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1. Introduction 

The goal of this paper is to discuss old and new results in convex duality theory, 
connected with different inf-compactness properties of the dual of a convex 
minimization problem. 

The theory of convex analysis, an outgrowth of Werner Fenchel's work, was 
mainly achieved in the 60's with the work of Moreau and Rockafellar . We 
refer to Moreau (W66) for the general fa~ts concerning duality pairings between 
locally convex topological vector spaces (l.c.t.v.s.), conjugate functions, and 
subgradients. 

The cornerstone of convex analysis is duality theory which provides a sys
tematic means of associating a dual problem with any convex minimization 
problem. 

•I Partially supported by Fondecyt 92/0947 and Fundaci6n Andes 
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To be precise, let us recall the abstract setting of convex duality. Given 
a couple of l.c.t .v.s. (X, r) and (Y, u), and a closed proper convex function 
r.p: X x Y --+ ]- oo, +oo], the primal problem is 

(P) inf{r.p(x,O): x EX}, 

and the primal marginal function 

v(y) := inf{r.p(x,y): x EX}. 

Interpreting y E Y as a parameter, problem (P) can be considered as being 
"convexly" imbedded into a family of optimization problems. 

To describe the dual problem let the spaces X and Y be paired with the 
l.c.t.v .s. (X*, r*) and (Y*, u*) respectively. The conjugate of r.p, denoted r.p* 
X* X Y* --+]- oo, + oo], induces the dual problem 

(D) inf{r.p*(O,y*): y* E Y*}, 

and a corresponding dual marginal function 

w(x*) := inf{r.p*(x*, y*): y* E Y*}. 

Since r.p** = r.p, dualizing (D) with respect to the perturbation function r.p* leads 
back to the primal problem. 

The primal marginal function v is convex and a direct computation shows 
that v*(y*) = r.p*(O, y*), so that problem (D) consists in minimizing v•. 

The central issue in duality theory is the absence of duality gap (i.e. the 
equality w(O) = - v(O)) and the existence of solutions for (P) and (D). These 
properties rely on stability assumptions usually connected with different types 
of constraint qualification conditions. 

In the "classical" duality theorems, the stability assumption corresponds to 
the continuity at 0 of the marginal function v. By Moreau's theorem, Moreau 
(1964), this implies that the function v* to be minimized in the dual problem is 
inf-compact. In §2 we provide a (partially) new and unified proof of two such 
"classical" theorems in the case ofBanach spaces: Robinson (1976), Corollary 1, 
and Rockafellar (1974), Theorem 18(c), and we discuss the relation with inf
compactness of the dual problem. 

In §3 we turn the attention to a particular situation where the dual problem 
may fail to have this inf-compactness -property: the Attouch- Brezis duality 
theorem. We supplement the original result in Attouch and Brezis (1986) by 
showing that even if the dual problem is not inf- compact, it is the inverse image 
of an inf-compact convex minimization problem by a continuous linear mapping. 
We also extend Attouch- Brezis' theorem by considering different hypothesis on 
the underlying spaces . 

We observe in §4 that in the classical as well as Attouch-Brezis' duality 
· theorems, the function v* satisfies a weak compactness property: every station

ary· sequence is minimizing. This property, called asymptotic well behaviar in 
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Auslender and Crouzeix (1989), may be interpreted as a weakening of the Palais
Smale condition which requires that all stationary sequences be bounded. 

In §4 we obtain the main result of this paper characterizing the asymptotic 
well behavior of v* in terms of a continuity property of its conjugate v**. In a cer
tain sense this is the analog of Moreau's theorem which relates inf- compactness 
of v* with continuity of v** at 0. 

We conclude the paper in §5, by extending the characterizations of the 
asymptotic well behavior given in Auslender and Crouzeix (1989), to the case 
of reflexive Banach spaces. 

In this paper we focus on the properties of the marginal function v and 
its conjugate v*. Obviously, the perfect symmetry between primal and dual 
allows us to obtain similar results for w and w*. Moreover, by considering a 
"trivial" perturbation function <p(x, y) = h(y), the results can be used 'to derive 
properties for a general convex function h. 

We shall assume that (Y, u) is a normed space, there exists a norm 11 ·I I in 
Y whose induced topology is 0'. The corresponding dual norm in Y* will be 
denoted 11·11 • but, unless otherwise stated, we will not assume reflexivity so that 
the norm topology in Y* may not be compatible with the duality. 

We denote by (-, ·) both the duality pairing between Y and Y* and also 
between X and X*. B(y, r) will denote the ball of radius r centered at y, 
and d(y, S) will stand for the distance from y E Y to the set \S C Y. Similar 
conventions apply in X . Finally, for a convex function h we shall denote Sa (h) 
its (lower) level set 

Sa(h) := {z: h(z)::; a}. 

2. The convex duality theorem 

As pointed out in the introduction, the primal marginal function v is convex 
and v*(y*) = <p*(O, y*). Hence problem (D) consists in minimizing v*, that is 
to say 

w(O) = inf{v*(y*): y* E Y*} = -v**(O), (1) 

and y* solves (D) if and only if 0 E 8v* (y*) so that 

S(D) = 8v**(O). (2) 

The fundamental link between (P) and (D) is given in the next theorem. The 
proof can be found in virtually any book on convex analysis so we just give a 
brief sketch . 

THEOREM 2.1 (Basic Duality Theorem) The primal marginal function V is sub
differentiable at 0 if and only if the optimal valueo5 of (P) and (D) o5atio5fy 
w(O) = - v(O) and the infimum in the dual is atta.ined~ In such a case the 
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solution set of (D) coincides with the subdifferential of the primal marginal 
function, 

S(D) = ov(O). 

PROOF. The result follows by combining (1) and (2) with the implications 

ov(O) I</; ::} v**(O) = v(O), 
v** (0) = v(O) ::} ov(O) = ov** (0), 

which hold for any convex function v. • 

A duality theorem is any result ensuring the subdifferentiability of v at 0. 
An important case is when V is continuous at 0 since then ov(O) is nonempty 
and u(Y*, Y)-compact. Since v is convex, the continuity at 0 is equivalent to 
v being bounded from above in a neighborhood of 0. Thus, the simplest (yet 
extremely useful) criteria for such continuity is given by 

(H!) there exists x 0 EX such that rp(xo, ·) is continuous at y = 0. 

A more general condition for continuity of v can be derived in the case where 
Y is a Banach space. 

THEOREM 2.2 Suppose (Y, u) is a Banach space and assume that either (a) the 
space (X, r) is Banach, or (b) the space (X*, r*) is normed. If 

(H2) IR+dom(v) = Y, 

then v is continuous at 0. 

PROOF. Let us fix a:> v(O) and choose xo EX with rp(xo, 0) <a:. Let B be the 
closed unit ball of X (for the norm of dual space if we are assuming (X*, r*) 
normed). The set 

C := {(x,y): rp(x,y) ~ o:,x E xo + B} 

is a nonempty closed convex subset of X x Y, and vis bounded from above by 
a: on the projection Cy of C onto Y. The conclusion will follow if we show that 
Cy is a neighborhood of 0. 

To this end we observe that under assumption (H2) the set Cy is absorbing: 
for any y E Y there exists t > 0 such that ty E do m( v), thus we can choose 
x EX with rp(x, ty) < +oo and then for f > 0 small enough we will have 

(1- <)xo + <x E xo + B 

rp((1- <)(x0 , 0) + <(x, ty)) ~ (1- <)rp(xo, 0) + crp(x, ty) ~a: 

showing that cty E Cy for all f > 0 small enough. 
Since Y is Banach it follows that Cy is a neighborhood of 0, so that all 

which remains to prove is that 

int(Cy) = int(Cy ). (3) 
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When (X, r) is Banach, property (3) follows from Robinson (1976), Lemma 1. 
When (X*, r*) is normed, Alaoglu's theorem implies that B is er( X, X*)-compact 
from which it follows that Cy is closed and (3) holds trivially. • 

The above theorem is essentially known. Under assumption (a) it was proved 
by Robinson (1976), Cor. 1, while under assumption (b) it is a slight extension 
ofRockafellar (1974), Thm. 18 (c) (it is assumed there that (X*, r*) is a Banach 
space). 

REMARK. To illustrate the difference and independence of conditions (a) and (b) 
in Theorem 2.2, let us consider the case X = L 00 (0) with n an open bounded 
subset of IRn. Since L00 is the dual of (£1 , 11 ·I h), the previous result under 
assumption (b) can be applied using the standard duality pairing between these 
two spaces. On the other hand, since L 00 is a Banach space one may also use 
condition (a) but this time the duality to be considered is between L 00 and its 
(norm) dual (L00 (0), 11 ·lloo)* which is not so simple (see Dunford, Schwartz, 
1958, p. 296 and Yosida, 1965, p. 118). 

Conversely, if the primal decision space is X = £ 1 (n), case (a) of the above 
theorem applies directly to the £ 1-£00 duality while condition (b) fails since £ 1 

is not the dual of any normed space. 

The proof of Theorem 2.2 suggests that condition (b) could be relaxed to: 
(b') there exists a convex, absorbing and cr(X,X*)-compact subset BC X. This 
condition is in fact equivalent to (b) as shown by 

PROPOSITION 2.3 Under assumption (b ') the support function of B defines a 
norm on X* whose induced topology is compatible with the duality. 

PROOF. Since B is absorbing, the subnorm llx*ll• := sup{(x*, x) : x E B} is in 
fact a norm. Let r* be the topology on X* induced by this norm and denote 
by X** the corresponding dual. 

Clearly any x E X induces a r* -continuous linear functional ix on X* by 

ix(x*) = (x*,x). 

We must prove that, conversely, any f_ E X** is of the form ix for some x E X. 
With no loss of generality let us assume that 11£11 ~ 1 and let us prove i E B** := 
{fx :X E B}. 

The imbedding x -+ ix from X into X** is obviously continuous if we con
sider in these spaces the topologies cr(X, X*) and cr(X**, X*) respectively, so 
that B** is er( X**, X*)-compact. If i ft B**, using the separation theorem we 

· may find x* E X* such that 

sup i.,(x*) < i(x*). 
xEB 

Since by definition the left hand side is llx* 11., the strict inequality contradicts 
the assumption 11£11 ~ 1. • 
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By Moreau's theorem, Moreau (1964), the continuity of v at 0 implies that 
the function v* to b~ minimized in (D) is a-(Y*, Y)-inf..,-compact, that is to say, 
it has weak* compact level sets. More precisely we have 

PROPOSITION 2.4 If (Y, a-) is normed, the following are equivalent: 
(a) v* is a-(Y*, Y)-inf-compact. 
(b) v* is coercive, that is to say, lim v*(y*) = +oo. 

IIY•II . -+oo 
(c) liminf v*(y*)/IIY*II· > o. 

IIY·II·-+00 
(d) v•• is bounded above in a ball around 0 E Y. 

PROOF. The equivalence (a) {:}(b) is a simple consequence of Alaoglu's theorem. 
Let us demonstrate (b)=> (c)=> (d)=> (b) . 

(b)=> (c) It suffices to consider the case v• proper. Translating the origin, if 
necessary, we may further assume v• (0) < +oo. Let r > 0 be such that v• (y*) 2:: 
v*(O) + 1 whenever IIY*I I• 2:: r . For each y• (j:. B*(O, r), letting y; = ry• /IIY*II• 
we get 

v*(O) + 1 ::; v*(y;)::; (1 - IIY:II • )v*(O) + IIY:II• v*(y*) 

from which we deduce 

v*(y*) 1 
liminf -- >- > 0. 

IIY•II·-+oo IIY*II• - r 

(c) => (d) Take E > 0 and r > 0 such that v*(y*) > <IIY*II• whenever 
IIY*II• 2:: r. If IIYII :S </2 we get 

E Er • Er 
v**(y)::; sup [-

2
11Y*II • - v*(y*)]::; max{ sup [2- v*(y )], -2 }. 

y• IIY•Ik::;r 

But (c) also implies that v• can be minorized by an affine function of the form 
(y*, Yo) + a with Yo E Y, and then 

v**(y)::; max{; + r iiYoll- a,-;} 

for ally E B(O, </2) . 
(d)=> (b) If v•• is bounded above by M on B(O, <)then 

v*(y*) 2:: sup (y*, y)- M= <IIY*II•- M 
yEB(O,<) 

from which (b) follows at once. • 
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3. Attouch- Brezis' duality theorem 

In the setting of Theorem 2.2, Proposition 2.4 shows that (H2) is restricted 
to the case in which the dual problem (D) is inf-compact. While this is a 
very favorable situation, there exist some cases where such inf-compactness is 
hopeless. Thus, a natural question is to which extent the Basic Duality Theorem 
stays valid when dropping assumption (H2). 

In 1986, Attouch and Brezis proved a duality formula for the conjugate of 
the sum of two convex functions under the following weakening of ( H 2), 

(H3 ) E := lR.+dom(v) is a closed subspace ofY. 

This approach was also pursued in the subsequent papers : Auslender et al. 
(1993), Borwein et al. (1988), Borwein and Lewis (1992), Seetharama Gowda 
and Teboulle (1990), Rodrigues and Simons (1988), Volle (1992), Zalinescu 
(1987), where duality theorems for different duality schemes were obtained. Ref
erence Seetharama Gowda and Teboulle (1990) contains a comparative study of 
different constraint qualification conditions. 

When E -::f Y, the dual problem (D) may fail to be inf-compact. However, by 
considering E as the perturbation space one can see that such inf-compactness 
does hold "up to a projection operation" . This is stated precisely in the following 
result which is essentially Attouch- Brezis' theorem in the abstract framework 
of duality via perturbation functions (we add, however, some remarks on the 
structure and compacity properties of the dual problem, as well as the case in 
which (X*, r*) is a normed space). It may be worth noticing here that most 
duality schemes (Lagrangian duality, perturbational duality, Fenchel's duality, 
etc .) are equivalent in this sense that the results may be easily transferred from 
one setting to another. The proof we present is essentially by reduction to the 
framework of Theorem 2.2. 

THEOREM 3 .1 Suppose that (Y, O") is Banach and that either (X, r) is Banach 
or (X*, r*) is normed. If ( H 3 ) holds, the primal marginal function v is subdif
ferentiable at 0, that is, we have the conclusions of the Basic Duality Theorem . 
Moreover, the dual problem (D) can be expressed as 

(D) inf{ v£(ITEy*): y* E Y*}, 

where v£ is the Fenchel conjugate of the restriction ofv toE, which is O"(E*, E)
inf- compact, and ITE : Y* ---> E* is the continuous linear mapping associating 
with a functional y* E Y* its restriction to E. The sohttion set of (D) can be 
expressed as the inverse image by ITE of the weakly compact set ovE(O), 

S(D) = IT_E/[ovE(O) ]. 

PROOF. Let <p E be the restriction of <p to X x E and 

vE(Y) := inf{ <f'E(x, y) : x EX} 
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the associated marginal function . It is easily checked that VB is the restriction 
of v to E, and more precisely 

v(y) = { VE(Y) 
+oo 

if yE E 
otherwise. (4) 

Now, Eisa Banach space and we have IR+dom(vE) = E so that Theorem 
2.2 applies: VB is continuous at 0 and we have the duality relation 

VE(O) = -min{v_E(e*): e* E E*} (5) 

the minimum on the right having a nonempty u(E*, E)- compact solution set 
ovE(O) . Moreover , the function v£ is u(E*, E)-inf-compact . 

From (4), and after a direct computation , we get 

v*(y*) = vE(liEy*) 

and since (by the Hahn-Banach theorem) the mapping liE is surjective, pro
perty (5) can be written as 

v(O) = -min{v£(liEy*): y* E Y*} = -min{v*(y*): y* E Y*} 

the minimum being attained with solution set 

ov(O) = {y* E Y* : liEy* E OVE(O)}. 

proving the result. • 
The previous . theorem shows that problem (D) is the inverse image by liE of 

the inf-compact optimization problem (5). In particular, the optimal solutions 
of (D) are all those functionals which are obtained by extension ofthe functionals 
e* which solve the minimum problem (5). 

REMARK . In the particular case where Y is finite dimensional, the closedness 
requirement in assumption (Ha) is superfluous and (Ha) is equivalent to the 
well known "relative interiority" condition 

(H4) 0 E ri(dom(v)) . 

Moreover, in this finite dimensional setting the space (X, r) may be any l.c.t.v.s. 
and need not be a Banach or the dual of a normed space. 

4. Asymptotic well-behaved convex functions 

We have seen that hypotheses (Hl) through (H4 ) imply that 0 belongs to 
the (relative) interior of the domain of v and correspond to some type of inf
compactness for the dual problem (D) . In general, however, the set IR+dom(v) 
will only bP. a convex cone, so we are led to investigate the properties of (D) 
when 0 is a boundary point of the domain of v, and specifically when 0 is a 
"corner" of the domain of v. 

More precisely, we will study the asymptotic well behavior of v* . 



Convex dua.lity without compa.ctness 131 

DEFINITION 4.1 Let (Y, o-) be a normed space. The sequence {yk} is said to be 
stationary for v* whenever 

d(O, av*(yj;))-+ 0. 

The function v* is said to be asymptotic well-behaved if every stationary se
quence is minimizing, that is to say, 

limv*(y;;) = w(O). 
k 

The notion of asymptotic well behaviour was first considered in Auslender and 
Crouzeix (1989) where, in a finite dimensional setting, different characterizations 
were obtained. 

In order to motivate this property and to make the link with inf-compactness 
we briefly discuss the Palais-Smale condition. We recall that a (not necessarily 
convex) Frechet differentiable function h defined on a normed space Z is said to 
satisfy the Palais-Smale condition if every sequence { zk} with h( Zk) bounded 
and llh'(zk) ll * tending to zero, is relatively compact. Recently Shujie (1986) (see 
also Costa and Silva, 1991) has proved that when Z is a Banach space such a 
function is necessarily coercive. 

In the case of the convex function v* we modify the Palais- Smale condition 
as: 

(P-S) every stationary sequence for v* is o-(Y*, Y)-relatively compact. 

Notice that we consider arbitrary stationary sequences regardless of whether the 
function values are bounded or not. 

Clearly, any o-(Y* , ¥)-accumulation point of a stationary sequence for v* 
·will be a critical point, thus a solution of (D). It is also easy to check that 
a bounded stationary sequence is minimizing so that (PS) implies asymptotic 
well behavior. 

PROPOSITION 4.2 Let (Y, o-) be a normed space and suppose that the primal 
marginal function v is such that its conjugate v* is not identically +oo , that is 
to say, w(O) < +oo. If v* is coercive then it is bounded from below and satisfies 
(PS). The converse holds when (Y, o-) is reflexive. 

PROOF. If v* is coercive then it is proper and o-(Y*, Y)-inf- compact . Hence its 
infimum is attained and is not -oo proving that v* is bounded from below. 

Let us consider next a stationary sequence {y~} for v* and choose Yk E 
av* (yk) such that IIYk 11 -+ 0. If {yk} were unbounded, passing to a subsequence 
so that IIY~ 11 -+ oo and using Proposition 2.4 we could find E > 0 such that 
v*(yk) 2: t: IIY~II * for all k large enough, and then 
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From this we get v** (Yk) -+ - oo so that v** (0) = -oo. But this implies 
v* = + oo contradicting our assumption. 

The converse implication, in the case of (Y, a) reflexive, can be proved by 
adapting the proof of Costa and Silva (1991), Thm. 4 (which is an application 
of Ekeland 's Variational Principle). •· 

The previous result shows that under the assumptions of Theorem 2.2, (H2 ) 

implies that v* satisfies (PS). When (H2) is replaced by (H3) we obtain, 

PROPOSITION 4.3 With the assumptions of Theorem 3.1 and w(O) < +oo, the 
function v'f: satisfies (PS) and the function v* is asymptotic well-behaved. 

PROOF. From Theorem 3.1 the function v'f: is coercive so that it satisfies (PS). 
In particular v'f: is asymptotic well-behaved. 

To prove the asymptotic well behavior of v* let {yi;} be a stationary sequence. 
It is easy to see that av*(yi;) C av'f:(IIEyk) so that {IIEyk} is stationary, hence 
minimizing, for v'f: . Since v*(yk) = vE(IIEYi;) it follows that {yk} is minimizing 
for v* as was to be proved. • 

This proposition partially extends the finite-dimensional result, Auslender 
et al. (1993), Thm. 3.1. As a matter of fact, it was shown in the latter that 
when 0 E ri( do m( v)) a stationary sequence {yk} is not only minimizing but 
converges towards the set of optimal solutions of (D) 

lim d(yj;, S(D)) = 0. 
k-+ oo 

In the present setting all we can assert is that there exist weak* accumulation 
points of {IIEYi;} and they are solutions of 

min{v'E(e*): e* E E*}. 

To complete the previous discussion let us mention the following 

PROPOSITION 4.4 Suppose that v* is such that every minimizing sequence zs 

bounded. Then v* is coercive. 

PROOF. By contradiction suppose we can find a sequence {yi;} with JJyj; JJ . -+ 

+ oo and v* (yk) bounded above, let us .say by M E IR. Let us choose a mini
mizing sequence xi; and define 

zi; = (1 - ak)xi; + akyk 

where ak = 1/ JJJy;;- x;; JJ.. By our assumption {xk} is bounded so that ak is 
well defined and tends to 0. Now, 

Jj z;; - xi; jj . = ak jj yj; - x;;n. = Jn y;; - x;; JJ . -+ + oo 

so that Jjz,i; ll. -+ + oo. However, 

v*(z,;) ~ (1 - ak)v* (xi;) + a.,v* (yk) ~ (1 - ak)v*(xi;) + akM 
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which implies that { zk} is an unbounded minimizing sequence contradicting our 
assumption. • 

Among the papers where the notion of asymptotic well behavior has been 
studied, let us mention the characterizations given in Angleraud (1992) and also 
the link between asymptotic well-behavior, well posedness and well conditioning 
presented in Lemaire (1992), the latter in the infinite dimensional case. 

In what follows we give a new characterization of the asymptotic well be
havior, which is closely connected with the results in Angleraud (1992). Let us 
briefly describe some of the latter . First of all in Angleraud (1992), Thm. 3 it 
is shown that a sublinear function h is asymptotic well-behaved if and only if 
the domain of its conjugate h* is locally conical at 0. We recall that a convex 
subset A of a normed space is said to be locally conical at 0 if 0 E A and there 
exists c > 0 such that 

cone( A) n B(O, c) CA. 

The condition 0 E A was not a part of the definition of local coni city considered 
in Angleraud (1992) but here we will only consider this case. 

For a general convex function hits asymptotic well behavior implies the local 
conicity of dom(h*), Angleraud (1992), Thm. 6. Conversely, Angleraud (1992), 
Thm. 7, if dom(h*) is locally conical at 0, a sufficient condition for asymptotic 
well behavior of h is that h* be bounded above on a neighborhood of 0, or more 
precisely 

sup{h*(z*): z* E dom(h*) n B(O, c)}< +oo (6) 

for some c > 0. These conditions are obviously satisfied in the situations de
scribed in Theorems 2.2 and 3.1. We also point out that, as mentioned in 
Angleraud (1992), they are not necessary in general. 

Our next result characterizes the asymptotic well behavior in terms of a 

continuity property of the conjugate function, in the same way as Moreau's 
theorem relates inf-compactness of a convex function with the continuity of its 
Fenchel conjugate at 0. 

THEOREM 4.5 Let (Y, u) be a normed space and suppose that v* zs proper. If 

lim [2v**(y) - v**(2y)] = v**(O) (7) 
II YII--+0 

yEdom(av**) 

then v* is asymptotic well-behaved. The converse holds if dom( ov**) is locally 
conical at 0. 

PROOF. Let {yk} be a stationary sequence for v* and select Yk E ov* (yi;) with 
IIYkl l --+ 0. We recall that the infimum of v* on Y* is w(O) = - v**(O) so that 
using Fenchel's inequality v**(yk) + (yk, 2yk - Yk ) ~ v**(2yk), we get 

w(O) ~ v*(yk) = (Yk, Yk) - v** (Yk) ~ v** (2yk) - 2v** (Yk). 
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The conclusion follows: if (7) holds then {yk} is a minimizing sequence for v*. 
To prove the converse let us suppose that do m( av**) is locally conical at 

0, and consider a sequence {yk} C dom(av**) such that !IYkll----+ 0. The local 
coni city of do m( av**) implies that 2yk E do m( av**) for k large enough, so we 
may choose Yk E av**(2yk)· By convexity we have 

v**(O) 2: 2v**(yk)- v**(2yk) v**(2yk) + 2[v**(yk)- v**(2yk)] 

> v**(2yk) + 2(yA:, Yk- 2yk) 

v**(2yi;)- (yA:, 2yk} 

-v*(yk)· 

Since 2yk E av* (yz) it follows that {yk} is a stationary sequence for v* and then 
it is minimizing. Thus the rigp.t hand side above tehds to -w(O) = v**(O) and 
property (7) follows. • 

REMARK. In the previous theorem one may replace condition (7), both for the 
direct as well as the converse implications and with essentially the same proof, 
by 

lim [.Av**(y) - v**(.Xy)] =(.X- l)v**(O) 
IIYII-+0 

yEdom(&v .. ) 

for any .A > 1. 
It is clear that (7) holds when v** is continuous at 0 relative to its domain 

(assumed to be locally conical at 0). However, this assumption is not necessary 
as shown by the counterexamples in Angleraud (1992). 

Concerning the hypothesis "dom( av**) is locally conical at 0", let us observe 
that when (Y, er) is a Banach space Bronsted-Rockafellar's theorem implies that 
dom(av**) = dom(v**), and then Angleraud (1992), Thm. 6 shows that this 
closure is locally conical as soon as v* is asymptotic well behaved. However, 
it is not clear whether the asymptotic well behavior of v* implies do m( av**) is 
locally conical at 0. 

5. The reflexive case 

We conclude this work by addressing the question of extending the results in 
Auslender and Crouzeix (1989) to the infinite dimensional setting. More pre
cisely we assume from now on that (Y, er) is a reflexive Banach space and we 
characterize the asymptotic well behavior of v* in terms of the following quan
tities : let m := inf { v* (y*) : y* E Y*} be the optimal value of the dual problem 
and define for each a > m, 

r(a) := inf{IIYII: yE av*(y*), v*(y*) =a} 
l(a) := inf{[v*(y*) - a]/d(y*, Sa(v*)): v*(y*) >a}. 

To prove the main result of this section we need the following lemmas. 
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LEMMA 5.1 Let a> m and y* (j. Sa(v*) with v*(y*) < +oo. Ifx* E Sa(v*) is a 
projection ofy* onto Sa(v*) (there exists at least one!) then we have v*(x*) = a 
and we may find X E y and (3 > 0 such that - (3x E av*(x*) and 

(x,x* - y*) = ll x ll llx*- y* ll •· (8) 

PROOF. The function z* --+ ~ ll z*- y* ll z is a closed convex function which 
is o-(Y*, Y)-inf-compact (by Alaoglu 's theorem). Hence there exists at least a 
projection x* of y* onto the o-(Y*, Y)- closed set Sa( v* ), that is to say, a solution 
of 

(Pa) min{~llz* - y* ll z: v*(z*k; a}. 

Clearly v*(x*)::; a. On the other hand, fortE (0, 1) we have x* +t(y* - x*) (j. 
Sa(v*) and then 

a::; (1 - t)v*(x*) + tv*(y*) . 

Letting t! 0 we deduce v*(x*) 2: a hence v*(x*) = a as claimed. 
We now perturb (Pa) by considering the perturbation function 

<p(z*, t) = { ~ ll z* - y*llz 
+oo 

if v*(z*) ::; a - t 
otherwise. 

The perturbation parameter is t E IR and we obtain the dual problem 

where 

minJ.t[a - v~(y*)], 
J.<~O 

v7,(y*) := inf [v*(z*) + 2_ !! z*- y* ll ; ]. 
,.. z•EY• 2p, 

Since a> m, Theorem 2.2 can be applied to deduce that (Da) has an optimal 
solution J.l 2: 0. 

We observe next that the solution x* of (Pa) also minimizes the function 

r(z*) := ~llz*- y*ll; + J.t(v*(z*) - a) . 
2 

Indeed, for any z* E Y* we have 

f(z*) 2: J.t(v~(y*) - a), 

and since J.l is optimal for (Da) , x* optimal for (Pa) and since the optimal values 
are related as -v( Da) = v(Pa), we deduce 

r(z*) 2: ~ ll x* - y* ll z = r(x*) 

where the last equality follows since v*(x*) = a. 
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The fact that x* minimizes f implies fl > 0 since otherwise we would have 
x* = y* which is impossible since y* et Sa(v*). 

Moreover, .the optimality of x* gives 0 E of(x*). Taking z* = y* we see that 
there exists a point where v* is finite and ill· -y*ll; is continuous (w.r.t. the 
norm topology on Y* which is compatible with the duality since we are assuming 
(Y, lT) reflexive). We may then use the calculus rule for the subdifferential of a 
sum, to assert the existence of x E o[ill· -y*ll;](x*) with -x E fLOv*(x*). It is 
not difficult to prove that the first condition implies (8) so we may conclude by 
taking f3 = 1/ fl· • 

LEMMA 5.2 If m< a< a' then r(a) :::; l(a) :::; r(a') :::; l(a'), and we have the 
alternative characterization 

r(a) = inf{IIYII: yE ov*(y*),v*(y*) ~a} . 

. PROOF. r(a) :S Z(a). We must prove that for each y* such that v*(y*) >a we 
have 

v*(y*)- a 
r(a) < . 

- d(y*, Sa(v*)) 

This inequality is evident if v• (y*) = +oo. Otherwise let us denote by x* a 
projection of y* onto Sa( v*) and let x, f3 be given as in the previous lemma. 
Then we have 

v*(y*)- a 

d(y*, Sa(v*)) 

v*(y*)- v*(x*) 

IIY*- x*ll• 

and since -f3x E ov*(x*) and using (8) we deduce 

v*(y*)-a (-f3x,y*-x*) 
d(y•, Sa(v*)) ~ IIY* - x*ll• = llf3xll ~ r(a). 

l( a) :::; r( a'). Let y* be such that v* (y*) = a' and let y E ov* (y*). Denoting 
as before x* a projection of y* onto Sa ( v*) we get 

v*(y*)- v*(x*) -{y x*- y*) 
/(a):::; IIY*- x*ll• :::; IIY~- x*ll• :::; IIYII 

and we may conclude by taking the infimum over all y E ov* (y*) and all y* 
with v*(y*) =a'. 

The alternative characterization of r follows from the monotonicity of r. • 

We may now prove, 

THEOREM 5.3 If (Y, lT) is reflexive, the following are equivalent: 
(a) v* is asymptotic well- behaved. 
(b) r(a) > 0 for all a> m. 
(c) l(a) > 0 for all a> m. 
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(d) Every stationary sequence {yn for v* with v*(yk) bounded from above is 
mznzmzzzng. 

PROOF. The implication (a) :::} (d) :::} (b) and the equivalence between (b) and 
(c) are obvious from the definition of r and the previous lemma respectively. 

To prove (b) :::} (a) we proceed by contradiction: if {yk} is a stationary 
sequence which is not minimizing we may find a > m and a subsequence, still 
denoted {yk}, such that v* (YZ) 2: a. The alternative characterization of r( a) in 
the previous lemma implies r( a) = 0 contradicting (b). • 
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