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Nonsmooth optimal control problem is considered. To study 
it a smooth approximation is proposed. Stability and convergence to 
the original problem using field theory and dynamic programming 
is investigated. 

1. Introduction 

We consider the optimal control problem 

Minimize g(x(1)) 

subject to 

i:(t) E F(t, x(t)) a.e., 

x(O) = xo 

expressed in terms of: 

(1.1) 

(1.2) 

(1.3) 

- a nonempty subset 0 C [0, 1] x X, X- a Hilbert space with the norm 11·11 
- function F(-, ·)with domain 0 which takes as values subsets of X, 
- a point xo E X and 
- a function gC) : {x: (1, x) E 0}-+ R . 
An absolutely continuous function x :I-+ X where I is a subinterval of [0, 1] 

with right end 1 which satisfies (1.2) and has its graph in 0 is an admissible 
trajectory. 

The basic hypotheses (H1) we assume are the following: 

(i) g is lower semicontinuous in X; 
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(ii) F(-, ·) takes as values nonempty weakly compact subset of X and is con­
tinuous in the sense that 

dist(F(t',x'),F(t,x))--+0 if (t',x')--+(t,x) in 0; 

(iii) there exists a constant k such that for any t, x, x' 

dist(F(t, x'), F(t, x)) ~ kllx' -'xll 

whenever the left-hand side is defined (dist(A, B) - the Hausdorff dis­
tance) 

(iv) there exists a constant r such that 

IF(t, x)l = sup{llvll: v E F(t, x)} ~ r for all (t, x) En. 

We define the Hamiltonian function H : n X X --+ R 

H(t, x,p) = max{ (p, v); v E F(t, x)} (1.4) 

where (-, ·) is a scalar product in X; we identify X with its dual. Under our 
hypotheses (x,p)--+ H(t,x ,p) is locally Lipschitzian, for each t , on its domain 
of definition. 

In order to motivate what follows we state here conditions which in many 
cases are considered as first order necessary optimality conditions (see e.g. 
Clarke, Vinter 1983). 

We say that an admissible trajectory x(t) satisfies the first order necessary 
conditions if there exist an absolutely continuous function y(t) with values in X 
and a number -1 ~ y0 ~ 0 such that 

( -y(t), x(t)) E aH(t, x(t), y(t)) a.e. in [0, 1], 

( -y(1), y0 ) is normal to epi g at the point (x(l), g(x(l))) , 

y0 + iy(1)1 is nonzero, 

(1.5) 

where oH refers to the generalized gradient of (x, y)--+ H(t, x, y) for each fixed t 
(see Clarke 1983), epi g means the epigraph of g. 

From (1.4) we see that, in general, H(t, ·, ·) cannot be more smooth than it 
is indicated. To study our problem by more refined method we need H to be 
more smooth. This is why we propose to approximate H by a better function 
e.g. by such a function for which we are able to solve corresponding equation of 
type (1.5) directly or numerically. What we then need is to prove stability of our 
approximation and its convergence. Thus we take a smooth function near H, we 
write for it equation~ (1.5) and next we show that under additional geometric 
assumptions on a family of solutions of that equations we find trajectories which 
approximate a solution of problem (1.1)-(1.3). 

Therefore let H ( t) X) y) h) be a family of real functions defined in n X X X w) 
where W is a set of parameters h, such that H(t, ·,·,h) is at least of C2 in the 
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set of its definition for all t E [0, 1], hE W, t--+ H(t, x, y, h) is measurable for 
x,yE X, hEW, 

sup IH(t, x, y)- H(t, x, y, h)l:::; 6(h), 
x,y ~ 

t E [0, 1], hEW (1.6) 

and let g(x, h) :X X w--+ R be such that g(-, h) is of C1 , 

lg(x)- g(x, h)l:::; 6(h), x EX, hEW (1.7) 

where 6(h) are positive real numbers, such that if h tends to zero in any sense, 
then 6(h)--+ 0. 

Of course, we could first approximate our problem (1.1)-(1.3) and then re­
quire that the corresponding Hamiltonian (1.4) be a smooth function, however, 
from the practical point of view, it seems to us that our approach is more con­
venient. 

Further, we shall study the solutions of the equations 

-y(t) = Hx(t, x(t), y(t), h) a.e., 

x(t) = Hy(t, x(t), y(t), h) a.e., 

y(1) = y0 gx(x(1),h) 
H(t, x(t), y(t), h)= y(t)Hy(t, x(t), y(t), h). 

(1.8) 

(1.9) 

(1.10) 

(1.11) 

On the basis ofNowakowski (1988), we describe a dual approach to the field 
ofextremal and Hilbert integral for equations (1.8)-(1.11) and we show that 
some members of the field approximate a minimum of our problem (1.1)-(1.3). 
In the last section we describe dynamic programming approach to the same 
problem. 

2. General notions 

An admissible trajectory x(t) defined in the appropriate subinterval of [0, 1] 
with right end at 1 will be termed a line of flight (briefly I. f.), if there exist 
along x(t) a conjugate function y(t), absolutely continuous in t with values in 
X, and a number ·-1:::; y0

:::; 0 such that liy(t)il + IY0
1 is nonvanishing and the 

trio x(t) , y(t), y0 satisfies (1.8)-(1.11). 
We introduce a new coordinate x0 = g(x(1)) where x(1) is a value of an 

admissible trajectory at 1. For a given l.f. x(t), x0 = g(x(1), h) and we put 
z(t) = ( -x0 , x(t)) and p(t) = (y0 , y(t)) for the corresponding conjugate func­
tion y(t) the number y0 . Then the pair z(t), p(t) will be called canonical pair 
(compare Nowakowski 1988, p. 736), (briefly c.p.) . 

Further, denote by P C R2 x X a set covered by graphs of p(t) such that 
z(t),p(t) is a c.p. , which in the sequel may be reduced to a smaller one; let 
T C R x X denote a set covered by graphs of corresponding l.f. x(t). 

If (t 0 ,po) E P, then we write V(to,Po) for the value of 

(-xo(to), Yo(to)) + ygg(xo(1), h)= (-zo(to),po(to))z (2.1) 
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where zo(t) = ( -xg , xo(t)), Po(t) = (yg, Yo(t)) is a c.p. such that Po(to) = Po· 
Of course, the map (t,p)-> V(t,p) in P might be a multifunction and this is 
why we assume the following hypothesis: 

(H2) the set Pis such that the map (t,p)-> V(t,p) is single- valued in P. 

For each (to, x0 ) ET, P(t0 , x0 ) denote the set of values of all those p(t) at t0 

for which z(t) = (-x 0 ,x(t)), p(t) is some c.p. and x(t0 ) = x0 . It is natural 
to expect that P(t·, x), (t, x) E T, may not be single-valued. This is why by 
p(t, x) E P(t, x), (t, x) ET, will be denoted single-valued selections of P(t, x). 
Let us fix hEW and set c = c(h), 

f(t, x, y) = Hy(t , x, y, h), (t, x) E 0, yE X, 

L(t , x, y) = yf(t, x, y)- H(t , x, y, h) , (t, x) E 0, yE X. 

(2.2) 

(2.3) 

To study any family of arcs of c.p. depending on a parameter 17, let us define 
on an open set G C Y, Y is another Hilbert space, a pair of continuous functions 
C(17), t+(17), 0 :S C(17) < t+(17) :S 1, 17 E G. We assume that_t+(172 is y 1 in 
G. We further suppose that G is a projection of a certain set G C M, M is a 
metric space, whose elements will be denoted by ( 17, p). G does not have to be 
necessarily open; instead of that, we assume that the operation of the projection 
is standard . The operation of projecting G onto G is standard if the following 
condition is satisfied (see Young 1969, p. 266): 

given any point (170 , p0 ) E G, and any small enough curve 1' C G which 
issues from 17o, there exists on 1' a continuous function p( 17) such that 
p(17o) = p0 and that all points of the form (17, p(17)) for 17 E 1' lie in G. 

Lets- = {(t, 17): t = C(17) 2': 0, 17 E G}, S = {(t, 17): C(17) < t < t+(17), .17 E 
G}, s+ = {(t , 17) : t = t+(17) :S 1, 17 E G}. [S] = s- USUs+. Similarly, 
we denote by s·- ' s·' s-+ the sets of (t, 17, p) for which t satisfies the same 
conditions as ins-' s, s+' respectively, and (17, p) E G; [S*J = s·- us· u s•+. 

3. Canonical spray 

First of all, we shall construct a family :E of arcs of c.p . depending on 
parameters (17, p) described by functions 

z(t, 17), p(t, 17, p) , (t,17) E S, (t,17 , p) E S* 

for which the study of this family is the nearest to the classical considerations. 
The definition of the functions z(t, 17), p(t, 17, p) will be supposed extended to 
the sets [S), [S*J, respectively. The sets of pairs (t, x) where x = x(t, 17) with 
(t, 17) belonging to s-, S, s+, [S] will be denoted byE-, E, E+, [E], respec­
tively; E*-,E*,E*+,[E*] will denote the sets of values of pairs (t,p(t,17,p)) 
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with (t, er, p) in 5* - , 5*, 5*+, [5*], whereas those of pairs (t, z(t, er)) with (t, er) 
in 5-, 5, 5+, [5] will beD-, D, D+, [DJ. 

Finally, we write (when (t, er, p) E [5*]) 
- - - + L(t, er, p), f(t , er, p) , V (er) 

for the expressions 

L(t, x(t , er), y(t, er, p)), f(t, x(t, u) , y(t, u, p)) , V(t+ (u), p(t+( u), u, p( u))). 

We assume the following hypotheses on the family ~: 
(H3) The function z(t, u) is C 1 in [5] . For given (era, po) in G and any small 

neighbourhood Go C G of u0 , there exists in Go a function p( u) such 
that p(uo) = po, all points (u,p(er)) for erE Go lie in G, and p(t,u) = 
p(t,u,p(er)) is C 1 in F(u0 ,p0 ) = {(t,u): r(u) ~ t ~ t+(u), erE G0 }. 

(H4) For each ( ero , Po) E G the functions L(t, O") = L(t, er , p( O")), ](t, er) 
](t, u, p(u)) are continuous in F(uo, po) and they have continuous deriva­
tives La, fa there . 

(H5) The maps 5- ---+ D- , 5 ---+ D defined by (t, u) ---+ (t, z(t, u)) have the 
following property: given any arc Cz C D- (or Cz C D) with the de­
scription t 1 ~ r ~ t 2 , (-x 0 ,x(r)) where x(r) is an arc of the admissible 
trajectory x(t), x0 = g(x(1)), issuing from (h, z(t 1 , ul)), there exists a 
rectifiable curve r c 5- (or r c 5) issuing from (t 1 , ul) such that every 
small arc of Cz issuing from (t 1 , z(t 1 , u1)) is the image under the map 
(t , u)--> (t, z(t, u)) of a small arc of r issuing from (h , er1). 

(H6) For each fixed (u, p) E G and for x = x(t , er) we have : for each t' E 
(r(u)', t+(u)) and each vector (a,(J) ER x Y, f3 E Y, a 2 + ll fJ II 2 = 1, 
there exists a function a( t) of bounded variation, defined in [t' , t+ ( CT )] with 
values a(t') = a, a(t) E R fort E (t', t+(u)), a(t+(u)) = t"!;(u)(J, such 
that 

ILa(t, u)fJI ~ -E ( :t) ((1 + llxt(i, u)ll 2 )(a(t)) 2 + ll xa(t, er)fJII 2
)

1
/

2 

for almost all tin [t', t+(u)]. (We assume that the derivative on the right­
hand side of the last inequality exists.) 

The hypothesis (H6) is used to approximate our original problem (1.1)- (1.3). 
Notice that , in view of (1.6) , (1.9), (1.11) and (2.2) and Theorem 2.2 from 
Ekeland (1974), hypothesis (H6) is not• essentially strong. It is formulated in 
that form for our convenience in calculations. 

If hypotheses (H3)- (H6) together with those on r(u), t+(u), G, G are sat­
isfied, the family ~ is called canonical spray. 

For (t, x) E [E] let P2.;(t, x) denote the sets of values of p(t, u) at those 
(t, er) E S for which x(t, er)= x. 
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REMARK 3.1 Let Cz denote any small arc contained in D- or D, with the 
description t 1 ~ r ~ t.2 , ( -x0

, x( r)) where x(t) , t E [0, 1], is an admissible 
trajectory with x(O) = x 0 , x 0 = g(x(l)) , issuing from (t 1, z(t 1, a-I)). We also 
represent Cz in terms of its arc lengths as t = t(s), z = z(s) = (-x 0 ,x(s)), 
sE [0 , sc J . Let further f denote a rectifiable curve ins- or S such that small 
arc of Cz issuing from (t1, z(t1, a-1)) are, in accordance with (H5), the images 
under the map (t , a-) --+ (t, z(t , a-)) of small arcs of r issuing from (t 1, a-I). We 
represent r in terms of its arc length >. by functions t( >.),iT(>.) , so that the 
point (t 1, a-1 ) corresponds to>.= 0. We can then define a continuous increasing 
function s( >.) having its inverse >.( s), which satisfies the relation 

t(s(>.)) = f(>.), z(s(>.)) = z(t(>.), a-(>.)). 

In turn, let Cp be the image under the map (t , a-)--+ (t , p(t , a-)) of r zssumg 
from 

(tl , p(t1 , a-!)) = (t1 ,pi) = (t1 , y~ , yi) 

where p(t , a-)= p(t , a- , p(a-)) with p(a-) suitably chosen in accordance with (H3). 
We easily see that to small arcs of r issuing from (t1, a-1) there correspond small 
arcs ofCp issuing from (t1,p1). Thus we can express the final points of the small 
arcs of Cp as a function of s (t(s),p(s)). Denote by (t2 ,P2) the terminal point 
of Cp which corresponds to that of Cz (t2, -x0

, x(t2)). 

To simplify further considerations we assume , for this section only , the 
following hypothesis . 

(Hs3 ) We are given any point (a-o, p0 ) E S*+ and any sufficiently small curve 
1 C G which issues from a-o with the description a-(>.) , >. E [0 , v]; a-(>.) is 
a Lipschitz function, a-(0) = a-0 , 0 is the point of approximate continuity 
of a-(>.). Then 

I(P (t+(a-o) , a-o), Za(t+(a-o), a-o)a-;.(0)/z I~ c: ((1 + llxt(t+(a-o) , a-o)W) · 

·(t;(a-o)a-;.(0))2 + llxa(t+(a-o), a-o)a-;.(0)11 2)1/ 2. 

LEMMA 3.1 Let Cz, Cp be one of the arcs described in Remark 3.1. Then, 
along Cp , V (t , p) is bounded. There exists along Cz Borel ;,easurable func­
tion pr,(t, x) E 
PE(t , x) . Moreover, the functions pr,(t, x), f(t , x, yr,(t, x)) are bounded along 
Cz . 

PROOF. By the definition of Cp it is the image under the map (t, a-) --+ (t , p(t , a-)) 
of some r C [ S]. Therefore we can treat V (t, p) as a function V ( t, p( t, a-)) along r 
which by (H3) is continuous. T he graph of r is a compact set in [0, 1] x Y. Hence 
V(t , p) is bounded along Cp. Applying the measurable selection theorem from 
Castaing, Valadier (1977) to the multifunction (t ' X) --+ { (t ' 0') E r : x(t ' 0') = X} 
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defined on x( r), h ~ r ~ t2, and putting this selection into p(t, a-) we obtain 
the function PE(t, x) as it is required in the assertion of the lemma. The proof 
of the last assertion is analogous to the first one. 

LEMMA 3.2 Let r denote any small rectifiable curve in [S] with (to, a-0) as the 
initial point and (h, a-1) as the terminal one. Then there exist a set Go C G 
and p(a-) in Go (see {H3}) such that 

fr ft(z(t, a-),p(t, a-))zdt + d: (z(t, a-),p(t, a-))zdO" = 

= V(to,p(to, a-o))- V(t1,P(t1, a-1)) 

where (z, Plz = -x0 y0 + (x, y) and p(t, a-)= p(t, a-, p(a-)) . 

The proof follows directly from the definition of the function V(t,p). 

LEMMA 3 .3 On each arc of the canonical pair of~ we have: for each t' E 
(r(a-),t+(a-)) and each vector (o:,(J) ER x Y, o: 2 + 11 !311 2 = 1, there exists a 
function o:(t) of bounded variation, defined in [t' , t+(a-)], with values o:(t') = o:, 
o: (t) ER fortE (t', t+(a-)), o:(t+(a-) = tt(a-)(3, such that 

I (%t) (p(t, a-, p), Zu(t, a-)fJ)z I~ 

~ -c; ( :t) ((1 + llxt(t, a-)ll 2 )(o:(t)) 2 + llxu(t, a-)!311 2
)
1/ 2 (3.1) 

for almost all t in [t', t+(a-)]. 

PROOF. Let (t',a-',p') be any point of s· and z'(t) = (-x 0 ,x'(t)), p'(t) = 
(y0', y' (t)) the corresponding values of the functions z(t, a-'), p(t, a-', p'), 
t E [t' , t+ (a-)). By performing indifferent orders to the operations of integra­
tion in t and differentiation in a- on relation (1.9) and taking notation (2.2), we 
get the following relation 

(3.2) 

calculated at the point (t, a-' , p' ), t E [t' , t+(a-)). From (1.8) we obtain at 
(t, a-', p') for almost all tin [t', t+(a-)) and (3 E Y 

(:t y'(t), Xu(t, a-)(3) = -(y'(t), Hx(t, x'(t), y' (t))xu(t, a-)(3), (3.3) 

and by the definition of y0
, we have at this point 

(3.4) 
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We add both sides of the last three equalities with (3.2) multiplied by y'(t). As 
a result we obtain at the same (t, er', p') 

fJ -
at (p(t, er, p), Za(t, er)f3)z = La(t, er)(J. 

Taking into account hypothesis (H6), we obtain (3.1) . 

CoROLLARY 3.1 Let any point (era, Po) E s· and any a E [-1, 1] be given. Let 
1 C G be any sufficiently small curve which issues from er0 , with the description 
er(>.), ). E (0, v], and such that er(>.) is a Lipschitz function er(O) =era, 0 is the 
point of approximate continuity of er>,(>.) and a 2 + ller>-(0) 112 = 1. Then 

l(p(t, era, Po), za(t, ero)er>-(O))z I :S c:((1 + llxt(t, ero)ll 2)a2 + 
(3.5) 

for all t in (r(ero), t+(ero)). 

PROOF. Let t' E (r(er0 ), t+(ero)) be arbitrarily fixed and let (3 = er>,(O). Inte­
grating (3.1) and using (Hs3 ) we find (3.5). 

THEOREM 3.1 Let Cz and Cp be as described in Remark 3.1 . Then the following 
relation 

IV(tl ,p1) - V(t2,P2)- (x(t2), Y2) + (x(tl), Yl) + x 0y~- x0 y~ 

- fc, (YB(t, x ), f(t , x, YB(t, X )))dt- (PB(t, x ), dz)z I (3.6) 

:::; c: ftj,2(1 + llx(t)112)lf2dt 

holds for some PE(t, x), (t , x) E (E] . 

PROOF. Let e( s) = ( ~!, ~~) stand for the direction of the tangent to Cz defined 
for a. e. s in (0, scJ . Let so be any point in (0, scJ such that e(s) and p(s) 
are approximately continuous at it. We set to = t(so), xa = x(so), ea = e(so), 
t0 = dt(so)/ds, io = dz(so)/ds. Let Po = (yg, Yo) be any admissible vector from 
the set P(to, xa) such that p(to, era)= pa for any (to, era) belonging to the graph 
of r. We also put fa= f(to, xa, Yo) and let >.a be such that er0 = a-(>. 0 ). 

Denote by 1 a sufficiently small arc r issuing from (to, er0 ) defined in the 
interval I = (>.a, >.2] of values of >. , i. e. the functions t().), a-().) are restricted 
now to the interval I. Denote by ~V the difference in V ( t , p) at the ends of 
a small arc Cp issuing from (to,Po) and being the image of/, and by ~s the 
corresponding difference ins. By Corollary 3.1 and taking into account Remark 
3.1 we obtain 

I J.Y(p, Zu)zderl :S C: J1((1 + llxt(f(>.), a-(>.))W)(f>-(>.)) 2 

+ llxa(t(>.) , a-(>.))iT>-(>.)/12)lf2d>.. 
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Using Lemma 3.2 we further infer 

~ ~V + (x(t(,\2)), y(t(,\2), 0'(,\2), p(0"(,\2))))- (x(h), Yl) - x0y0(0"(,\2), p(0"(,\2))) 

+ x 0 y~ + 1 [(y(t(,\), 0'(,\), p(O"(,\))), /(f(,\), 0'(,\))) :: (3 .7) 

- (p(t(,\),0'(,\)), :sz)z] ds(,\)1 :S c:~s. 

Since p(t,(J',p(er)) = p(t,er), (p(er) being suitably chosen), f(t,er) are con­
tinuous on 1 we deduce that they are bounded on I. This, along with the last 
inequality, imply the uniform boundedness of the ratio ~V/ ~s for all sufficiently 
small ~s . Thus s -+ V(t(s),p(s)) is locally Lipschitz. If we show that 

1 j [ -dt ( .lz) ] . lim -;\ (y, f) -d - p, -d ds(,\) = [(yo, fo)to - (po, io)z], 
2>.s -> 0 uS I S S z 

(3.8) 

then (3.6) will follow from (3.7) . But to prove (3.8) it is enough to repeat the 
argumentation from the proof of Lemma 25.3 in Young 1969, vol. 11, p. 274. 

In order to be able to take into consideration more than one spray of c.p. 
we need one more hypothesis: 
(H7) The map s•- -+ E*- defined by (t, er, p) -+ (t, p(t, er, p)) is descriptive in 

the following sense: given any sufficiently small rectifiable curve C C E* ­
issuing from (to, p( to, era, po)), there exists a sufficiently small rectifiable 
curve r c s- issuing from (to, era) such that every small arc of c issuing 
from (to, p(to, er0 , p0 )) is the image under the map (t, er) -+ (t, p( t, er, p( er))) 
of a small arc of r issuing from (to, era) where p(er) is as in (H3). 

For (t,p) E [E* ], let Z~(t,p) stand for the set of values of z(t, er) at those 
(t, ~, p) E [S*] for which p(t, er, p) = p. Similarly as Lemma 3.1 we obtain the 
following lemma. 

LEMMA 3.4 Let C be a rectifiable curve lying, together with its terminal points, 
in E*- Then, along C, V(t,p) is bounded and there exists along it a Bore! 
measurable function z~(t,p) E Z~(t,p) . Moreover, the functions z~(t,p), f(t, 
x~(t,p), y) are bounded along it. 

We put V(s) = V(t(s),p(s)) along any rectifiable curve C .in E* - , with the 
arc length description t = t(s), p = p(s), 0 :Ss :S se. 

THEOREM 3.2 The function V(s) is absolutely continuous along C and, for 
almost all s in [0, se], 

I 
d _ dt ( dp) I ds V(s) + (y(s) , f(t(s),x~(t(s),p(s)),y(s))) ds + zE(t,p), ds z :S c: (3.9) 

for each single- valued selection z~(t,p) of Z~(t,p). 
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PROOF. The proof is similar to the proof of Theorem 3.1 (see also the proof of 
Theorem 1' in Nowakowski 1988). Thus we only sketch it. For convenience, we 
assume that 0 is a point of approximate continuity of the derivative ( ~!, ¥s-) of 
the function (t( s), p( s)). Denote by r a rectifiable curve in S such that small 
arcs of C issuing from (t(O), p(O)) are, in accordance with (H7), the images under 
the map (t, 0') _. (t, p(t, 0')) of small arcs 1 of r issuing from (t(O), 0'0 ), where 
O'o is such that p(t(O),O'o) = p(O). Let nowt= t(v) , 0' = o-(v), v E [O,v-y), be 
the arc length parametric description of{, such that the point (t(O), O'o) should 
correspond to the value of 0. Define a continuous increasing functions= s(v) , 
v E [0, v-y], such that s(O) = 0 which satisfies in [0 , s-y) the relations 

t(s(v)) = t(v), p(s(v)) = p(t(v), D-(v)). (3.10) 

Denote by 6.s and 6. V the corresponding difference in s and in V ( s) at the 
ends of a small arc of C issuing from (t(O) ,p(O)), being the image of f. By 
Corollary 3.1 

l(p(f(v), D-(v)), Za(t(v), D-(v)) D-v(v))z I~ c:((1 + ll xt(f(v), D-(v))ll 2 )(fv(v)) 2 + 
V E (0, V-y)· 

Hence , and from Lemma 3.2, we conclude, taking account of (3.10), that 

1
6. V + 1 !!_ ( z ( t , 0'), p( t, 0')) z dt + dd ( z ( t, 0'), p( t, 0')) z dO' 

-y dt 0' 

-!, (p(t, 0') , z11 (t, O')dO') I ~ c:6.s 

and further 

16.V + 1v-, (((t(v),o-(v) ,p(D-(v))),/(t(v) ,D-(v))) :! 
+ (z(t(v),o-(v)), :

8
p)J ds(v)l ~ c:6.s. 

Proceeding quite analogously as in the corresponding part of Theorem 3.1 , 
we find the assertion of the theorem. 

4. A chain of c.p. 

In the preceding section we described and discussed a fixed spray of c.p. I: . 
However, the family of l.f. defined in Section 2 may consist of a greater number 
of sprays of c.p. satisfying conditions (H3)- (H7), whose graphs of trajectories 
are contained in T. 

We recall (see Young 1969, vol. II, §27) that a finite or countable sequence 
of sprays of c.p. 
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will be termed a chain of c.p. if, for i = 1, 2, ... , N 1· ••• , they fit together 
in the inverse order so that the set E;- corresponding to E; contains E7t1 
corresponding to E;+ 1 · 

Now, we are in position to prove that in a given chain of c.p. hypothesis 
Hs3 is satisfied in each s;+, i = 1, 2, .... 

LEMMA 4 .1 In each 5~+ (p,za,)z =: 0. 

PROOF. Be the definition of c.p. and (1.10) y(1, 0'1, P1) = y0 (0'1, pt)gx(x(1, O't), 
h). If we multiply the last equality by Xa , (1, 0'1), then we obtain the assertion 
of the lemma. 

LEMMA 4.2 We are given any point (0'~' p~) E s;+ and any sufficiently small 
curve 1 C G2 which issues from 0'~ with description 0'2(v), v E [0, v-y]; 0'2(v) 
is a Lipschitz function, 0'2(0) = 0'~, 0 is the point of approximate continuity of 
0'2(v). Then 

\(p(t+(O'~), 0'~, pg), Za2 (t+(O'g), O'g)0'2v(O))z\ :S 
::; c((1 + \\xt(t+(O'g),<T~)\\ 2 (t;t2 (0'~)0'2v(0))

2 + (4.1) 

+\\xa ( t+ ( 0'~), 0'~ )0'2v (0) \\ 2) 112). 

PROOF. By (H3) there exists C2o :J rand P2(<T2) in C2o such that P2(<T~) = p~ 
and p(t, 0'2) = p(t, 0'2, p2(0'2)). Let C be the image of r in E;+ under the map 
(t, 0'2)---> (t,p(t , 0'2)) with ends (to,Po) , (t1 ,pt). Since E;+ C E~- therefore C 
is a rectifiable curve lying, together with its terminal points, in E;-. This is 
why we can apply to it Theorem 3.2. Integrating (3.9) along C we get for any 
single-valued selection z:r;,(t,p) of Z:r;,(t,p), (t,p) E E*-

IV(t1, P1)- V(to, po) + i (y, f(t, x:r; , (t, p), y))dt + (z:r;, (t, p), dp)z I ::; cl, ( 4.2) 

where l is the length of C. Taking into account that C is the image of 1 and 
Xt(t, 0'2) = f(t, 0'2) we further find from (4.2) 

I J'Y (p(t, 0'2), Za 2 (t, 0'2)d0'2)z I :S 

::; c lav., ((1 + \\xt(t~(0'2(v)) , (0'2(v))\\ 2)(t;t)0'2(v))2 + (4.3) 

+\\Xa2 (t+ ( 0'2( V)), ( 0'2 (V) )0'2v (V )\\ 2)1/2 dv. 

Dividing both sides of (4.3) by v'Y and contracting r to the initial point <T2(0) 
we obtain (4.1). 

Using the induction from Lemmas 4.1, 4.2 and Corollary 3.1 we infer the 
following proposition. 

PROPOSITION 4.1 For each s;+ I i = 1, 2, ... ' N ... , of a given chain of c.p. the 
assertions of hypothesis Hs 3 are satisfied. 
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5. A concourse of c.p. 

The concept of a concourse of c.p. originates from L.C. Young (1969), vol. II, 
§28 where there are many details on it. Here we only give a sketch of this theory 
to formulate further results . 

Denote by Tn, n = 1, 2, .. . , a finite or countable system of disjoint subsets 
ofT whose union is T and such that each Tn should be a subset of some E; or 
E- of a chain or a subset of a few such sets of different chains. Let N be the 
family of all arcs of admissible trajectories x(t), t E [0, 1) such that x(O) = x0 

and their graphs are contained in T . An arc from N will be called a fragment 
if its interior portion lies in some Tn. The class of such fragments is denoted by 
N 0 . We need a form of an addition of fragments - the fusion of curves C1 and 
C 2 from N0 : if the final point of C1 is the initial point of C2 , we term fusion 
of C1 , C 2 a curve C made up of two adjucent arcs, consisting of C 1 and C 2 , in 
that order. If the class N can be derived from No by a finite fusion, then the 
set T will be termed the unimpaired union of the sets Tn . 

A concourse of c.p. is a finite or countable infinite system of chains of c.p. 
such that T is the unimpaired union of the sets of the type Ei, E; of these 
chains. 

Suppose that a concourse of c.p. exists. Let Cx denote any arc of an ad­
missible trajectory x(t), t E [0, 1), such that x(O) = xo and the graph of x(t) 
is contained in T . We assume Cx defined in [t1, t2] C [0, 1) and for x(t) we set 
x0 = g(x(1)). Define Cz as an arc with the description t1 ~ t ~ t2, ( - x0

, x(t)). 
By hypothesis, there is a decomposition of T into disjoint subsets Tn, each of 
which is a subset of some sets of the type Ej-, Ej of the chains of c.p. of our 
concourse. We define the families N and No as above. Of course; our Cx belongs 
to N. Denote further by Cx a subar.c of Cx defined in [f1, f2] which belongs to 
N 0 ; Cz is a subarc of Cz corresponding to Cx. Let I; be any spray of c.p. of 
one of our chains such that Cx meets either the set E- or the set E of I:, i.e. 
Cx lies in some Tn wholly contained in E - or in E. In accordance with (H5) 
and Remark 3.1, there is a rectifiable curve Cp corresponding to the arc Cz, 
contained in the set E* - orE* of I:, with ends (fl,Pl),· (f2,P2)· Hence, by 
Theorem 3.1, we have equality (3.6) for C2 , Cp. The arc Cx is a finite fusion 
of members of No, thus there is a rectifiable curve Cp corresponding to Cz with 
ends (tl,Pl) = (t1,y~,Y1 ), (t2,p2) = (t2,yg,y2) and for which (3.6) still holds . 
In this manner we have proved the following theorem. 

THEOREM 5.1 With the above hypothesis and notations, the relation 

. \ V(t1, pl)- V(t2,p2) - (x(t2), Y2) + (x(t1) , yt) + x0 yg- x 0 y~ -

-1t2 

((y(t, x(t)) , f(t, x(t), y(t, x))) - (y(t, x(t)), x(t))) dt \ ~ (5 .1) 
t, 

~ c jt2 (1 + ll x(t )ii 2)1/2dt 
t, 
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holds for some single-valued selection p(t, x) of P(t, x), (t, x) ET. 

Denote by G(O, xo) the set of values of g(x(1), h) for alll.f. of a concourse 
of c.p. 

THEOREM 5.2 Suppose that a concourse of c.p. exists and that there exists c.p. 
z,(t),p,(t), t E [0, 1], x,(O) = xo being a member of our concourse of c.p. and 
x~ = g(x,(1), h) = minG(O, xa). Let K(xo) be the set of those x(1) for which 
the graph of admissible trajectories x(t), x(O) = xo are contained in. T. Then 

-y~(g(x,(1)) - g(x(l))::; E (3 + 11 
(1 + llx(t) ll 2)112dt) 

:S: E ( 3 + JI+;2) (5.2) 

for all x(l) in K(xo). 

PROOF. We apply Theorem 5.1. Let x(t), t E [0 , 1], x(O) = x0 , x(1) E K(x 0 ) be 
given. Put x0 = g(x(1)), Cz is the arc ( -x0

, x(t)), t E [0, 1], Cp corresponding 
to it rectifiable curve in P with ends p,(O), P2 = (y~, Y2)· From (5.1) we obtain 
for our case 

-x~y~ + x,(O)y,(O) + g(x(1), h)yg- x(1)y2 + x(1)y2- x(O)y,(O)- x0 yg + 

+x0 y~ + 11 

( (y(t, x(t)), f(t, x(t), y(t, x(t))) - (y(t, x(t)), x(t)) )dt (5.3) 

1 ·. 

:::: E 1 (1 + llx(t) 112)1/2 dt. 

By (1.4), (1.6) and (1.11) the integral in (5.3) is greater or equal to -E, 

by (1.7) lg(x(l) , h)- x0 1 :S: E. Thus from (5.3) we get 

-y~(g(x,(1), h)- g(x(1))) :S: c(2 + 11 
(1 + llx(t)ll 2

)
112dt) 

and since lg(x,(1), h)- g(x,(1))1 :S: Ewe obtain (5.2). 

6. The dynamic programming approach 

Let all assumptions written down in Section 1 be fulfilled. In addition suppose 
0 to be an open set. Let x(t), t E [0, 1], x(O) = x0 , be an admissible trajectory. 
A result customarily associated with the name of Caratheodory, but which has 
appeared in a variety of guises virtually from the inception of the calculus of 
variations (see Young 1969, Chapt. 1) provides a sufficient condition that x(t) 
be optimal, expressed in terms of a solution to the Hamilton-J acobi equation 

Gt(t, x) + H(t, x, -Gx(t, x)) = 0 (6.1) 
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with boundary condition 

G(l, x) = g(x). (6.2) 

The sufficient condition (applied under suitable conditions on F(-, ·)) is that 
there exists a continuously differentiable function G(-, ·)which satisfies (6.1) for 
all (t , x) E r2 and (6.2) for all x belonging to the projection of r2 onto X, and is 
such that 

G(O, xo) = g(x(1)). 

The question arises: how widely applicable is the Caratheodory condition? If 
we consider the condition essentially as stated above then the answer is disap­
pointing. It is easy to construct examples of problems in modern control theory 
whose solutions cannot be characterized in this way. The main reason is that 
the function H(t, ·,·)is merely Lipschitz continuous and so solutions to (6.1) are 
often at most Lipschitz continuous. This is why in the last case the nonsmooth 
analysis appears to be very fruitful (see e.g. Clarke, Vinter 1983). However, one 
question remains far to be solved: how to find a solution to the generalization 
of equation (6.1) : 

m in {a + min { ( e, ,B)}} = 0. 
(cx,f3)E8G(t,x) eEF(t,x) 

(The last equation is studied in Clarke, Vinter 1983.) 
We propose a different approach. First, we propose to study the equation 

Gt(i, x) - H(t, x, - Gx(t, x), h)= 0, (t,x) E r2 (6.3) 

with boundary condition 

G(l, x) = g(x, h). (6.4) 

H(t, x, y, h) is a smooth function of (x, y) described in Section 1 and we can 
choose it in such a way that we are able to solve (6.3), (6.4) directly or at least 
to assert that G(-, ·) is of C 1 or that there exists a numerical solution of (6.3), 
(6.4) (see e.g. Fleming 1969). Next, using (1.6) , we easily check that this G 
satisfies the following inequality (with original H(t, x, y)!) 

-c:(h) ~ Gt(t, x)- H(t, x, -Gx(t , x)) ~ c:(h), (t , x) E rl. (6.5) 

Define now a new function 

G,(t, x) = G(t , x) + c:(h)(l- t). (6.6) 

Then it satisfies 

-2c:(h) :S Gtt(t, x)- H(t, x, -G,x(t, x)) ~ 0, (t,x)ED. (6.7) 
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It turns out (see Proposition 6.2) that G,(t, x) is an t:-value function inn i.e. 
it satisfies 

S(t, x) :S G,(t, x) :S S(t, x) + 3t:(h), (t, x) En, 

g(x)- t:(h) :S G,(1, x) :S g(x) + t:(h), (1, x) En, 

(6.8) 

(6.9) 

where S(t, x) = inf{g(x(1)) : x(r), rE [t, 1], admissible trajectory, x(t) = x} is 
the value function. If we find an admissible trajectory x,(t), t E [0, 1], x,(O) = x0 

satisfying 

G,(O, xo) ~ g(x,(1)), (6.10) 

then we call it £-optimal trajectory associated with G,(t, x). 
Therefore the above simple procedure allows us to find an approximate so­

lution to our problem (1.1)- (1.3) . 
We begin with the reformulation, in terms of £- functions, of known propo­

sitions from dynamic programming (see e.g. Fleming, Rishel 1975) . 

PROPOSITION 6.1 Let K(t, X) be any real-valued function defined zn n such that 
K(1, x) = g(x, h). Let (to, x0 ) En be a given initial condition, and suppose that 
for each admissible trajectory x(t), t E [t0 , 1], x(to) = x0

, K(t, x) is finite in 
[to, 1] and 

(6.11) 

for eacht0 :S t 1 :S t2 :S 1. If an admissible trajectory x~(t), t E [0 , 1], x~(O) = xo 
is such that 

I<(O, xo) ~ g(x~(l)) (6.12) 

and 

K(t, x~(t)) :S g(x~(1)) + 3t:(h), 0<t:S1, (6.13) 

then x~(t) is an optimal trajectory for G,(t, x) = K(t, x). 

PROOF. Let x(t), t E [0, 1], x(O) = x0 be any admissible trajectory. Then 

K(O, xo) :S g(x(1)) + 3t:(h). 

Thus K(O, x0 ) :S S(O, x0 ) + 3t:(h) . For x~(t), K(O, xo) ~ g(x~(1)), so x~(t) is an 
£- optimal trajectory for G,(t, x) = K(t, x). 

PROPOSITION 6.2 Let K(t, x), (t, x) E D be a C 1 solution to the following in­
equality 

-2t:(h) :S Kt(t, x)- H(t, x, -Kx(t, x)) :S 0, (t,x) En, (6.14) 



244 A. NOWAKOWSKI 

which satisfies the boundary condition 

K(1, x) = g(x, h), (1,x) E D. 

Ifx,(t), t E [0, 1], x(O) = x0 is a~ admissible pair such that 

-2c:(h) ~ Kt(t , x,(t))- H(t, x,(t), -Kx(t, x,(t))) ~ 0, t E [0 , 1], (6.15) 

then x,(t) is an optimal trajectory for the c;-value function G,(t, x) = K(t, x) . 

PROOF. By (6.14) and (1.4) for an admissible trajectory x(t) 

( :t )K(t, x(t)) = Kt(t, x(t)) + (Kx(t, x(t)), x(t)) 2: -2c:(h). (6.16) 

Integrating (6.13) in [t1, t 2] we obtain (6.11) and along x,(t) in [0, 1] we get 
(6.12) and (6.13). Thus x,(t) is an c;-optimal trajectory for G,(t, x) = K(t, x). 

7. Stability and convergence 

In Sections 2-6 we described two procedures of calculating an approximate 
solution to problem (1.1)- (1.3) . The question which appears in natural way is 
how the solutions behave when c:(h) --+ 0 as h tends to zero. This is just the 
problem of stability of our approximations. 

Let W be any topological space containing zero and such that convergence 
to zero of elements of W makes sense . We assume H(t, x, y, 0) = H(t , x, y), 
(H(t, x, y, h) and H(t, x , y) are those from Section 1) and c:(h) --+ 0 as h--+ 0. 
Then condition (1.6) means that H(t, x, y, h)--+ H(t, x, y) ash--+ 0 uniformly 
with respect to (t, x, y). For each H(t , x, y , h) satisfying (1.6) by each of two 
procedures we can calculate an c;-optimal trajectory Xe(h)(t). 

We say that our approximation is stable if for each c; > 0 th~re exists M > 0 
such that for each H(t, x, y, h1), H(t, x, y, h2) satisfying (1.6) with c:(h) = c; and 
corresponding to them x,(h,)(t), Xc(h 2 )(t) 

(7 .1) 

It turns out that what we have proved in Theorem 5.2 and Proposition 6.2 
(see also (6.7)) is just the stability of approximation (1.6) . In the first case we 
assume for our convenience that y~ = -1 in (5.2) . 

PROPOSITION 7 .1 The procedures described in Sections 2-5 and Section 6 are 
stable. 

PROOF. Let Xe(h,)(t) and x,(h2 )(t) be two c;-optimal trajectories as stated in 
Theorem 5.2 or Proposition 6.2 that correspond to H(t, x , y, h1) and H(t, x, y , h2) 
and which satisfy (1.6) with c:(h) = c:. By (5 .2) and (6.8) 

g(Xc(h 1 )(1)) ~ inf g(x(1)) + -2
1 

M c:, 
K(xo) 
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g(xe(h2 )(1)):::; inf g(x(1)) + -
2
1 

Me, 
K(xo) 

for some M> 0. These imply (7.1). 
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The next problem is a convergence of these approximations to a solution of 
(1 .1 )-(1.3). 

THEOREM 7 .1 Assume g to be weakly lower semicontinuous in X and in (ii), 
Section 1, x' __... x weakly or X = Rn. Let {xe(h;)}~ 1 be a sequence of 
€-optimal trajectories corresponding to the approximation {H(t, x, y, h;)}~ 1 with 
c(h;) __... 0, h; __... 0 as i __... oo satisfying (1.6} . Then there exists a subsequence of 
{xe(h;)}~ 1 which we denote again by {xe(h ; )}~ 1 converging weakly, in the space 
of absolutely continuous function A 2(X) with x E £ 2 (0 , T; X), to a solution of 
(1.1}-(1.3). 

PROOF. Since all Xe(h;)(t) satisfy (1.2) and we assumed basic hypotheses 
therefore {xe(h;)(-)}~ 1 is bounded in L00 (0,T;X) and in L2 (0,T;X) . Hence 
{xe(h;)(-)}~ 1 is bounded in A2(X) and there exists a subsequence of it weakly 
convergent in A2(X) to an x E A2 (X). By (5.2) or (6.8) 

i=1,2 ... , 

for some M > 0 independent from h; . By the assumption on g or X 

g(x(1)):::; inf g(x(1)) . 
K(xo) 

From the basic assumption we infer that x(t) satisfies (1.2) and (1.3), i .e. x(t) 
is a solution of (1.1)- (1.3). 
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