighbourhood Q in Y. There 
exists an xo. E n( uo) such that f(xo) = Yo and, by the K-upper continuity of 
f, (respectively, K-lower continuity of f) there exists a neighbourhood W of x 0 

such that f(W) c Yo + Q- K (respectively, f(W) c Yo + Q + K). Since n is 
lower semi continuous at u0 , there exists a neighbourhood U of u0 such that 

W n n( u) # 0 for u E U. 

Now, by taking any x E 1l(u), x E W, u E U, we obtain that f(x) E 
:Fn(u) , f(x) E Yo + Q- K, (respectively, f(x) E Yo + Q + K) and hence 
(Yo + Q- K) n :F1l(u) # 0 (respectively, (Yo + Q + K) n :F1l(u) # 0) for u E U . 

• 
For X = Rn, Y = RP the above result was proved by Tanino, Sawaragi and 

Nakayama 1985. 

THEOREM 3.2 (Bednarczuk 1992A) Let X, U be topological spaces and Y a 
topological vector space. Let f : X --+ Y be (uniformly) continuous on X, and 
let n : u :::t X be (uniformly) lower continuous multifunction at Uo. Then the 
multifunction :Fn : U :::t Y is (uniformly) lower continuous at uo. 

4. Well-posedness and its basic properties 

We start this section with three definitions of well-posedness for vector opti
mization problems. These concepts are based on the properties of £-minimal 
solutions and can be viewed as generalizations of the classical approach to well
posedness existing in scalar optimization, see eg. Bednarczuk, Penot 1992B, 
Bednarczuk, Penot 1992A. 

The main difference comparing to the scalar case and, at the same time, the 
main difficulty to overcome lies in the fact that in vector optimization one can 
hardly expect that the set M in(!, Ao jK) be a singleton . 

For c E K and 17 E Min(f; AoiK) we consider the multifunction IIIJ : K :::t 
X defined as 

II!J(c) = {x E Aol f(x) ~ 11 + c}. 
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For c = 0 we have U11 eMin IT11 (0) = S, where IT11 (0) is the subset of the 
solution set containing the elements x E S(f, Ao JK:) for which /( x) = '1· The 
sets IT'l (c) has been already used by Asic, Dugosija 1986 to investigate some 
stability properties of sequences of vector optimization problems. 

For c E K we define the multifunction IT : K =t X by the formula 

IT(c) = u IT11 (c) = Ao n r 1 {Min(f, AoJK) + c- K}. 
'lEMin(f,Ao!K) 

We call this multifunction the c-minimal-solution multifunction. 
Basic properties 

1. For any c1 , c2 E K, c1 ~ c2, we have IT 11 (cl) ~ IT11 (c2) (convexity of K is 
important here). 

2. If f is continuous and Ao is closed, then ITil(c) is closed for any TJ E 
Min(A0 JK:), and any c E K, (closedness of K is important here). 

Now the definition of well-posed- vector optimization problems can be intro
duced in the following way. 

DEFINITION 4.1 The problem (P) is 17-well-posed if 
(i) M in(!, Ao I K) # 0, 

(ii} for each 1J E M in(!, Ao JK:) the multi/unction IT11 is upper continuous at 
c = 0. 

DEFINITION 4.2 The problem (P) is well-posed if 
(i) M in(!, Ao JK) # 0, 

(ii} the multifunction IT is upper continuous at c = 0. 

The set II(c) contains all the c:-solutions, ie. II(c:) = S, and II(O) = 
S(f,A0 JK). If Min(f,AoJK) = {17}, ie., Min(f,AolK) is a singleton, 1]-Well
posedness coincides with well- posedness. 

It is ·important to note that in the case of scalar optimization problems the 
two definitions given above coincide and both reduce to topological well-setness 
as defined in Bednarczuk, Penot 1992A. 

The notion of well-posedness introduced below corresponds to the notion 
of metrically well-set problems for scalar optimization problems as defined in 
Bednarczuk, Penot 1992B. 

DEFINITION 4 .3 The problem (P) is weakly well- posed if 
(i) M in(!, Ao JK) # 0, 

(ii} the multifunction II is u.H.c. at y = 0. 

Both, well-posedness and weak well-posedness can be characterised in terms 
of certain sequences which we call minimizing sequences because they reduce to 
the usual minimizing sequences when scalar optimization problems are consider. 
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DEFINITION 4.4 Let (xn) be a sequence of feasible elements ie. Xn E A 0 , for 
n=l,... . The sequence (xn) is said to be a minimizing sequence of the 
problem ( P) if for each n there exist Yn E K and 1Jn E M in(!, Ao IK) such that 
f(xn) ::S T}n + Yn, limn Yn = 0. 

Let us note that if M in(!, Ao IX:) is a singleton, minimizing sequences satisfy 
the relation f(xn) ::S TJ + Yn. If Y = R, K = R+ ie. if we consider scalar 
optimization problems with the minimal value /opt, we obtain f(xn) ~ fopt+Yn, 
a-nd since fopt ~ f(xn) we get limn f(xn) =!opt. 

PROPOSITION 4.5 Let X and Y be topological vector spaces with Y satisfying 
the first countability axiom. The following conditions are equivalent: 

(i) the problems (P) is well- posed, 
(ii} Min(f,AoiK) i- 0, any minimizing sequence (xn), (xn) C Aa\S(f,Aai.K:), 

contains a convergent subsequence with the limit point belonging to 
S(f,AoiK). 

PROOF. ( ii) -+ ( i). Suppose on the contrary that the problem ( P) is not well
posed. This means that there exists an open set Q containing II(O), a sequence 
(Yn) C .K: tending to 0, and some elements Xn E II(Yn) such that Xn f/. Q. Hence, 
there exists a sequence TJn E M in(!, Ao IX:) such that TJn - f( Xn) + Yn E .K:. But 
it must be also cl((xn)) n II(O) = 0 since Xn f/. Q. This, however, contradicts 
( ii). 

( i) -+ ( ii). Follows directly from the definitions. • 

Analogously as above we can prove the following 

PROPOSITION 4.6 The following conditions are equivalent: 
(i) the problem (P) is weakly well-posed, 

(ii} M in(!, Ao IK) i- 0, any minimizing sequence (xn), (xn) C Ao \ S(f, Ao IK) 
has the property that for every neighbourhood W of zero 

Xn E S(f, Ao iK) + W 
for all n sufficiently large. 

The relation between T}-well posedness and well posedness is investigated in 
the following proposition. 

PROPOSITION 4.7 Suppose that Min(f,AaiK) is compact. If, for each T} E 
M in(!, Ao IX:), II'~ is upper continuous at E = 0, then II is upper continuous at 
c = 0. 

PROOF. Let us take any open set Q :J II(O). Since, for all TJ E M in(!, Ao IK) , 
II'~ is upper continuous at c: = 0, there exist a-neighbourhoods 0'~ such that 
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Hence, 

U Ill) ( 07)) = Ao n r 1 
( U { TJ + 07) - JC} C Q . 

I)EMin(f,AoiK) I)EMin 

Since M in(!, AoiiC) is assumed to be compact and ui)EMin {ry+Oi} is a covering 
of M in(!, Ao JIC) , where Oi are 0-neighbourhoods such that Oi + Oi C 07) , 
we can choose a finite number of points TJ;, i = 1, ... , k, and neighbourhoods 
Oi' = Oi such that 

k 

M in(!, Ao IJC) C U TJ; + Oi , 
i=l 

and 

k k 

Min(f, Ao IJC) + n Of c U ry; + 0; . 
i=l i=l 

Consequently, 

k 

Aanr 1{Min(f,AoiJC)+nof-JC}cAanr1
( U {ry+OI)-JC})cQ, 

i=l I)EMin 

which completes the proof. • 
5. Conditions for well-posedness in the objective space 

The question of well-posedness in the objective space amounts to the question 
of upper continuity of c;-minimal points with respect to c; . 

Let A be a subset in the objective space Y . The multifunction fr : /( ::::t Y, 

:fr(c:) = u {y E A I y ~ TJ + c;} 
I)EMin(A IK) 

is called the c;-minimal point multifunction. 
Obviously, fr(O) = M in(AIJC). 

PROPOSITION 5.1 (Bednarczuk 1992A) If (DP) holds for A, then fr zs 
JC-u.H.c. at c; = 0. 

PROPOSITION 5.2 (Bednarczuk 1992A) If (GP) holds for A, then fr is u.H.c. 
at c; = 0 . 

In finite dimensional space Y for closed subsets A such that M in(A IJC) is 
compact we can prove the above proposition under weaker assumptions. 
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PROPOSITION 5 .3 Suppose that Y is a finite dimensional space. Let A be 
a closed subset of Y and M in(AIK) be compact. If (DP) holds for A and 
WMin(AIK) = c/Min(A!K), then fi is u.H.c. ate= 0. 

PROOF. Suppose on the contrary, that fi is not u.H.c. at e = 0. This means 
that there exists a a-neighbourhood w and a sequence en ' limn--+oo en = 0 ' 
such that IT( en) et IT(O) + W, ie ., for some sequence {Yn}, Yn ::S 'f'Jn +en, 
'f/n E Min(Ao!K), Yn (/. IT(O) + W. 

By (DP), for each n, Yn = iJn + kn, where kn E K, and kn (/. W. 
By the compactness of M in(Ao !K), there exist converging sequences { ilnm }C 

{iJn} , and {'TJnm} C {'f'Jn}, with the limit points, i]o and 'f/O, respectively. This 
implies that , for all m sufficiently large, we have 

iJo +eo ::S knm ::S 'f/O +eo, 

where eo E intK. This proves boundedness ofthe sequence {knm}. Thus , we can 
choose a converging subsequence from { knm}, and without loosing generality 
we can assume that { kn m} itself converges to a certain ko E K . Moreover, it 
must be ko E 8K , since otherwise rfo would not be minimal. 

Since A is closed i]o+ko EA . Moreover, (iJo+k0 -intK)nA = 0. This proves 
that i]o + ko E W M in(A!K) and clearly, i]o + ko (/. Min(A!K), <_:ontradictory to 
the assumption. • 

There exist examples showing that without the compactness assumption the 
domination property and the equality WMin(Ao!K) = clMin(Ao!K) are not 
sufficient for upper Hausdorff continuity of the e-minimal point multifunction. 

Moreover, the condition W Min(A!K) = Min(A!K) is not necessary for up
per Hausdorff continuity of fi ate= 0 as shows the example below. 

EXAMPLE 5.4 Let Y = R2 , K = R~ and Ao = R~. Min(A0 jK) = {0} and is 
not equal WMin(Ao!K). However, fi is u H.c. ate= 0. 

This example can be easily generalized to non-ttnique set of minimal points. 

REMARK 5.5 If Min(A!K) is compact, the upper Hausdorff continuity of ft 
coincides with its upper continuity. 

6. Stability results 

Let U be a topological space. 
In a neighbourhood of an arbitrary fixed parameter value u 0 E U we shall 

investigate the family of parametric problems of the form 

P(u) K- minimize f on 1<-(u) . 

The performance multifunction P , P : U :::t Y is defined as 

P(u) =M in(!, 1<-(u)!K). 
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The solution multifunction S, S : U :4 X is given by the formula 

S(u) = S(f, R(u)IK). 

n : U ::::t X is called the feasible set multifunction. We have 

R(uo) = Ao, P(uo) =M in(!, AoiK), S(uo) = S(f, AoiK). 

The theorem below is a refinement of Theorem 6.3 of Bednarczuk 1992A. 

THEOREM 6.1 Suppose that 
f is continuous on X , 

n is upper continuous at uo ' 
(P) is well-posed, 

the performance multifunction P is ( -K)-upper Hausdorff continuous at u0 . 

Then S is upper continuous at u0 . 

PROOF. Let Q be an open set containing S( u 0 ). By well-posedness, there exists 
a a-neighbourhood 0 such that 

U {x E Aol f(x) ::S 1J + t:} C Q, 
7JEMin(f,AoiX:) 

for e: E JC , and € E 0 . Let 

£(0) =M in(!, Aoi!C) + 0- IC. 

Hence, 

and consequently, 

Ao c Q u '[X \ r 1 (.C(O n /C))]. 

Let e: E intKnO. Hence, there exists a a_:neighbourhood 6 such that e:-0 C K, 
ie. 6 c t:- JC C (/C n 0)- JC. From the last inclusion we get that 

Let 0 1 be a a-neighbourhood such that 0 1 + 0 1 c 0 . Since 

we have 

Since f is continuous on X , the set f- 1 {cl£( 61)} is closed and hence, its 
complement is open. 
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By the upper continuity of R at uo , tnere exists a neighbourhood U1 of u0 

such that 

Moreover, there exists a neighbourhood u2 of Uo such that 

M in(!, R(u)IK) cM in(!, AoiK) + 61- K. 

Let us take now any X E S( u) , for u E u = ul n u2 . By the last inclusion 

f(x) EM in(!, AoiK) + 61- K 

which means that f(x) E .C(01) and consequently, x E f- 1 (£(01 )) C 
f- 1 { cl.C( 0 1)} . Thus, since u E U1 , it must be x E Q , which completes the 

pro~ • 

This result fully corresponds to what has been obtained for scalar opti
mization problems, see eg. Lemma 2.7 of Bednarczuk, Penot 1992A. Indeed, 
according to previous remarks, in scalar case well-posedness reduces to topolog
ical well-setness of Bednarczuk, Penot 1992A. Moreover, ( -K)-upper Hausdorff 
continuity of the performance multifunction is simply the upper semicontinuity 
of the optimal value function. 

In view of the Proposition 4.7, we can refrase the above theorem in the 
following way. 

THEOREM 6.2 Suppose that 
f is continuous on X, 

R is upper continuous at uo , 
M in(!, Ao IK) is compact, 

(P) is ry - well-posed, 

P is ( -K)-upper Hausdorff continuous at uo. 

Then the solution multifunction S is upper continuous at uo . 

Analogously, for upper Hausdorff continuity of S we get the following refine
ment of Theorem 6.4 of Bednarczuk 1992A. 

THEOREM 6.3 Suppose that 
f is uniformly continuous on X , 

R is upper Hausdorff continuous at uo, 

( P) is weakly well-posed, 

the performance multifunction P is ( -K)-upper Hausdorff continuous at uo. 

Then the solution multifunction S is upper H ausdorff continuous at uo . 
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PROOF. Let w be any a-neighbourhood. By weak well-posedness of ( P) ' there 
exists a a-neighbourhood 0 such that 

IT(c) C IT(a) + Wt, 

where Wt is a a-neighbourhood in Y such that Wt + Wt C W , and c E 0 , and 
cE K. 

In other words, 

Ao n rt{Min(f, Aol~) + (0 n K}- K) c S(uo) +Wt. 

Hence, 

Ao c [S(uo) + Wt] U [X\ rt(£(0 n K))], 

where, as previously, 

£(0) = Min(f, AoiK) + 0- K. 

By the same arguments as in Theorem 6.1 we can get rid of the intersection 
0 n K and pass to a certain a-neighbourhood () . More precisely, we get 

Let us consider now the second term of ( *) . By the uniform continuity off, 
there exists a a-neighbourhood w such that 

where a a-neighbourhood Ot is such that Ot + Ot c () . Since 

we get 

Let us take the a-neighbourhood WnWt. By the upper-Hausdorff continuity 
of n' there exists a neighbourhood Ut of Uo such that 

n( u) c Ao + W n Wt . 

for u E Ut. 
On the other hand, by ( *) , we have 

Ao + W n Wt c [S(uo) + Wt + W n Wt] U [(X\ rt(£(0))) + W n WtJ, 

and by(**), 

Ao + W n Wt c [S(uo) + Wt + W n Wt] U rt(Y \ C(Ot)). 
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Since 

we get 

Hence, 

for u E u1 . By ( -K)-upper Hausdorff continuity of p at Uo , there exists a 
neighbourhood U2 of Uo SUCh that 

M in(!, R.(u)jK) cM in(!, AolK) + 01- K. 

Now, by taking any X E S(u), for u E u1 n u2 we get 

f(x) EM in(!, AoJK) + 01- K = £(01), 

which means that 

x f/_ X\ r 1(£(01)). 

Consequently, we obtain X E S( uo) + w1 + w n w1 , and finally X E S( Uo) + w . 
• 

Till now no sufficient conditions have been formulated for ( -K)-upper Haus
dorff continuity of the performance multifunction P . In Bednarczuk 1992A we 
have formulated the following sufficient conditions for the upper Hausdorff con
tinuity of P which is obviously a stronger property. 

THEOREM 6.4 (Theorem 4.2 Bednarczuk 1992A) If 
f is continuous on X , 

R. is upper continUOUS at Uo , 

:FR. is sup-lower continuous at uo, uniformly on M in(!, Ao jK), 

(GP) holds for f(Ao), 

then the performance multifunction P is upper Hausdorff continuous at uo. 

With the help of this theorem we obtain slightly weaker forms of our main 
results, Theorem 6.1 and Theorem 6.3. 

Taking in account Theorem 6.4 we get the following weaker variant of The
orem 6.1. 

THEOREM 6.5 Suppose that 
f is continuous on X, 

1l is upper continuous at Uo, 
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:FR is sup-lower continuous at uo , uniformly on M in(!, A 0 IK) , 
(GP) holds for f(Ao), 

(P) is well-posed. 

Then the solution multifunction S is upper continuous at uo . 

E.BEDNARCZUK 

By applying Theorem 6.4 to Theorem 6.2 we get the following stronger 
conditions for problems with compact sets of minimal points. 

THEOREM 6.6 Suppose that 
f is continuous on X , 

n is upper continuous at Uo 1 

R is lower COntinuOUS at Uo 1 

M in(!, Ao IK) is compact, 

(GP) holds for f(Ao), 

( P) is TJ - well posed. 

Then S is upper continuous at uo . 

For upper Hausdorff continuity the following conditions result from Theorem 
6.3. 

THEOREM 6.7 Suppose that 
f is uniformly continuous on X , 

n is upper Hausdorff continuous at Uo, 

n is uniformly lower COntinuOUS at Uo 1 

(GP) holds for f(Ao), · 

(P) is weakly well-set. 

Then the solution multifunction S is upper Hausdorff continuous at uo. 

Since in Theorem 6.7 the function f is assumed to be uniformly continuous 
on X, we can apply Theorem 3.2 to get rid of the indirect assumption that :FR 
is uniformly sup-lower continuous at t'o . Let us note that in general we cannot 
do that in Theorem 6.5 unless we make some additional assumption. 

In vector optimization we can recover the results concerning the performance 
multifunction from that concerning the solution multifunction. In fact , in view 
of Proposition 5.2 we see that under the containment property (GP) vector 
optimization problems are weakly well-posed in the objectiV:e space and hence 
we recover Theorem 6.4 from Theorem 6.7. 
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