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In the papaer a possibility of constructing convex analysis with­
out linearity is presented. 

1. <!>-convexity, <I>-subgradients and general duality 

In 1943 F.Werfel, Werfel (1959), formulated the conjecture that there is a possi­
bility of existence of anti- Semitism without Jews. Further developments showed 
that Werfel was right . 

In the present paper we shall consider a similar problem, namely the possi­
bility of existence of convex analysis without linearity. 

It is obvious that in this case it is necessary to extend notions considered 
in convex analysis, such as convexity, subgradient, subdifferential in order for 
them to apply to this more general case. 

The first step in this direction was done in 1963 by Ky Fan (Ky Fan, 1963), 
who introduced the notion of <fl- convexity. Let (X, 11 .11) be a Banach space and 
let <fl be a family of continuous real valued functions defined on X. A set A C X 
will be called <fl - convex set if for each p cf. A there are </Jp E <fl and c E R such 
that 

(1.1) 

and 

(1.2) 

for all x EA. 
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It is easy to see that a set A is ci>-convex if and only if there are a subfamily 
cl> A C cl> and constants C<f>, </> E cl> A, such that the set A can be represented in 
the following way 

A= n {x EX: <f;(x) :S: c<l>}. (1.3) 
</>E<l>A 

For a given set A by its «l>-convexiflcation we shall call the smallest ci>-convex 
set B containing A. The ci>- convexification shall be denoted by conv<lJA. It is 
not difficult to check that 

conv<I>A = n {x EX: <f>(x)::; SUPyEA<f>(y)} . 
</>E-l> 

(1.4) 

Ky Fan introduced a notion of ci>-extremal points (we shall not give this 
definition here since it will be not essential in further considerations) and he 
proved the following extension of the Krein-Milman theorem 

THEOREM 1.1 (Ky Fan , 1963) Let A be a compact ci>-convex set in a Banach 
space. Then A is ci> - convexification of its extremal points. 

The next essential push came from the optimization theory. Kurcyusz (1975), 
Dolecki- Kurcyusz (1978) and Balder (1977) extended the notion of duality to 
the non convex case. 

Let an arbitrary set X, called later the space, be given. Let cl> be a family 
(a class) of functions defined on X and admitting values in R = R U { -oo }U 
U{ +oo }. 

A function <P E cl> will be called a «l>- subgradient of the function f : X --+ R 
at a point x 0 if 

f(x)- f(xo) ~ <P(x)- <f;(xo). (1.5) 

The set of all ci>- subgradients of the funct ion f at a point Xo shall be called 
«l>-subdifferential of the function f at a point xo and shall be denoted by 8-I>flxo . 

Observe that the order in real number induces the order on real valued 
functions. We shall write g ::; f without writing the argument if g( x) ::; f( x) 
for all x E X. For a given function f we shall take 

f<I> ( x) = sup{</>( x) + c : <f; E cl>, c E R, <P + c ::; f}. (1.6) 

The function j<I>(x) is called ci>-convexiflcation of the function f. If j<I>(x) = 
= f( x) we say that the function f is «l>-convex. The set of all ci>-convex functions 
will be denoted by «<>conv. 

Let 

f*(</J) = -CJ(</J) = SUPxEX[<fJ(x)- f(x)] 

The function f* ( <P) will be called Fenchel dual function (or Fenchel conjugate 
function), since in the case when (X, 11.11) is a Banach space and (X*, 11.11*) is the 
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conjugate space (i.e. the class of all continuous linear functionals defined on X) 
this notion was introduced by Fenchel (see Fenchel, 1949; and Fenchel, 1951). 
For non-linear ljJ it was investigated by Moreau, (Moreau, 1963; and Moreau, 
1966) under the name of inf-convolutions. 

PROPOSITION 1.2 A function 1/Jo is a if>-subgradient of a function f at the point 
xo if and only if 1/Jo and xo give equality in the Fenchel-Moreau inequality, i.e. 

f(x o) + /*(1/Jo) = 1/Jo(xo). (1 .7) 

Observe that the space X induces on the family if> also family of functions 
by the formula x(ljJ) = 1/J(x). This family will also be denoted as X . Thus for 
functions defined on if> we can speak of X -convexity. 

PROPOSITION 1.3 The Fenchel d:tal function f* ( ljJ) is X - convex. 

The following natural question arises. Can we determine the function f( x) 
having its dual f* ( ljJ )? The answer is in general negative, it is positive, though, 
for if>- convex functions. 

By the second Fenchel dual we shall call the Fenchel dual function to a dual 
to a Fenchel dual function and we shall denote it by f** ( x). 

THEOREM 1.4 (Balder,1977; Dolecki,Kurcyusz,1978; Elster,Neshe,1974; Kur­
cyusz;1975) For arbitrary real valued function f the second Fenchel dual is equal 
to if> - convexification of the function f , 

J**(x) = fif>(x). (1.8) 

2. Generalization of Mazur Theorem for <P- convex func-
tions 

In 1933 Mazur proved the following 

THEOREM 2.1 (Mazur,1933) Let (X, 11 -11) be a separable real Banach space. Let 
f( x) be a real valued convex continuous function defined on an open convex 
subset n c X. Then there is a subset A of the first category such that on the 
set n \ A the function f is Gateaux differentiable. 

The result of Mazur was a starting point for the theory of differentiability 
of convex functions (see for example the book Phelps,1989). 

By simple observation of the convex functions of one variable we obtain 
that they are differentiable if and only if the subgradient at xo is unique. As a 
consequence we obtain that continuous convex function is Gateaux differentiable 
at x 0 if and only if the subgradient at xa is uniquely determined . 

Having this in mind we can reformulate the Mazur theorem in the following 
way 
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THEOREM 2.1' Let (X,.II-11) be a separable real Banach space. Let f(x) be a real 
valued convex continuous function defined on an open convex subset n c X. 
Then there is a subset A of the first category such that on the set 0 \A the the 

subgradient of the function f is uniquely determined. 

In order to extend the Theorem 2.1' for the non-linear case we need a notion 
of monotone multifunction. A multifunction r mapping X into 2<t> will be called 
monotonemultifunction, iffor </Jx E f(x), </Jy E r(y) we have 

(2.1) 

In a particular case, when X is a linear space, and <I> is· a linear space 
consisting of linear functional, denoting <fJ(x) by <fJ(x) =< </J, x >we can rewrite 
(2.1) in the classical form 

< </Jx - </Jy, X- Y > 2 0. (2.2) 

As a trivial consequence of the definition we obtain that for a given function 
f the subdifferential a<I> fix as a multifunction of x is a monotone multifunction. 

It is interesting to know which conditions on the metric space (X, d) and on 
the class of real valued functions <I> warrant that for any monotone multifunction 
r : X ---> 2<t>, there is a set Ar of the first category such that outside the set Ar 
the multifunction r is single valued. For this purpose we shall introduce some 
new notions. 

Let (X, d) be a metric space. Let <I> be a subclass of the space of all Lip­
schitzian functions defined on X. 

Let 

(2.3) 

It is easy to see that dL is a quasimetric, i.e. it is symmetric and satisfies the 
triangle inequality. Observe that in dL(<fJl, </J2) = 0, then the difference of </J1 
and <jJ 2 is a constant function, i.e. </J 1(x) = <P 2(x) +c. Thus dL is a metric on 
the quotient space <I>/ R. 

Let <I> be a family of Lipschitz functions. We assume that the family <I> is 
linear. If there is a constant k, 0 < k < 1 such that for all x E X and all <P E <I> 
and all t > 0 there is ayE X such that 0 < dx(x, y) < t and 

</J(y) - </J(x) 2 kdL(</J, 0) dx(y, x) (2.4) 

we say that the family <I> has monotonicity property with the constant k . It is 
obvious that the linear continuous functionals over Banach space have mono­
tonicity property with any constant k, 0 < k < 1. 

Having this notion and using the method of Preiss and Zajicek, (Preiss, 
Zajicek, 1984) , we can obtain 
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THEOREM 2.2 (Rolewicz, 1994B) Let (X, dx) be a complete metric space . Let 
<I> be a linear family of Lipschitz functions having monotonicity property J;ith 
a constant k. Assume that <I> I R is separable in the metric ·dL. Let r be a 
monotone multifunction mapping X into <I> such that f(x) ::j:. 0 for all x EX. 
Then there exist a set A of the first category such that r is single valued and 
continuous on the set X \A. 

Since the sub differential a f ix is a monotone multifunction of X we trivially 
obtain 

CoROLLARY 2.3 Let X be a complete metric space. Let <I> be a linear class 
of Lipschitz functions having monotonicity property with a certain constant k . 
Suppose that <I> is separable in the metric d£ . Let f(x) be a <I>-convex function 
having at each point a <I>-subgradient. Then there is a set A of the first category 
such that outside the set A the subdifferential f) f ix is single valued and it is 
continuous in the metric dL . 

In the case when X is a Banach space and <I> = X* is the space of all linear 
continuous functionals, <I> has mononicity property with any constant smaller 
than 1. Thus we can formulate 

CoROLLARY 2.4 Let X be a Banach space having separable dual X*. Let f( x) 
be a convex continuous function. Then ther:e is a set A of the first category 
such that on the set dom f \A the subdifferential a fix is single valued and it is 
continuous in the norm topology. 

Corollary 2.4 is a weak version of the Mazur theorem, Mazur (1933), (since 
in Mazur theorem the separability of the space X is requested only). 

In the Corollary 2.3 we can weaken the assumption of monotonicity property 
with constant k by its local version. We say that a class <I> has local monotonicity 
property if for each x E X there is a neighbourhood U of x such that the family 
<I>iu of the restriction of the family <I> to the set U has monotonicity property 
with a certain constant ku . A family of locally Lipschitz functions <I> is called 
locally separable, if for each x E X there is a neighbourhood U of x such that 
the family <I>iu of the restriction of the family <I> to the set U is separable in the 
Lipschitz metric. 

Having these notions we can show 

THEOREM 2.5 Let (X, dx) be a comple;te separable connected metric space . 
Let <I> be a linear family of locally Lipschitz functions having local monotonicity 
property. Assume that <I> is locally separable. Let r be a monotone multifunction 
mapping X into <I> such that r( x) ::j:. 0 for all x E X. Then there exist a set A of 
the first category such that r is single valued and continuous on the set X\ A. 

The following interesting question arises : which classes <I> have monotonicity 
property with constant k? It is easy to see that if X is a convex subset of a 
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normed space and <P consist of linear functionals restricted to X, then <P has 
monotonicity property with an arbitrary constant 0 < k < 1. Similarly, if X is 
an open subset of a normed space and <P consist of linear functionals restricted 
to X, then <P has monotonicity property with an arbitrary constant 0 < k < 1. 
If X is neither convex nor open the situation can be different. For example if X 
is a circle in R2

, then no one linear functional cjJ E <P, cjJ :f. 0 has monotonicity 
property with any constant k. Thus we have a following problem: which sets 
in Rn (or more general in a Banach space) have this property that any family 
of linear functionals restricted to X has monotonicity property with a constant 
k? 

3. Relation between uniform convexity of a given function 
and uniform smoothness of the conjugate 

The next important step in convex analysis was done by Asplund, (Asplund,. 
1968), who proved a quantitative version of duality theory in the case of Banach 
spaces. 

In his fundamental paper he proved the following 

THEOREM 3.1 (Asplund,1968, see also Bronstedt,1964) Let f(x) be a lower­
semicontinuous convex function defined on X. Let 1 be a convex functions map­
ping the interval [0, + oo) into [0, +oo] such that 1(0) = 0. For a fixed xo EX 
and Xo E x· the following inequalities are equivalent 

f(x) - f(xo) 2 xa(x - xo) + i( llx- xa ll) for all X EX, (3.1) 

f*(x*) - f(x 0) :S (x* - x0)(xo) + i*( ll x* - x0ll *) for all x* EX*. (3.2) 

If (3.1) holds with reversed inequality sign, then (3 .2) also reverses. 
In Theorem 3.1 1* denotes the function conjugate to/, 

1*(t) = SUPu>o [ut -1(u)]. (3.3) 

The Asplund theorem can be extended to the case of general duality for the 
case when <P is a class of Lipschitz functions defined on a metric space X. 

THEOREM 3.2 (Rolewicz, 1993A) Let f(x) be a <P-convex function . Suppose 
that 

J*(c/J) 2 J*(c/Jo) + c/J(xo) - c/Jo(xo) + !(dL(cjJ, c/Jo)) (3.4) 

holds. Then 

f(x) :S f(xo) + c/Jo(x) - c/Jo(xo) + 1*(d(x, xa)). (3.5) 
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Let (X, d) be a metric space. Let 4l consist of Lipschitzian functions . As it 
was shown before the metric d induces on the space 4l / R a metric dL. Observe 
that X can be interpreted as a set of Lipschitzian functions of (4l/ R, d£). Then 
we can consider on the space X a corresponding Lipschitzian metric which we 
denote as dL(dL(x, y)). 

Using this metric we can obtain the following proposition 

THEOREM 3 .3 (Rolewicz , 1993A) Suppose that 

f(x) 2: f(xo) + <Po(x)- <Po(xo) + !(dL(dL(x, xa))). (3.6) 

Then 

J*(q)) :S f*(<Po) + <P(xo)- <Po(xo) + 'Y*(dL(QJ, <Po)), (3.7) 

In the case when the metric dL(dL(x, y)) coincides with the initial metric 
d(x, y) , dL(dL(x, y)) = d(x, y), the formula (3.7) obtains a simpler form 

f(x)- <Po(x) 2: f(xo)- <Po(xo) + !(d(x, xa)). (3.7') 

THEOREM 3.4 (Rolewicz, 1993A) Let (X, d) be a metric space. Let 4l denote a 
class of Lipschitzian functions defined on X, such that for each xa, <Po, q), t, 8, c: > 
0 there is x such that 

jd(x, xa)- tj < fJt (3.8) 

and 

I[<P(x) - q)(xo)]- [Q)o(x)- <Po(xo)]- dL(QJ, <Po)d(x, xa)l < c: . (3 .9) 

Let f(x) be a 4l-convex function. If <Po is a 4l-subgradient of the function 
f(x) at a point xa and 

f(x) :S f(xo) + <Po(x)- <Po(xo) + 'Y*(d(x, xa)), (3.10) 

then 

f*(q))- q)(xo) 2: f*(<Po)- <Po(xo) + !(dL(q), <Po)). (3.11) 

4. · Globalization property 

Now we shall consider a localizations of notions of 4l-convexity and 4l-sub­
gradients. 

We say that the function f( x) is locally 4l-convex iffor each xo E X there 
is a neighbourhood U of x0 such that the function flu(x) is 4lju-convex, where 
flu(x) and 4llu denote the restriction of the function f(x) and the class 4l to the 
set U. Of course each 4l- convex function is locally 4l-convex, too. The converse 
is not true, Rolewicz (1993B) . 
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A function <P E ell is called a local ell-subgradient of the function f at a point 
Xo if there is a neighbourhood u of the point Xo such that for all X E u 

f(x)- f(xo) ~ <P(x)- <P(xo) (4.1) 

holds. 
It is easy to show that the fact of possessing of a local ell-subgradient at 

each point does not imply that a function f has a ell-subgradient at each point. 
Even more, the function f need not to be ell-convex as follows from Rolewicz 
(1993B). 

It is interesting, however, that there are classes ell such that the existence of 
a local ell- subgradient of a locally ell-convex function f( x) at each point x0 E X 
implies the existence of a global ell- sub gradients of the function f( x) at each 
point. If such a situation occm3 we say that the family ell has the globalization 
property. If each local ell-subgradient can be extended to the global one we say 
that the family ell has the strong globalization property. 

If it holds for functions f( x) satisfying the additional condition that there is 
<P E ell such that 

inf [f(x)- <P(x)] > -oo, (4.2) 

then we say that the family ell has the bounded globalization property (resp. 
bounded strong globalization property). 

We say that the set A has the linear globalization property if the family X* 
restricted to A has the globalization property. We say that the set A has the 
linear bounded globalization property if the family X* restricted to A has the 
bounded globalization property. 

PROPOSITION 4.1 (Rolewicz, 1994A) A closed set A has the strong linear glob­
alization property if and only if it is convex. 

PROPOSITION 4 .2 (Rolewicz, 1993B; Rolewicz, 1994A) Let A be a boundary of 
a convex bounded open set B in a Banach space (X, 11.11), A = Fr B . Then the 
set A has the bounded linear globalization property. 

COROLLARY 4.3 (Rolewicz, 1993B; Rolewicz, 1994A) Let A be a boundary of 
a convex bounded open set B in a finite dimensional Banach space (X, 11·11) , 
A = F r B. Th en the set A has the linear globalization p1~operty. 

Without boundness of the set B Proposition 2 does not hold as follows from 

EXAMPLE 4.4 Let X= R 2 and let A= {(x, y) : IYI = 1}. It is easy to see that 
A is a boundary of an open convex set B = {(x, y): IYI < 1} and that the set A 
does not have the linear globalization property. 

The set A is not connected. As an example of connected set we can take a 
set Ao = Fr Bo, where Bo = {(x, y): IYI < 1, x > 0} 
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PROPOSITION 4.5 Let A be a closed set in a Banach space (X, 11.11) . Let <I> be a 
restriction of linear functionals to A. If there are a point Po tJ_ A and a vector 
v such that there are t1 < 0 < t2 < t3 such that Po + t;v EA, i = 1, 2, 3, then 
the set A does not have bounded linear globalization property. 

CoROLLARY 4.6 Let A be a closed set in a Banach space (X, 11.11) . If the set 
A has non-empty interior, Int A f:- 0, then the set A has linear globalization 
property if and only if it is convex. 

CoROLLARY 4.7 Let A be a closed set in a Banach space (X, 11.11). Suppose 
that I nt A = 0 and that there is a closed set B C A, such that the set B is 
a boundary of an open set C, B = Fr C. Then the set A has bounded linear 
globalization property if and only if A= B and the set C is convex. 
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