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In this paper we will be concerned with a partition of the set of 
all real symmetric n x n- matrices into strata corresponding to the 
multiplicities of the eigenvalues. It will be shown that this stratifica­
tion is Whitney Regular . Moreover, we derive an explicit formula for 
the codimension of the strata in terms of the multiplicities involved. 
The transversality theory of R. Thorn leads to generic perturbation 
results for the eigenvalues of one-parameter families of real symmet­
ric matrices. The connections with sensitivity results in parametric 
optimization are investigated. 

1. Introduction 

The present paper aims to analyse the partition of the set of all real symmetric 
n x n-matrices, according to the multiplicities1l of their eigenvalues. We will 
show that this partition forms a so-called Whitney Regular Stratification. 

The formal definition of Whitney Regular Stratification is rather compli­
cated, but roughly speaking, it means a subdivision into locally finite, mutually 
disjoint, smooth ( C 00

) manifolds (strata) which stick together in such a regular 
way that the local topological type of the partition remains constant along each 
stratum. 

For us , the relevance of such a stratification result relies on the possibility of 
applying certain "general-position" arguments (Thorn 's transversality theorem). 
In fact, as a corollary we will obtain the following stability/ approximation result 
on the set of all families A(t) of real symmetric n x n-matrices which depend 
smoothly on a real parameter t . 

1) Since we deal with symmetric matrices, no distinction will be made between the alge­
braic and geometric multiplicity. 
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STABILITY AND APPROXIMATION PROPERTY: Given any such one-parameter 
family of matrices, say A(t), t E IR, with the property that there are only simple 
eigenvalues for all t. Then, this property will be maintained under sufficiently 
small, but for the rest arbitrary perturbations (to be specified below) on the coef­
ficients o{A(-). On the other hand, let the family A(t), t E IR , be arbitrary. Then 
suitable, but arbitrarily small perturbations (to be specified below) will result into 
a family A(t) with only simple eigenvalues for all t E IR. 

The above statement can be interpreted as a sensitivity result for the following 
one- parameter family of optimization problems P(t), t E IR, 

P(t) min -
2
1 

xT A(t)x • subject to ~xT x- 1 = 0 
xE.IJiln 2 ' 

where xT stands for the transpose of x . In fact, we will see that generically 
(to be explained below) for all t the problems P(t) do only exhibit so- called 
non- degenerate critical points. 

Finally, we prove that - in contradistinction with the latter situation - for 
problems of the type 

R(t) x~~~ ~xT A(t)x + bT (t)x subject to ~xT x- 1 = 0, 

with A(-) as above and b(-) a smooth map from IR to !Rn, the occurrence of 
degenerate critical points cannot be excluded, even not in the generic case. 

This paper is organized is follows: 
In Section 2 we fix our notations and formulate our Stratification Theorem. The 
proof of this theorem is given in Section 3, whereas we present the corollaries in 
Section 4. Finally in Section 5 we discuss some aspects of the problems R(t). 

2. Stratification Theorem 

Let An stand for the set of all real symmetric n x n- matrices. Obviously, 
this set may be identified with the Euclidean space IRK , where (by symmetry) 
J{ = ~n( n + 1). The multiplicities of the eigenvalues of a matrix A in An are 
denoted by mj (A) , j = 1, · · · , l, where l is the number of distinct eigenvalues of 
A. So we have m 1 (A) + · · · + m1(A) = n . Now we introduce the symbol O'(A): 

O'(A) = {m1(A), · · · , m1(A)}. 

Let 0' be any partition of n into strictly positive integers , say mj, j = 1, · · · , k . 
So, 

0' = { ml, . .. , mk}, 

where m 1 + · · · + mk = n. The set of all such partitions is denoted by S . For 
any 0' E S, the subset Au of An is defined as follows 

Au ={A E An I O'(A) = 0'}. 
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Apparently, the collection {Aa }aES constitutes a finite partition for An into 
(mutually distinct) subsets. Now, we come to our main theorem. 

STRATIFICATION THEOREM The partition {Aa }aES forms a Whitney Regular 
Stratification for An , i.e. the following two conditions hold. 

Condition {1) Every {Aa }, (]' E S is a C 00 - manifold. 
Condition {2) Any Aa2 is Whitney Regular over any other Aa, 

at any A E Aa,· 
Moreover, for 0' = { m1, · · ·, mk} we have 

k 1 
·codim Aa = L["2mj(mj + 1)- 1]. 

j=l 

where the codimension is always taken with respect to the set IRK. 

We briefly discuss the above Conditions (1) and (2). As already mentioned be­
fore, these conditions turn out to be rather complicated (especially the second 
one). Nevertheless, just to be complete we shall give the formal definitions, 
thereby following Gibson at al. 1976 and Jongen at al. 1983, 1986, in which 
also references on the intuitive meaning of these concepts can be found. We 
emphasize that both Condit ions (1) and (2) are of local nature. In particular, 
it turns out that if we apply a strata preserving diffeomorphism, then the struc­
tures of the stratification around a point and its image point are the same. In 
fact, this is the only property to be used in the sequel. 

Condition {1}: This means that around any A in Aa this set is locally 
C00 -diffeomorphic with an open ball in IRd(a), d(O') = dimAa; codim Aa = 
f{ -dimAa. When Condition (1) is fulfilled for Aa we call Aa a stratum. 

Condition {2): We say that a stratum Aa2 is Whitney Regular over another 
stratum Aa, at A E Aa, if for every sequence ((A;, B;)) in the product space 
Aa, x Aa2 with the following three properties (i), (ii), (iii) 

(i) A; ---+A, B; ---+A, 
(ii) the tangent spaces (TB,Aa 2 ) tend (in the Grassmannian sense) to a linear 

subspace T C IRK, 
(iii) the lines L; spanned by (A;- B;) tend (in the Grassmannian sense) to a 

line L C IRK, 
the following holds: L C T. 

We conclude this section with two remarks on related results. 
Let Mn be the set of all complex n X n- matrices. Obviously, this set may be 
identified with Cn

2
. For any matrix M in Mn we denote by s(M) the so-called 

Segre symbol. Here we will not give a formal definition of this symbol, but 
merely mention that s(M) is essentially an array containing all information on 

the structure of the Jordan decomposition of M. Moreover, if M E An, then 
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s(M) reduces to ()(M). The following result has been stated by Arnold (cf. 
Arnold 1981) and proved in full detail by Gibson (cf. Gibson 1976): 

THEOREM (Arnold/Gibson) The partition of Mn according to the Segre symbols 
of its elements forms a Whitney Regular Stratification of Mn. 

Formally, if Mn is replaced by An, this theorem gives the statement of our 
Stratification Theorem. We emphasize however, that this does not mean that 
the Arnold/Gibson result automatically implies our Stratification Theorem. For 
some special cases, the formula for codimAa has been derived by Dellnitz and 
Melbourne 1992 from the results of Arnold 1981, without a rigorous proof. In 
the paper of Dellnitz and Melbourne, the generic eigenvalue behaviour of classes 
of one-parameter families of selfadjoint matrices has been investigated. 

As a second remark we note that the partition of An into a Whitney Regular 
Stratification is certainly not unique. In fact, the partition of An according 
to the rank of its elements also forms a Whitney Regular Stratification, see 
e.g. Jongen et al. 1983, 1986 . This reference also contains applications of the 
"rank stratification" within the field of Newton flows and the field of Parametric 
Optimization. 

3. Proof of the Stratification Theorem 

We begin by showing that {A}aES forms a Whitney Regular Stratification for 
An(= IRK). We put()= {m1 , . .. , mk} and give the proof in three steps. 

Step 1: Aa is a semi-algebraic subset of IRK. 
Note that a subset of an Euclidean space, say IR 1, is semi-algebraic if it is 
generated - in the Boolean sense -by sets of the form {( E IR 1 I p(() > 0} 
with p : !R 1 --> IR a polynomial function. Given a, we consider the subset Va of 
IRn given by all x = (x1, · · ·, Xn) E !Rn such that: 

X1 = ... = X m,' X m, +1 = ... =X m, +m2 ' 
Xm 1 + .. ·+m,_ 1 +1 = · · · = Xn, and the k numbers 
x1, Xm 1 +1, · · · , Xm 1 + .. +m,_ 1 +1 are mutually distinct . 

Evidently, the set Va is semi- algebraic in !Rn. Now we consider the map t.p : 
!Rn--> !Rn given by t.p(x) = (s1(x), · · · , sn(x)), where Si, i = 1, · · ·, n, are the el­
ementary symmetric functions on IRn , i .e . s1(x) = x1 +x2+· · ·+xn, · · ·, sn(x) = 
x 1x2 · · · Xn. Since t.p is a polynomial map, it follows from the theorem of Tarski­
Seidenberg (cf. Gibson at al. 1976) that the image Wa := t.p(Va) is also semi­
algebraic in !Rn. 

Next we introduce the map w: An-t [Rn given by w(A) = (cl(A), . .. , Cn(A)), 
where cj(A) =(sum of all j x j-principal minors of A), j = 1, · · ·, n. Note that 
the components of t.p(x) resp. 'll(A) are (up to a sign) the coefficients of the 
characteristic polynomials of any matrix in An with eigenvalues x1, · · ·, Xn, resp. 
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the matrix A . This yields Acr = w- 1 (Wcr), and hence- W being polynomial 
- the set Acr is algebraic in ~K. 
Step 2: The homogeneity property for A er. 

We will show that the following homogeneity property (cf. Gibson at al. 1976) 
holds : 
For any two A, B in Acr a strata preserving local diffeomorphism, say p, exists 
from a ~K-neighborhood of A onto a ~K-neighborhood of B such that p(A) = 
B. 

Firstly, we observe that for any orthogonal n x n-matrix Q, the map A>-----+ 
QT AQ is a diffeomorphism from An onto An which preserves the eigenvalue 
distribution. So, we may assume (no loss of generality) that A and B are 
diagonal matrices, each with k distinct eigenvalues - say aj resp. 7Jj - of 
multiplicity mj, j = 1, 2, · · · , k. 

A moment of reflection shows that there always exists a real polynomial 
p of degree k, with p(aj) = 7Jj and p'(aj) f- O,j = 1,· ··,k . Choose such a 
polynomial, say p(x) = akxk + · · · + a1x + a0 . Then we define the smooth map 
p : An -+ An as follows 

p(A) = akAk + · · · + a1A + aoln, 

where In stands for the n x n-unit matrix. Obviously, we have p(A) B. 
Moreover, by a straightforward calculation we find that the J acobian matrix 
Vp(A) of pat A is a J{ x ]{-diagonal matrix with diagonal elements p'(aj), 
(p(?ij)- p(ai))/(?ij - ai), i, j = 1, · · · k, i < j, which by construction are all 
non-zero. So, the map p is a local diffeomorphism around A. 
It remains to prove that p preserves - locally around A - the strata Acr . To 
this aim, we observe that given any m-fold eigenvalue a for A E An, then p( a) 
is an eigenvalue for p(A) with multiplicity 2: m. Moreover, since the numbers 
p' (?ij) are non- vanishing, for any A sufficiently close (in the Euclidean sense) 
to A it follows that p(a) is a m-fold eigenvalue for p(A). 
Step 3: Combination of the preceding steps. 
Here we use standard arguments from stratification theory (cf. Gibson at al. 
1976). The set A er being semi- algebraic in ~K, there always exists an A E Acr 
aud a~]( - neighborhood n of A such that n n A er is diffeomorphic with an open 
Euclidean ball. By the homogeneity property it follows that Acr is a smooth 
manifold. 

Now, the sets A., being semi-algebraic smooth manifolds, a classical result 
by Whitney (cf. Gibson at al. 1976) yields for given A.,, A.,, the existence of 
an A E Acr such that A.,, is Whitney Regular over A., at A. Due to the local 
nature of the concept of Whitney Regular Stratification by the homogeneity 
property (Step 2) the stratum A.,, is Whitney Regular over A., at any A E A.,. 

We proceed by proving the statement on codim Acr . This proof will provide an 
elementary (independent) proof of the proposition that Au, 0' E S is a smooth 
manifold in An. In the sequel we will use the following fact (cf. J ongen et al. 
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1983, 1986): 
Let A be a symmetric n x n matrix of the form 

A = ( {}r ~ ) , D :a k x k- , B a regular ( n - k) x ( n - k )- matrix. 

Then 

(1) 

Now, for any fixed u = { m1, · · · , mk} we consider the diagonal matrix D E A a 

with mj-fold eigenvalues J.j, j = 1, · · ·, k. We put A = D + S , S E An, and 
decompose A as follows: 

Dj ffij X mrmatrices, j = 1, ... , k , (2) 

where for A = D we have Dj = X/Im1 and C = 0. If A is sufficiently close 
to D (i .e. the Euclidean norm 11 S 11 of S is small) then mutually disjoint IR­
neighborhoods nj of >.j exist, such that in each nj there lie ffij eigenvalues of 
A (counted with multiplicities) . Selecting in any D.j one eigenvalue Aj of A we 
have for all j , j = 1, · · · , k: 

Aj is an mj - fold eigenvalue of A<=> rank (A- Aj In)= n- mj. (3) 

By using appropriate permutation matrices Ej , the matrix EJ AEj has the form 

Ci ) B· , 
J 

with Dj as in (2) , Bj an (n-mi )x(n-mj )- matrix. Since rank EJ (A-Aj In)Ej = 
rank(A- Ajln), by using the above result (1) we find that for A near D the 
conditions in (3) are equivalent with the conditions 

Fi(A,>.i)=O, j=1, .. · ,k, 

where 

(4) 

By symmetry (of A) , Fi = 0 represents a system of (mj + 1)mj/2 equations 
F/ = 0, i = 1,·· · ,(mj + 1)mj/2, each component F/ corresponding to an 
element of ("the upper part") of Dj. By a straightforward calculation it is 
not difficult to see, that the following holds : for any fixed >. E IR, all partial 
derivatives with respect to (the I< elements of) A, 

are linearly independent. (5) 
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Now, for any j = 1, · · ·, k we will apply the Implicit Function Theorem to the 
equation F{ (A, A) = 0 (corresponding to the element dL of Dj ). To this aim, we 
note that 0>-.F{ (D, A) = -1 (cf. ( 4)), where 0>-. stands for the partial derivative 
with respect to A. So, in a neighborhood U of D, the relation F{ (A, A) = 0 
defines a (unique) C 00 -function Aj U --+ ni, such that F{ (A, Aj(A)) = 0, 
Aj(D) = >:.j and 

\1 A j (D) = 8 A F{ ( D, );j). ( 6) 

By substituting the functions Aj (A) into ( 4) we finally arrive at the equations 

j( )·- j( ·( ))- j=1, ... ,k, f; A .- F; A, A1 A - 0, . _ (m1+1)m1 z- 2, ... , 2 
(7) 

with I:J=1 ((mjil)mj -1) functions fl E C 00 (U,IR) (U a sufficiently small 

neighborhood of D). By construction we have shown that for any A in a neigh­
borhood U of D the following holds: 

A has k distinct eigenvalues Aj with multiplicities mj 
iff the equations (7) are satisfied. . 

To complete the proof, it remains to show that all gradients \1 ff (D), j 

1 k · 2 (mj+l)mj l' l · d d t Th' !' ll . d' l , ... , , z = , ... , 2 are mear y In epen en . IS 10 ows Imme ~ate y 
from (cf. (6)) 

\1 fl (D) 

and using the linear independence of the vectors 8 AFt ( D, xj) (cf. 5)). • 

4. Corollaries 

Apparently the set of all families of real symmetric n x n-matrices , smoothly 
(C00

) depending on a parameter t E IR, can be identified with the set C 00 (IR, IRK). 
For each natural number r 2: 0, the latter set can be endowed with the so­
called strong er -topology, denoted by c; (cf. Hirsch 1976). In fact, the c;­
topology is generated by allowing perturbations of the components of the maps 
and the derivatives (up to order r) of these components, which are controlled 
by continuous, strictly positive functions c: : IR --+ IR (rather than by positive 
constants); note that the infimum of c:(-) over IR might be zero. 

Now, we can formulate our Stability and Approximation Property. 

STABILITY AND APPROXIMATION PROPERTY : The subset Fn of C 00 (IR, IRK), 
representing all one-parameter families of matrices A(t), t E IR, such that 

O'(A(t)) = {1, 1, · · ·, 1}, for all t E IR (i.e. all eigenvalues simple), 
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is c; -dense for all r 2: 0 and c; - open for all r 2: 1. 

The main tool (apart from our Stratification Theorem) needed for the proof of 
this Stability and Approximation Property is the following version of Thorn 's 
Transversality Theorem (cf. Hirsch 1976 or Jongen et al. 1983, 1986). 

THEOREM. (R. Thorn) Given any closed Whitney Regular stratified subset V of 
[RK, and let m V denot e the subset of C00 (!R, f~K) contamzng all functzons whzch 
are transversal to each stratum of V. Then the set mV is c; - dense for all r 2: 0 
and c; -open for all r 2: 1. 

What we mean by "transversal", will be explained in the actual situation of our 
stratification {A,.} uES. Given f E coo (IR, IRK) , let 'V f(t) be the derivative of 
f at t. Then, we say that f is transversal to a stratum A,. (notation: fmA,.) if 
for each t E IR we have: 

Either f(t) (/: A,. 
or f(t) E A,. in which case 'V f(t)(IR] + Tf(t)Au = [RK. 

Note that in particular this means that, whenever f mA,. and codim A,. 2: 2, 
then the intersection f(IR) n A,. is empty (cf. Jongen et al. 1983, 1986). Now 
the verification of the Stability and Approximation Property is straightforward. 

PROOF. (of the Stability and Approximation Property) 
For any() f. {1, 1, · · ·, 1} we have codim A,. 2: 2. This follows from the explicit 
expression for codim A,. in the Stratification Theorem. Hence, :Fn is just the 
set mAn. Now, Thorn's theorem together with our stratification result yields 
the assertion. • 

In particular, the approximation property above implies that given a family 
A(t), t E IR, then by a suitable, arbitrarily small perturbation (in c;) we obtain 
a family A.(t) with only simple eigenvalues for all t E IR . We give an instructive 
example. 

EXAMPLE Consider the families 

A(t) = ( ~ ~t ) and the perturbation A.(t) = ( 8 ~t) 8~1 ) , t E IR , 

of matrices in A2. Then A(O) has a double eigenvalue. However, for any strictly 
positive function 8 E C 00 (IR, IR) the perturbation A.(t) has simple eigenvalues for 
all t ER 

We proceed with analyzing the critical points for the one- parameter opti­
mization problems P(t) as given in Section 1. The pair (x, t) E !Rn x IRis called 
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a critical point (c.point) for P(t) if x fulfils the following Necessary Optimality 
Conditions (so-called Karush- Kuhn-Tucker (KKT) equation, see e.g. Guddat 
et al. 1990). 

(
J{ KT) { A(t)x- AX 

lxTx- 1 
2 

=0 
= 0. 

some A E IR, 

The set of all c. points for the family P(t), t E IR, is called the critical set. The 
c. point (x, t) is called non-degenerate if at (x, t) and with the corresponding 
multiplier X the J acobian matrix 

of KKT w.r.t. x and A is non- singular; otl:_lerwise (x, t) is called a degenerate 
c. point . One easily sees that 'this non-degeneracy condition at (x, t) is equiva­
lent with: 

{ND) The (n -1) x (n - 1) matrixV.J· (A(t) - XIn) ·V:;; is non- singular, 

where V:x is any n x ( n - 1 )-matrix for which the columns span the orthogonal 
complement in IRn of x. 

Let (x, t) be a non-degenerate c-point for P(t) . Then, locally around (x, t), 
the critical set can be smoothly parametrized by t (due to the Implicit Func­
tion Theorem). Moreover, since the non- degenerate c-points for 'P(t) are just 
the so- called Type 1 singularities (in the sense of Jongen, Jonker and Twilt, 
cf. Jongen et al. 1986) we have: any c-point, sufficiently close to (x, t), is 
non- degenerate and has the same quadratic Morse (eo-)index as (x, t). From 
these observations it follows that in the case where P(t), t E IR, attain.s merely 
non-degenerate c-points, the connected components of the critical set can be 
smoothly parametrized as (x(t), t), where t traverses the whole IR; moreover, 
along each component of the critical set, the local structures of the optimiza­
tion problems P(t) remain constant (up to diffeomorphisms) . 

In the case where (x, t, X) fulfils KKT, of course xis an eigenvector for A(t) 
with eigenvalue X. By choosing the matrix V:x in (ND) such that the columns are 
the eigenvectors of A(t) orthogonal to x, we find that (x, t) is non-degenerate 
iff X is a simple eigenvalue of A(t) . Since each P(t) is represented by the matrix 
A(t), we therefore have the following direct consequence of our Stability and 
Approximation Property: 

Generic structure of the critical set of P(t) 
The subset :Fn, representing all optimization problems P(-) such that P(t) has 
only non-degenerate critical points for all t E IR, is c; -dense for all r 2: 0, and 
c; - open for all r 2: 1. 
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For PC) E Fn the critical set consists of connected components which are dif­
feomorphic to IR; moreover along each component of the critical set the local 
structure of P(t) remains constant (up to diffeomorphisms). In particular this 
means that whenever xis a local minimizer for P(t), the component of the crit­
ical set through (x, t) consists of points (x(t), t) where x(t) is a local minimizer 
for P(t), all t ER 

5. Final remark 

We consider the one-parameter families R(t), t E IR, of optimization problems 

R(t) min ~xT A(t)x + bT (t)x subject to 
xEIJi!n 2 

1 T 
-X X- 1 = 0 
2 ' 

as introduced in Section 1. (Non-)degenerate critical point for R(t) are defined 
as in the case ofP(t), see Section 4. In the present section, we will show that­
in contradistinction with the case P(t) -the occurrence of degenerate c.points 
for R(t) cannot be excluded, even not generically. 

Firstly, we note that for any t the problem R(t) is given by then x (n +I)­
matrix [A(t)lb(t)], i.e. the matrix A(t) augmented by b(t) as (n + l)th column . 
Hence, the set of all problems R(t), t E IR, can be identified with C 00 (IR, IRK +n). 
We endow this set with the c;-topology, r ~ 0. Next we introduce the set 
1) C IRK +n which is defined as follows: 
[Aib] E 1J iff the following conditions hold for some pair (x, ..\) E !Rn x IR : 

Ax + b- ..\x = 0 

~XT X- 1 = 0 2 . 

~X)= 0 

(8) 

(9) 

(10) 

Relations (8) and (9) are the (KKT) optimality conditions defining a critical 
point. Equation (10) is the condition for degeneracy of this point. Thus we 
have: 

R(t) has at least one 
degenerate c. point 

~ [A(t)lb(t)] E 7J. 

Clearly, 1J is closed . Now, the following lemma holds. 

LEMMA 

a) 1J admits a Whitney Regular Stratification. 
b) The dimension of 1J (in [RK +n) is J{ + n - 1. 

(For a definition of dim 1J, cf. Gibs on at al. 1976, p.18.) 

PROOF. 

a) It is sufficient to show that 1J is (semi-)algebraic (see for example Gibson 
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at al. 1976, page 20). To this aim, we consider the subset V C IRK x IRn x IR 
given by the triples (A, x, ..\)which fulfil the above (polynomial) Equations (9) 
and (10). Apparently, V is (semi- )algebraic. Now, let p be the polynomial map 
IRK x IRn x IR--+ IRK x IRn given by p(A, x, ..\)=(A, - Ax + ..\x). Then, by the 
theorem of Tarski-Seidenberg (cf. Gibson at al. 1976) it follows that 'D( = p(V)) 
is semi-algebraic . 

Note that this proof does not give an explicit description of the strata into 
which 'D is partitioned. 
b) Let be given an element [Aib] E 'D and suppose that b =F 0 and that with a 
solution (x, :\) of the equations (8)-(10) we have 

X t/:. {Aj I Aj, j = 1, ... , n, are the eigenvalues of A}. 

Now, we consider (A, b, x, ..\)near such a tuple (A, b, x, "X). By assumption, (8) 
leads to x =-(A- Ain)- 1b and (9) becomes 

1 T - 2 f(A, b, ..\) := 2b (A - Un) b- 1 = 0. (11) 

It is not difficult to see that equation (10) reduces to xT(A - ..\In)- 1x = 0. 
Hence, (10) coincides with the condition 

.Since by assumption b =F o, it follows that oU(A, b, 3:) = 3bT (A - "Xln) - 4b = 
3II(A- "Xln)- 2bll 2 =F 0. By applying the Implicit Function Theorem, in a neigh­
borhood U of (A, b) we can solve 8>-.f = 0 for a function ..\(A, b) such that for 
all (A, b) E U we have 

g(A, b) := f(A, b, ..\(A, b)) = 0 ::} [A ib] E 'D. 

The gradient of g at (A, b) is not the zero-vector. This follows from the 
relation obg(A, b) = obf(A, b, "X)+ 8>-.f(A, b, "X) · ob..\( A, b) = ob!( A, b, "X) = 
bT (A- "Xln)- 2 =F 0 where we have used that b =F 0 and 0>-.f(A, b, X) = 0. 
As soon as we have shown that there is at least one tuple (A, b, x, .A) which 
satisfies the requirements as demanded above, the Implicit Function Theorem 
yields the existence of a manifold 1J1 in 'D with dim'D1 = I< + n- 1 (namely 
the solution set of g = 0 around (A, b)). In fact, consider: 

0 1 1 
0 0 0 0 

A= ' 1 
, b = 2 , x= ' 1 

, ..\ = 2· 
0 0 0 0 

1 - 1 1 
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The tuple (A, b, x, ~)fulfils all assumptions on (A, b, X). In addition, for the pair 
(A, b) we have that for all (and not for only one) solutions (x, .A) of Equations 
(8)- (10) it follows: 

A(/. {~j I ~j, j == 1, ... , n, are the eigenvalues of A} (12) 

By a result in Gibson at al. 1976, p.19, the so-called regular points lie dense 
in V. Thus, by a continuity argument and using (12), as well as the fact that 
x lies in a compact set, it follows, that in any neighborhood of (A, b) there is 
a regular point (A, b) E V as above. Now, a moment of reflection shows that 

· dim V 2: K + n -1 . One can prove, that in any neighborhood of (A, b) there exist 
elements (A, b)(/. V. Consequently we can conclude that dim V= K + n- 1. 
Together with a) this implies, that the stratum of maximal dimension in V has 
codimension 1. • 

As for the one-parameter problems P(-) in Section 4, from Thorn's Theorem we 
get a genericity result for the problems no. 
CoROLLARY The subset mv of c=(IR,'IRK+n) is c; -dense for all r > 0 and 
c; - open for all r 2: 1. 

The relevance of this corollary relies on the fact that for any [A(-)Ib(-)) E mv 
we have (cf. Hirsch 1976 or Jongen et al. 1983, 1986): 

Either [A(t)ib(t)] (/.V for all t E IR, 
or [A(t)ib(t)] E V iff t in some closed discrete subset of IR; for such 

t-values, [A(t)ib(t)] hits V in the stratum of dimension K + n- 1. 

In case of the first alternative, the corresponding problems P(t) do not exhibit 
non-degenerate c-points. In case of the second alternative, the problems P(t) 
do attain degenerate c-points for isolated t- values. One easily shows that there 
always exists a [A(-) Ib(-)) E mv for which the second alternative holds, and 
moreover that this remains the case under small c;-perturbations of [A(-)Ib(-)) 
with r 2: 1.. 

We end up with a remark on related literature. 

REMARK The property on the structure of the critical set in Section 4 and the 
Corollary above are to be seen in connection with a result due to Jongen, Jonker 
and Twilt 1986, which states (among others): 
"Generically", the (generalized) critical points for smooth, one-parameter opti­
mization problems in !Rn under finitely many (in-)equality constraints classify 
into five different types (among them non- degenerate critial points); in case 
of only equality constraints there are three types (among them non:-degenerate 
critical points)." 

Now it is natural to ask for similar classifications in cases where we re­
strict ourselves to certain subclasses of the one- parameter problems mentioned 
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above . Accounts to this subject have been given by Pateva 1991 concerning Lin­
ear Optimization problems, and by Henn, Jonker: and Twi/t 1986, with respect 
to Quadratic Optimization problems. 

Note that in these latter cases the J(J(T-equations are linear in x, whereas 
this is not true for the problems P(t) and R(t) as analysed in the present paper. 
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