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We consider multiparametric differentiable optimization prob­
lems in finite dimensions. The object of our study will be the set 
of those Karush-Kuhn-Tucker points at which the Mangasarian­
Fromovitz constraint qualification is satisfied. This set has been 
shown to be generically a topological manifold. It can also be de­
composed into differentiable manifolds. However, the latter decom­
po-;ition cannot be obtained via a combinatorial partition code of 
finitely generated cones (corresponding to the gradients of active 
constraints). In fact, such partition codes will obtain unavoidable 
stable singularities. We explicitly construct such a singularity, where 
the :idea of the construction can be generalized. The state space of 
our example is four dimensional, with 33 inequality constraints and 
a 74 dimensional parameter space. 
Keywords: Parametric optimization, partition code, singularity 

1. Introduction 

We consider the multi-parametric optimization problem P(y) with a parameter 
yE JRP: 

P(y) min{ f(x, y) I x E M(y) }, where 

1 ) Supported by the Deutsche Forschungsgemeinschaft, Graduiertenkolleg "Analyse und 
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M(y) = { X E mn I h;(x, y) = 0, i E 1i ; 9j(X, y) 2 0, j E g }. 

The sets 1i = { 1, .. , h} and g = { 1, .. , g} are finite index sets . All appear­
ing functions are supposed to be of differentiability class c•, s 2 1. In this 
section, we assume (without specification) that the problem data (!, h, g) = 
(!, h1, .. , hh, 91, .. , gg) are in general position. 

A point x E IRn is called a Karush-Kuhn-Tucker point of P(y) (shortly 
KKT -point) if the following conditions hold with some >. E !Rh, J.L E JRg : 

KKT1 x E M(y) ; J.Li 2 0, j E 9o(x, y); J.Li = 0, j tJ. 9o(x, y) 

Dxf =LA; Dxhi + LJ.Li Dxgj I · 
. . (x,y) 
' J 

KKT2 

The set 9o(x, y) := { j E g I gj(x, y) = 0} denotes the set of active inequality 
constraints; moreover, Dx f stands for the row vector of first partial deriva­
tives with respect to x. A pair (>.,J.L) satisfying KKT1,2 is called a Lagrange 
multiplier associated with (x, y). Let 6.(x, y) denote the set of all Lagrange 
multipliers associated with (x, y). Then, 6.(x, y) is a convex polyhedron. 

Provided that some constraint qualification is fulfilled, conditions KKT1,2 
are first order necessary conditions for x to be a local minimizer for P(y). In this 
paper the constraint qualification of Mangasarian- Fromovitz (shortly MFCQ) 
will be used. In that case, the set 6.(x, y) is compact (cf. Gauvin 1977) and 
gives rise to a natural definition of a combinatorial partition code. The compact 
set 6.(x, y) is called the Lagrange polytope. 

The Mangasarian-Fromovitz constraint qualification is said to hold at (x, y) 
if MF1 and MF2 are satisfied: 
MF1 The set {Dxh;(x, y) I i E 1i} is linearly independent 
MF2 There exists a v E IRn with Dxh;(x,y) v = 0, i EH; Dxgj(x,y) v > 0, 

j E 9o(x, y). 
The validity of MFCQ implies that the corresponding part ofthe Karush- Kuhn­
Tucker set, say :E, is a topological manifold (cf. Giinzel 1993), where 

:E := {(x,y) E IRn x JRP I xis KKT-point ofP(y) and MFCQ is fulfilled}. 

In general, :E will not be a smooth set. But, it can be decomposed into differ­
entiable manifolds exhibiting a regular fitting (Whitney regularity), (cf. Giinzel 
at al. 1993). 

For simplicity of the exposition , in the rest of the paper we delete the equality 
constraints, i.e. 1i = 0. This can be justified by MFl: a local reduction using 
the implicit function theorem yields a corresponding problem in mn-h without 
equality constraints. 

In this paper we show by means of an explicit counterexample that the 
decomposition of the set :E into differentiable manifolds cannot be obtained 
using the following (natural) combinatorial partition code. In fact, consider the 
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condition KKT2 with 1-£ = 0. This means that Dxf lies in the cone generated 
by the vectors Dx9j, j E 9o. There might be many ways for writing Dxf 
explicitly as such a nonnegative linear combination . The extremal ones will 
define our partition code. This will be explained in the sequel. Let ( x, y) 
belong to the set :E. We call a subset I C 9o a facet-generator if there exists 
a Lagrange multiplier J.L with J.li > 0, j E I, and Dxf = LjEJJ.LjDx9j lcx,y)· A 
facet- generator is called extremal if it does not properly contain another facet­
generator. Note, that I C Q0 (x, y) is an extremal facet-generator if and only if 
the set { Dx9i li E I} is both linearly independent and the generated nonnegative 
cone contains Dxf in its relative interior. Moreover, a subset I C 90 is a facet­
generator if and only if ~(x, y) n JR~ is a relatively open facet of the Lagrange 
polytope ~(x, y), where 

IR~ := {J.L E JRY I J.li > 0, i E I; J.li = 0, i ~I}. 

An extremal facet-generator then corresponds to an extremal point of the poly­
tape ~(x, y). 

Let :J(x, y) denote the set of all extremal facet-generators. The partition 
code X := (9o, :1) is defined as a mapping from :E to the product 2Q x 220

, 

where 2Q denotes the power set of Q. 

EXAMPLE 1.1 Assume n = 3 and 9o = {1,2,3,4}. Denote vo := Dxf and 

V;: = Dx9i· 

. 
:1={{1,3},{2,4} :r = {{1,2,3},{2,3,4} 

Figure 1. 

Now,we can formulate our counterexample by means of the following theorem. 
The C 2- topology refers to the strong (or Whitney-) topology (cf. Hirsch 1976, 
Jongen, Jonker, Twilt 1986) . Note that the setS:= {(u, v) E JR2 I uv = 0} is 
not a (topological) manifold at the origin. 

THEOREM 1.1 Let ben= 4, p = 74, h = 0, g = 33. Then, there exist a C 2
-

open set F C C 2(1Rn+p) and a subset I C 2Q such that for all problem data 
(! , g) E :F there exists a pair ( i, y) E :E with the following property: 
x- 1(Q,I) is at (x,j]) diffeomorphic with s X {0} at (0,0) E JR2 

X IR76
• • 
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The diffeomorphism in the above theorem is to be understood as follows: 

DEFINITION 1.1 Let X C M and Y C N be subsets of smooth manifolds. Then, 
X is said to be diffeomorphic at x E X with Y at y E Y if there exists a local 
diffeomorphism i.p : M -+ N sending x to y and X onto Y. 

The proof of the theorem is based on geometrical constructions for addi­
tion and multiplication due to von Staudt (cf. Hartshorne 1967). As input 
and output the latter computations use points on a line instead of real num­
bers. Certain colinearities guarantee that the resulting points in fact have an 
interpretation as the output of operations as addition or multiplication. Compo­
sitions of such operations make it possible to compute any polynomial function 
with integer coefficients. The set of colinearities determines some kind of a code. 
The computability of any polynomial wi"th integer coefficients in addition with 
regularization arguments imply that algebraic singularities can be implanted 
in the space of "configurations" of points realizing a specific code. This is the 
main assertion of Mnev's universality theorem for point configurations (cf. Mnev 
1988). We introduce other regularization arguments as in Mnev 1988 such as 
the Connection Lemma and the Unc.oupling Lemma below. In comparison with 
Mnev 1988 our construction yields relatively low-dimensional examples involv­
ing singularities. The universality theorem can be proved along the same lines 
as presented here; this will be shown in a forthcoming paper Giinzel 1994. 

In Section 2 we will establish a natural relation between the latter configura­
tions and our Lagrange polytopes. This requires a modeling in an appropriate 
jet-space. In Section 3 we introduce our regularization arguments and prove 
the theorem. 

2. The model in jet-space 

From now on we assume n = 4. In this section we regard our situation modeled 
in terms of jet extension and jet-space. Generally speaking, the statement of our 
theorem carries over to the jet-space by replacing the values g(x, y), Dxf(x, y), 
etc ., by abstract variables in a target space. We will see how the jet-extension 

\ 

of(!, g) .pulls back the singular fibre S (as introduced in Section 1) from the jet-
space to :E. At that point we ass~me the problem data to be in general position. 
Then it remains to establish the idea of our theorem in terms of jets. In the 
jet-space we study positive linear combinations of vectors w; E JR4 

- standing 
for the gradients of the constraint functions - yielding w 0 , standing for the 
gradient of the objective function f. If none of these vectors vanishes, and the 
condition MF below is fulfilled, then there exists an affine hyperplane exhibiting 
precisely one intersection point with each set of positive multiples, say IR+ w;, 
where IR+ :={.A E IRI>. > 0}. This (locally) reduces the problem to the study of 
convex combinations of points in JR3 yielding the intersection point with IR+ w 0 , 

say the origin 0 E JR3 . By means of normalization on rays emerging from the 
origin, the appearing vectors (denoted by v;) can be represented by means ofthe 
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intersection of the intersection of ll?+ Vi with the union of two parallel planes, 
see Figure 2. These planes will play a crucial rule in the construction performed 
in Section 3. 

Figure 2. 

For problem data(!, g) we define the following reduced 1-jet extension: 

i(J,g) := (g,Dxf,Dxgl, .. ,Dxgg)· 

We omit the index (!,g) if no ambiguity can occur. The target space J et:E := 
JRg x IRn x (JRn)g of j(J,g) is called the jet-space. Transfering the conditions 
KKT1,2 and MFCQ to the jet-space, yields the next conditions K1,2 and MF, 
respectively, for a point (b,w,J.L) E Jet:E x JRg, where w = (w0 , . . ,wg): 

(Kl) 

(K2) 

(MF) 

b ~ 0, J.L ~ 0 and bJ.L = 0 

wo = LJ.L;W; 
i;tO 

There exists v E IRn such that w;v > 0 fori= 1, .. , g with b; = 0. 

The above conditions define the characteristic set K: 

K = { (b,w) E Jet:E I For some J.L E JRg: Kl,K2 and MF} 

Now we have the following fundamental relation: 

(x, y) E :E <=:::> j 1 (x, y) E K. 

Given a point (b,w) E K, let 9 0 (b,w) denote the "active index set", i.e. 9o := 
{ i E g I b; = 0}. A set I C 90 ( b, w) is called a facet-generator if there exists 
a multiplier J.L with J.Li > 0, i E I, such that w = l:iEI J.L;W;. A facet-generator 
is called extremal if it does not properly contain another facet-generator. Let 
J(b, w) denote the set of all extremal facet-generators. Put X := (90 , J) : 
K ____, 29 x 229

. Then, on :E we have the relations X o j 1 = X, and ~ o j 1 = ~­
From now on put g = 33. 

DEFINITION 2.1 Let F : X ____, Y be a mapping between manifolds and let MC Y 
denote a submanifold, all data of class C 1 . We say that F meets M transversally 
(in Y) at point x E F- 1(M) if we have DF(x)[TxX] + TF(x)M = TF(x)Y. 
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AssUMPTION* There exists wE (JR4 )1+g such that x- 1(9,I) is at (0, w) diffeo­
morphic with S x JR91 x {0} at (0, 0, 0) E JR2 x JR91 x JR76

, where I:= .J(O, w). 

Under Assumption* the assertion of the theorem can be proved as follows. Let 
r.p denote the above local diffeomorphism Jetr,-+ R2 x JR91 x JR76

. Put M:= 
r.p- 1 ( {0} x JR91 x {0} ). Note that (0, w) EM. The set M constitutes a smooth 
submanifold of J etr, of dimension 91. Put£ := {((!,g), (x, y)) lj(J ,g)(x, y) meets 
M tranversally at (x, y)}. An argument using Taylor's formula yields£ =f 0 for 
any dimension of the parameter space p with dim JRn+p + dim M 2: dim J etr,, 
i.e. 4 + p + 91 2: 169, hence p 2: 74. Now, we fix p = 74 and suppose that 
((!,g), ( x, y)) E £. Then, there exist open neighborhoods :F and U of(!, g) and 
(x, y), respectively, such that for any (!,g) E :F there exists (x, y) E U with 
j(J,g)(x, y) E £. Let((!, g), (x, y)) be chosen in such a way. Then, (r.poj 1 ) meets 

( {0} x JR91 x {0}) tranversally in JR2 x JR91 x JR76 at the point (x, y). This 
implies that at this point (IIJR2, IIJR1s) o r.p o j 1 : JRn+p -+ R2 x JR76 is a local 
diffeomorphism. Here, IIJR2 denotes the projection onto the first factor, etc. 
Obviously, the latter diffeomorphism maps "£, onto S x {0} and (x, y) to (0, 0) . 
This would co~plete the proof of our theorem. 

Now, we put JR4 := JR3 x JR+, and consider the following diffeomorphism: 

- -{0} X JR4 
X (JR4 )g C Jetr, 

If the origin of JR3 is a convex combination of the vectors v;, say 0 = Li;to a;v;, 
then 'f/;(v) belongs to K with Lagrange multipliers J-li = >.;(J..0 . In this setting, 
we also define ( extremal) facet-generators, using convex combinations. To this 
end we assume v = (v1 , .. , vg) E (JR3 )g. A set I C g is called a facet-generator 
if 0 is in the convex hull of { v; I i E I}. A facet-generator is called extremal 
if it does not properly contain another facet- generator. The following lemma 
establishes the relation between codes .J in JR4 and JR3

. 

LEMMA 2.1 On (JR3)g+l x IR~+g the following relation holds: .J o II(JR')s = 
.J 0 'lj;. 

Given I C 29, let R.(I) := {v E (JR3 )g I.J(v) =I} denote the "realization 
space" of I . Define the following affine subspaces of JR3

: A+ := JR2 x {+1}, 
A- := JR2 x { -1} and put A :=A+ UA_ . Note that the mapping .J : Ag -+ 22" 

is well defined. Let R.A(I) := {v E Ag I .J(v) =I} stand for the restricted 
realization space of I. The mapping r.p : (v, >.) 1-+ (>.;v;); establishes a local 
diffeomorphism between R.A(I) x IRg at (v, (1, .. , 1)) and R.(I) at v. 
The validity of the next Assumption** implies the validity of Assumption* using 
the latter diffeomorphism r.p and Lemma 2.1. 
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AssuMPTION** There exists V E Ag such that nA('I) is at V diffeomorphic with 
S x JR21 x {0} at (0, 0, 0) E JR2 x JR21 x JR76

, where 'I := :J(v). 

In fact, the diffeomorphism r.p uses the product with JR33 whereas 'lj; uses mt X 

IR!3 . In total, we get 21 + 33 + 4 + 33 = 91. • 

3. Proof of the theorem 

We start with an outline of the proof. The main idea consists in constructing 
the singularity xy = 0, or, equivalently x2 = y2 . We use constructions due to 
von Staudt, where the real values 0, 1 are exposed. Therefore, we will construct 
the singularity ( x - z /2) 2 = (y - z /2) 2 still having z at our disposal. To this 
aim we perform a geometrical computation of the function F( z, x) := xz - x2 

for z E (2, 4) and X E (1, 2). Puts; := {(x, y) I F(z, x) = F(z, y)} . This set 
actually defines the desired singularity. 

First assume z to be fixed. We will "compute" the function values F(z, x) 
and F(z, y) , where x and y are the coordinates of certain points Px and Py 
on different lines Lx and Ly endowed with appropriate projective scales . The 
"computation" generates results Rx E Lx and Ry E Ly. Comparing these 
results, we have F(z , x) = F(z, y) if and only if Rx and Ry are colinear with 
a so-called " connection point" C. The connection point C defines a relation 
between the scales on Lx and Ly. Our aim is to get a specific code 'I for all 
points of S[ . The code 'I depends in particular on colinearities of Px, Py and 
the connection point C. The latter points are colinear if and only if x = y . Of 
course, S[ contains also a pointed line of points (x, y) with x # y . In order to 
guarantee that the latter points have the same code, we need two copies of JR2

, 

namely A+ and A_ as introduced in Section 2. As the result we will obtain 
the implantation of s; into a realization space nA('I) c Ag. Tht< next lemma 
shows that we need not to fix the value of z. In fact, instead of S[ we implant 
the cylindrical set SF as defined in the fo~lowing lemma. 

LEMMA 3.1 Let be a E (1 , 2). Put sF := {(x, y, z) E JR3 I F(z, x) = F(z, y)}. 
Then, sF is at (a, a, 2a) diffeomorphic with s X IR at (0, 0, 0). 

PROOF . F(z, x) = F(z, y) <===> z(x- y) = (x + y)(x- y) 
<===> x - y = 0 or x + y - z = 0 
<===> u = 0 or v = 0, 

where u = x - y, v = x + y - z, w = x- a are new coordinates in JR3
. lil 

Now, let be v E Ag and 'I := :J(v) . Recall that the state space is four 
dimensional. Hence, II I ::; 4 for each I E 'I . If .I E 'I has cardinality 4, then it 
is stable w.r.t . small perturbations, i.e. I E :J(v) for any v sufficiently close to 
V. Put 'I. := {I E II II I ::; 3} and n-:('I.) := {v E Agi:J(v). =I.} . Then, the 
set nA ('I) is open in n-:cr.). Consequently, for a local analysis we can delete 
extremal sets of cardinality four, since v E nA('I) n n-:('I.). 
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In virtue of the preparations in Section 2 it suffices to prove the following 
proposition. 

PROPOSITION 3.1 There exists V E A33 such that n-: (I.) is at V diffeomorphic 
with SF X JR20 

X {0} at ((a, a, 2a), 0, 0) E (JR_2 X JR) X JR20 
X JR76

, where I. := 

:J(v). and a E (1, 2) . 

Before proving Proposition 3.1, we need some preliminaries. 
Given ii E Ag, we have .J(v). C :J(v). for v sufficiently close to v. The 

following lemma allows to perturb ii in such a way that :J(v) . \ .:1( v ). can be 
appropriately controlled. To this end we extend a mapping <p : At --+ At to a 
mapping A --+ A by x f-+ - r.p( - x) for x E A _. We again denote the extended 
mapping by r.p. A subset V C A is called affine if -V = V and V n At is an 
affine subspace of At . Given r.p : A --+ A, we define' a mapping r.p : Ag --+ Ag by 
r.p( v1 , .. , vg) : = ( r.p( vt), .. , r.p( vg)). The proof of the next lemma is easy, and will 
be omited (cf. Figure 3). 

LEMMA 3 .2 (Uncoupling Lemma) Let be V C A an affine subset and let 
v1 E Vk,, v2 E (A\ V)k 2 , v3 E (A\ V)k 3 • Then, there exists an affine mapping 
r.p :At --+At arbitrarily close to the identity such that r.pJv = idJv and: 

:J(vl,v2,r.p(v3)). :J(vl,v2) . U:f(vl , v3). 

In Figure 3, we use the isomorphism At = IR2
. Points in At are represented 

by means of the symbol • whereas o stands for points v with ( -v) E A - . 

v2 
v3 

v3 
v2 

==} 

vl vl 

Figure 3. 

Projective scales 

Let IR denote the one-point compactification of IR, i.e IR = IR U { oo}. 

DEFINITION 3.1 Let be a, b, c, dE IR such that ad# be. Then, the following 
mapping Wabcd : IR --+ IR is called projective: 

Wabca(x) := { c;Jc 
ax±b 
cx td 

c = 0 and x = oo,or ex+ d = 0 
x = oo and c # 0 
else 
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The projective mappings on IR form a group, with composition as group oper­
ation. Note that any affine isomorphism (extended by = ,___. =) is a projective 
mapping. If L is a line , i.e. an affine space of dimension one, then let Y de­
note the one-point compactification L U { =}. The affine isomorphy of lines 
with IR yields that projective mappings are well defined between the one- point 
compactifications of lines as well. The compactified lines together with the pro­
jective mappings form a category. A projective mapping w : Y -+ IR is called 
a projective scale on L. Given three distinct points P0 , P 1 and P= on a line 
L, there exists precisely one projective scale w on L with w(Po) = 0, ·w(Pl) = 1 
and w(Poo ) = =· 

In the following we see how proj ective mappings between lines in a plane 
appear in a natural way. Let L1, L2 denote lines in JR? having precisely one 
common point. Let C be a point distinct from both lines. Then, there is exactly 
one point Q1 E L1 such that the affine hull af f( Q1, E) does not meet L2. Let 
Q2 E L2 be defined analogously. Now, the following mapping <p : L1 -+ L2 is 
well defined : 

<p(P1) := { ~2 
P2 E L2 

pl = (X) 

P2 E aJJ(P1,E) 

The point C is called the connection point. 

LEMMA 3.3 (Connection Lemma) Let be L1, L2, E and <pas above. Then, <pis 
a projective mapping. • 

Geometrical computations 

A set of k points an affine space is called an l-colinearity if its affine hull has 
dimension l < k - 1. For abbreviation, a colirtearity in JR2 always means a 
1- colinearity. 

DEFINITION 3.2 (Addition) Let be v = (A,D,F,G , K,M,P,Q,R) E (JR2
) 9 

such that A f. F, P rf_ aff(A, F) and M rf_ {F, P} . Then v is called an 
Addition if the following colinearities are present: {A, D, F, Q, R}, { F, M, P}, 
{A,K,M}, {K,P,Q}, {F,G,K}, {D,G,M}, {G,P,R}. 

Figure 4. 
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LEMMA 3.4 (cf. Hartshorne 1967) Let v E (IR2
) 9 be an Addition and let w de­

note a projective scale on aff(A, F) such that w(A) = 0 and w(F) = oo. Then 
we have: w(R) = w(Q) + w(D) . • 

DEFINITION 3.3 (Multiplication) 
Let be v = (A, B, C, E, F, H, L, M, N, P, R) E (IR2

)
11 such that A # F, B rJ. 

{A, F}, P rJ. aff(A, F) and M rJ. {F, P} . Then v is called an Multiplica­
tion if the following colinearities are present: {A, B, C, E, F, R}, { F, M, N, P}, 
{A,H,L,M}, {C,H,P}, {B,H,N},{E,L,N}, {L,P,R}. 

Figure 5. 

LEMMA 3.5 (cf. Hartshorne 1967) Let v E (IR2) 11 be a Multiplication and let 
w denote the projective scale on aff(A, F) with w(A) = 0, w(B) = 1 and 
w(F) = oo. Then we have: w(R) = w(C) w(E). • 

In Figure 6, we consider the Multiplication v = (A, B, C, C, F, H; I<, M, N, P, Q), 
i.e. w(Q) = w(C) w(C) . 

p 

Figure 6. 
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Combining the latter constructions, we obtain a computation for the function F . 

DEFINITION 3.4 (F-Computation) 
Let v =(A, B, C, D, E, F, G, H, I<, L, M, N, P) E (JR2

)
13 be such that A# F, 

B tf_ {A, F}, P tf_ aff(A, F) and M tf_ {F, P}. Then v is called an F­
Computation if the following colinearities are present: {A, B, C, D, E, F}, 
{F,M,N,P}, {A,H,K,L,M}, {C,H,P}, {B,H,N}, {C,K,N}, {E,L,N}, 
{F, G, I<}, {G, L, P} {D, G, M}. An F-Computation is called regular, ifw(C) E 
(1, 2) and w(E) E (2, 4), where w denotes the associated projective scale (on 
aff(A, F)), being defined by the relations w(A) = 0, w(B) = 1 and w(F) = oo. 

Figure 7. 

COROLLARY 3.1 Let v E (JR2)13 be an F - Computation, and w the associated 
projective scale. Then we have w(D) = F( w(E) , w(C) ). • 

Next, we discuss the 1-colinearities that may occur in an F-computation. 
The 2- colinearities are stable, hence they are not interesting for our purposes. 
Suppose that there are no 0-colinearities. The set W of "wished" colinearities 
is defined to be the smallest set with the following properties. The colinearities 
appearing in Definition 3.4 are wished. Moreover, if £1 is wished and £2 C £1 
is a colinearity, then £ 1 is wished as well. If £1, £2 E W and l£1 n £2 l 2': 2, then 
£1 U £2 E W. All other colinearities are called "unwished". 

LEMMA 3.6 Let v be a regular F-Computation and w the associated projective 
scale. Then, 0-colinearities are not present and {D, I<, P} is the only unwished 
colinearity which might appear. 

PROOF. The absence of 0-colinearities is easily checked. Now, let£ be an un­
wished colinearity. By definition any unwished colinearity contains an unwished 
colinearity of cardinality three. Hence, without loss of generality, I·CI = 3. We 
will prove that £ = {D, I<, P}. For convenience, we consider four classes of 
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points: C1 := {A ,B,C,D,E,F}, Cz := {G}, C3 := {H,K,L,M} and C4 ·­
{N,P} (see Figure 7). Since .C is unwished, it has to meet three of them. 
Case 1. G E .C. 
Case 1.1. PE .C: { G, L, P} is wished, thus the third point coincides with R . 

This is not possible by w(R) = w(E)w(C) > w(E). 
Case 1.2. N E .C : Now, aff(.C) meets aff(A , M) in (L, M) and it meets 

aff(A,F) in (E,F). But then it does not contain any point ofC3 
or cl . 

Case 1.3 . .C meets C1 and C3: By simultaneous reasons: K, L (j. .C. Finally, 
(A, F) n aff(G, H) = 0. 

Case 2. .C meets C1, C3 and C4: The intersection of .C with C4 cannot be N, 
since all colinearities involving C3 and N are wished. Hence, PE .C. 
But then, the only candidate for a point from C3 being included in 
an unwished coline,arity should be K . The point from C1 n .C has to 
coincide with Q. Since w(Q) = w(C) 2 , we have Q E (C, E). Hence, 
the only candidate from C1 for coinciding with Q is D. • 

If we choose 5 E (L, M), T E (F, M), U E (C, H) and V E (C, K), then, these 
four points extend the set of wished colinearities in a natural way. One can 
choose the latter points such that no ·additional uhwished colinearities appear. 
In the sequel, 5, T, U, V are always chosen in such a way. 

Proof of Proposition 3.1 

Let v be a regular F-Computation and 5, T as above in JR2 =A+· Next, we 
define v E A 15 : 

v :=(A, B , C, -D, E , -F, G, -H, - K, -L , -M, N, P, 5 , T) . 

By means of the following relation, the points A, B, C, .. are well defined: v = 
(A, B, C, iJ, .. , T) (see also Figure 8). Such v shall be called an F-Computation. 
Note that { iJ, k , F} (j. :J ( v). In a regular F -Computation the order of the 
points on the lines belonging to wished colinearities is fixed. This, together with 
Lemma 3.6 implies the existence of i. such that the set ofF- Computations is 
an open subset of n-:;(i.) . 
Analogously, we define v E A 17 : 

v :=(A, -B,C, D, - E,F, - G, H ,K,L, M, - N, -P, -5, - T , - U, -V) , 

where v is a regular F-Computation and 5, T, U, V as above . Let be v 
(A, B, C, D, .. , V) (see Figure 9). This defines an F-Computation v. Here, we 
also have {D ,K,F} tf_ :J(v). Hence, the set ofF- Computations is open in 
n-:; (i.) for a specific i .. 

In the following we sketch the latter computations. In order to draw points 
in A, we use the convention of Figure 3. 
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Figure 8. Figure 9. 

We say that v = (A,B,C,D,E,F,B,C,D,E,F,X+,X-) E A 13 is a Con­
nection if A,B,C,-D,E,-F,-B,C,D,-E,F,X+ EA+ are distinct points, 

- A - A 2 
if X_= -X+, X+ tf_ aff(A, -F), FE (-F, -X_) and if in A +:::: lR the fol-
lowing colinearities are present: {A, B, C, -D, E, -F}, {A, -B, C, D, -E, F}, 
{B,-B,X+}, {-D,D,-X_}, {E,-E,X+}, {-F,F,-X_}, see Figure 10. 
There is a i. such that the set of Connections is open in n-:(i.). 

Figure 10. 

Assume the existence of 

such that the corresponding v is an F-Computation, v is an F - Computation 
and v is a Connection. 

Note that at this stage we perform simultaneously two computations in A+ . 
This might produce new colinearities between the two different parts of our 
computation scheme. Such new colinearities will be eliminated by means of 
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the Uncoupling Lemma. First, we apply the Uncoupling Lemma to the triple 
v1 := v n v, v2 := v \ v, v3 := v \ v with V := aff(A, F) . Note, that we have 
v1 Uv3 = v and v1 Uv2 = vUv. Hence, we may assume without loss of generality 
that :J(v). = i. u :J(v u v) •. 

Now, we neglect v \ v and apply the Uncoupling Lemma to the triple v1 := 

v n v, v2 :=(vU v) \ v, v3 := v \ v with V:= aff(A, F). Note, that v1 U v3 = v 
and v1 U v2 = v. Moreover, all extremal facet-generators involving points from 
v \ v remain present, since they are contained in vU v (which is not affected). 
Hence, without loss of generality we have :J(v). = i. ui. ui. =:I •. 

In order to complete the proof of Proposition 3.1 we have to show the ex­
istence of some v satisfying the above assumption together with the desired 
diffeomorphism. Consider the following order within the points of v: 

.Ax+x_F ff !Ji3PP M ifssttE;.Ecii N k L6iJ6u ii ilv ii Lab. 

Starting with A (two degrees of freedom), etc., we built up v stepwise in the 
given order such that :J(v). E {I., I.\ {D,D,X_}}. After the choice of B 
we have projective scales wand won aff(A, -F) and aff(A, F), respectively, 
such that w(.A) = o, w(B) = 1, w( -F) = =, w(.A) = o, w( -B) = 1 and 
w(F) = =· We choose E such that w(E) E (2, 4) . Finally, let c, 6 be such that 
w(C),w(6) E (1, 2). By the specific choice of projective scales, an application 
of the Connecti~n Lemma to V implies w(E) = w( -E) . Moreover, we have the 
following fundamental relation: 

{D, D, X_} E :J(v). ~ w( -D)= w(D) (1) 

Let N denote the space of v constructed so far. In fact, N is locally diffeo­
morphic with (JR2 x IR) x IR20

. The latter diffeomorphism <p can be chosen in 
such a way that the first three coordinates of the image ( 'Pl, 'P2, 'P3 )( v) coincide 
with (w(C),w(6),w(E)). 

For any v EN, the involved v, v are F- and F-Computations. This yields: 

w(-D) = F(w(E),w(C)) 

w(D) = F(w(-E),w(6)) 

For any v E N, the relations 1, 2 and 3 imply the next relations: 

(2) 

(3) 

Without loss of generality, for a specific v E N we have chosen C and 6 such 
that w(6) = w(C) = 1/2 w(-E). Again in virtue of the relations 1-3, we have 
(<p 1 , <pz, <p3 )(v) =(a, a, 2a) E SF, where a:= w(C). This completes the proof of 

Proposition 3 .1. • 
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REMARK 3.1 The forestanding construction can be generalized in order to im­
plant any algebraic singularity for polynomials with integer coefficients. The 
number of scales coincides with the number of variables in the polynomial. This 
will be shown in the forthcoming paper Giinzel 1994. 
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