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A notion of well posedness for optimal control problems requires 
existence and uniqueness of the optimal control, and strong conver­
gence of every asymptotically minimizing sequence of control laws. 
Using a unifying abstract approach, well posedness is shown to be 
intimately related to the differentiability properties of the value func­
tion. Results of Fleming are thereby extended . 

Introduction 

We consider the global optimization problem (X, J), to minimize the extended 
real-valued function 

J: X--> (-oo,oo] 

over the given convergence space X. In the applications to optimal control 
problems we shall consider, X is a subset of a given real normed space equipped 
with the strong convergence. 

In order to deal with a suitable notion of well posedness of (X, J), we shall embed 
the given problem in a smoothly parallletrized family [X, 1(·, p)] of minimization 
problems. Here p is a parameter belonging to a given Banach space, as well as 
the parameter value p* to which (X, J) corresponds, i.e. 

I(u,p*) = J(u) for all u. 

Thus we consider small perturbations of (X, J) corresponding to the parameters 
p close to p*. The definition of well posedness of (X, J) requires existence and 
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uniqueness of the minimizer u* and, for any sequence Pn --+ p*, convergence 
to u* of every asymptotically minimizing sequence Un corresponding to Pn, i.e. 
every sequence Un E X such that 

where V denotes the value function 

V(p) = inf{I(u,p): u EX}. 

This definition requires Tikhonov well posedness of (X, J) (see Tikhonov 1966) 
and a form of Hadamard well posedness, since we impose the stable behavior 
of the unique minimizer u* under small perturbations of p* . In a sense, u* is a 
continuous function of pat p*. Thus, well posedness of (X, J) is partly intrinsic 
to the given optimization problem, and partly depending on the choice of the 
embedding . 

The main pi.Irpose of this paper is to apply a characterization of the above 
notion of well posedness, obtained in Zolezzi, Well posedness ... , section 2, to 
deterministic optimal control problems . . 

Let us describe (in a informal way) a model application to optimal control 
problems. 

Consider the integral performance 

1T f[y(s), u(s)] ds (1) 

to be minimized subject to the state equation 

y(s) = g[y(s), u(s)] a.e. in [0, T] (2) 

with initial condition 

y(O) = x* (3) 

and control constraint 

u(s) E U a.e. in [0, T] . (4) 

Here the state variable y E RN and the control variable u E RM. 
We embed the above optimal control problem following a modification of 

the dynamic programming method (see Fleming, Rishel 1975). We replace the 
initial condition by 

y(O) = p, p close to x*. (5) 
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The significant parameter is now p, while p* = x* defines the original (unper­
turbed) problem. Here X is the set of the admissible (open loop) control laws 
equipped with the strong convergence of L1 . If 

y(u, p) 

denotes the state associated to the control u and the parameter p, 1.e. the 
solution of the initial value problem 

y = g(y, u) a .e. in [0, T], y(O) = p 

then 

I(u,p) = 1T f[y(u,p),u] ds 

fits the above abstract model. 

Roughly speaking, for a given embedding of problem (1), .. . ,( 4), well posed­
ness means existence and uniqueness of the optimal control, and strong con­
vergence to it in L1 ([0 , T]) of every asymptotically minimizing sequence corre­
sponding to convergent perturbations of the relevant parameter (chosen by the 
embeddil}g). Hence well posedness implies a robust behavior of the optimal 
control under small perturbations, iri particular automatic convergence of every 
numerical optimization method which constructs minimizing sequences, even in 
presence of small changes of problem's data. 

In section 1 we summarize the main abstract results of Zolezzi, Well posed­
ness , ... , which exploit the differ~ntiability properties of the value function. 

In section 2 we apply the abstract results of section 1 to obtain well posedness 
criteria for optimal control problems monitored by ordinary differential equa­
tions with unconst rained terminal point . The nonsmooth behavior of the value 
function is shown to be related to ill posedness. These results extend known cri­
teria for Tikhonov well posedness of free end point problems of optimal control 
in Fleming , Rishel 1975 and Fleming, Soner 1993. 

In section 3 we compare the well posedness criteria, obtained in this paper, 
with some known results. Moreover we present some examples. 

Links between Tikhonov well posedness and differentiability of the value 
function are known in convex optimization (Asplund, Rockafellar 1969), best 
approximation problems (Fitzpatrick 1980) and problems in the calculus of vari­
ations (Fleming 1969). As shown in Zolezzi, Well posedness . .. , the results 
for free problems, summarized in section 1, can be considered as a common 
extension of them. Well posedness in the calculus of variations is obtained in 
Zolezzi, Well posedness, . . . , using the same abstract af>proach. 



292 T. ZOLEZZI 

The approach considered here can be applied to various embeddings of the 
given optimal control problem, as those listed in section 3 : not only perturba­
tions of the initial point (as described above) , but also perturbations of the dy­
namics (see Clarke 1986 and Clarke, Loewen 1986) and time delays (see Clarke, 
Wolenski 1991). Of course, parametric problems of general type, as some of 
those studied in Malanowski 1987, fit the approach presented here. 

A short survey of some results related to this paper is contained in Zolezzi, 
Well posed . . . and Zolezzi 1991. For a survey of well posedness in scalar 
optimization see Dontchev, Zolezzi 1993. 

1. Abstract results 

Throughout this section : 

X is a fixed convergence space (as defined e.g. in Kuratowski 1958) ; 
P is a given real Banach space; p* is a fixed point of P ; 
L is a closed ball in P of center p* and positive radius ; 

J : X --+ ( - oo, + oo ] , I : X x L --+ ( - oo, +oo] 

are proper extended real-valued functions. 

For every p E L we consider the problem (p), which is denoted by 

[ X, 1(-,p)], 

to minimize (globally) I(u,p) subject to u EX, assuming that 

I(u,p*) = J(u) for all u EX. 

The (optimal) value function is defined by 

V(p) = inf { I(u,p): u E X}, p EL. 

The problem (X, J), to minimize J(x) subject to x E X, is called here well 
posed (with respect to the embedding defined by I) iff 

V(p) > -oo for every p E L and 

there exists a unique minimizer (6) 

u* = arg min (X, J); 

for every sequence Pn --+ p* , every sequence Un E X such that (7) 
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obeys Un ----> u* in X. 

Sequences Un as in (7) will be referred to as asymptotically minimizing, 
corresponding to the sequence Pn· For simple notation we write 

arg min (p) instead of arg min [X,I(-,p) ] 

(possibly empty). 

REMARKS. 

(a) If problem (p*), i.e. (X, J), is well posed, then it is Tikhonov well posed 
(simply take Pn = p* in (7)). 

(b) Let the convergence in X be induced by a topology. Write 

u E c- arg min(p) iff V(p) > -oo, u EX and I(u,p)::; V(p) +c. 
Then, as easily checked, (X, J) is well posed iff V(p) > - oo for ailp EL, 
(6) holds and the multifunction 

(c, p) .=. c- arg min(p) 

is upper semicontinuous at (O,p*). Thus, the definition of well posedness 
includes a form of continuous dependence of u* on p. 

We shall work with mildly smooth embeddings, according to the following 
assumption : 

for every u EX, I(u, ·) is Gateaux differentiable on int L 

with continuous gradient at arg min (p*) x {p*}. (8) 

The following two theorems, proved in Zolezzi, Well posedness ... , in a 
slightly more general form, provide necessary and sufficient conditions for well 
posedness. 

THEOREM 1 (X, J) is well posed if condition {8) is fulfilled and the following 
assumptions hold : 

V is finite and upper semicontinuous en L, Gateaux differentiable 

on intL with continuous gradient at p* ; 

I is lower semicontinuous on X x L, and \71(-,p*) 

is one-to-one on arg min(p*); 

(9) 

(10) 

for any sequence Pn ----> p*, every asymptotically minimizing sequence Un, 

such that \li(un,Pn) converges strongly in p*, (11) 

has a convergent subsequence. 

THEOREM 2 V is Frechet differentiable at p* provided that condition (8) holds 

and (X, J) is well posed. 
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2. Optimal control · 

We apply theorems 1 and 2 to the following optimal control problem. Minimize 
(1) subject to the state equation (2) and the constraints (3) and (4). 

Here f = f(x,u): RN x RM-+ R and g = g(x,u): RN x RM-+ RN are 
given functions, moreover x* E RN anti T > 0 are fixed; U is a nonempty 
subset of RM. Every state variable y is absolutely continuous on [0, T]. 

Throughout this section we assume the following conditions : 

J, g, fx, gx are continuous in RN x U; U is compact : 

there exist constants a, b such that 

I g(x, u) I:S a+ b I x I everywhere. 

The space X of admissible controls is defined by 

u EX iff u E L00 ([0, T]) and (4) is fulfilled; 

X is equipped with the strong convergence of £ 1 ([0, T]) . 

(12) 

For any optimal trajectory ( u*, y*) we consider the Hamiltonian function 

H(s, u) = q(s)' g(y*(s), u) - f(y*(s), u) 

where the corresponding adjoint state q is defined by 

q(s) = - gx[y*(s), u*( s)J' q(s) + fx [y*(s), u*(s)], q(T) = 0. 

Among the several embeddings of problem (1), (2), (3), (4) to which the 
abstact results of section 1 can be applied, we select a modification of the one 
associated with the dynamic programming approach (as described in the intro­
duction), in order to characterize the corresponding notion of well posedness. 

We consider the embedding defined by (1), (2), (4) and 

y(O) = P (13) 

for points p E RN close to x* = p*. The initial time t = 0 is held fixed, only 
the initial state is perturbed. The corresponding embedding is defined by 

L(u,p) = 1T f(y(u,p),u) ds 

where, for u EX imd p ERN, y(u,p) denotes the unique solution in [O,T] to 
(2) and (13). 
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Let us say that the lower closure property holds if for every sequence Pn ---+ p* 
and for every asymptotically minimizing sequence Un corresponding to Pn, if for 
some subsequence 

then y* is an optimal state for the original problem (p*). 

REMARK. A sufficient condition for lower closure is that (12) holds and the 
Cesari sets 

Q(y) = {(z, g(y, u)) E RN+l : z 2 f(y, u), u E U} 

are convex for every y E RN (see Cesari 1983). 

THEOREM 3 Problem {1), {2), (3), (4) is well posed if we assume {12), and the 
following conditions hold : 

V is Gateaux differentiable near p* with continuous gradient at p* ; (14) 

for any optimal trajectory of problem (p*) and for a. e, t, 

there exists a unique maximizer of H(t; ·) on U ; 

for any pair of optimal controls u1, u2 of problem (p*) 

with corresponding adjoint states q1, q2, the equality 

q1(0) = q2(0) implies u1 = u2 ; 

the lower closure property holds. 

(15) 

(16) 

(17) 

PROOF. We check the assumptions of theorem 1, having fixed a closed ball L 
around x*, on which V is Gateaux differentiable, according to (14). 
Condition 8. Smoothness off and g implied by (12) guarantees as well known 
that I( u, ·) is Gateaux differentiable everywhere. 
For each u E X, and for every h E RN 

\1 I(u,p)' h = 1T fx(y(u,p),u)' w dt (18) 

where 

w = 9x(y(u,p), u)' w, w(O) =h. (19) 

Routine calculations (based on (12)) show that \1 I is continuous at every 
point of X x RN. 
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Condition (9). We check the Lipschitz continuity of V on L. From (12) we see 
that y( u, p) is pointwise equi-bounded as u E X and p E L, hence V is finite 
on L. Given p, q in L and c; > 0, let u EX be such that 

I(u,p) = 1T f(y(u,p), u) dt:::; V(p) + c:, 

and let y = y(u,p), z = y(u,q). Then by (12) 

V(q)- V(p):::; 1T [f(z, u)- f(y, u)] ds + c;:::; (const.) iT I y- z I ds + c:. 

Again by (12) and Gronwall's lemma 

I y(t)- z(t) I:S (const.) I p- q I, 0:::; t:::; T, 

hence 

V(q)- V(p):::; c; + (const.) I p- q I 

yielding Lipschitz continuity, since c; is arbitrary. 
Condition 10. Continuity of I on X x L has been shown in the proof of (8) . 
We check injectivity of V I(-, p*). Given u1, u2 in arg min(p*), let q1 , q2 be the 
corresponding adjoint states. Then 

VI(u1,x*) = VI(u2,x*) 

implies, by (18), for every hE RN 

1T fx(Yl,u!)' w1 ds = 1T fx(Y2,u2) 1 
w2 ds 

where y; = y( u;, x*), and w; solves (19) with u = u;, i = 1, 2. 
Remembering the definition of q; we have (as well known) 

T 1 w; fx(Y;, u;) ds = -h' q;(O) 

hence (20) is equivalent to q1(0) = q2(0), thus u1 = u2 by (16). 
Condition (11}. We have X 71 -+ x*, Un EX such that 

(20) 

(21) 

where Yn = y(u71 ,x71 ). Since f(-,u), g(-,u) are equi-Lipschitz continuous on 
compact sets by (12), and Yn(t), un(t) are equi-bounded, we have 

I g[y*(t), Un(t)]- g[yn(t), Un(t)]l +I f[y*(t), Un(t)]- f[Yn(t), Un(t)]I:S 

:::; (const.) I Yn(t)- y*(t) I (22) 
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for a .e.t E [0, T] . Since I Yn(t) I:S const. , for a subsequence we have 

Yn ---> y* weakly in W 1•1(0 , T) 

and there exists u* E arg min (x*) such that y* = y(u*,x*). Let H,q be 
the Hamiltonian and the adjoint state corresponding to the optimal trajectory 
(u* , y*). We claim that 

T T la H(t, un) dt---> la H(t, u*) dt 

(for the same subsequence as before) . 

By (21) and continuity of V 

loT f(Yn, Un) dt ---> loT f(y* , u*) dt, 

hence by (22) , to show (23) it suffices to prove that 

loT q1 [g(yn , Un) - g(y*, u*)] dt ---> 0, 

which amounts to 

loT q1 (iJn - iJ* ) dt ---> 0. 

But (24) follows from the convergence of (the subsequence) Yn · 
Thus (23) is proved. By the maximum principle and (15) 

u*(t) = arg max [U, H(t, ·)], a.e . t. 

Then by Zolezzi 1980 , theorem 5.2, u* maximizes the integral functional 

u---> Q(u) =loT H(t, u) dt 

(23) 

(24) 

over X, and (X, Q) is Tikhonov well posed. It follows by (23) that Un is a 
maximizing sequence for (X, Q), hence Un---> u* in X, as required. 
The assumptions of theorem 1 are thereby fulfilled, and well posedness of prob­
lem (x*) follows. • 

As a corollary of theorem 2, we get 

THEOREM 4 If {12) holds and problem {1) , (2) , (3) , (4) is well posed, then V 
is Frechet differentiable at x*. 
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PROOF. In the proof of theorem 3 we checked that (12) entails (8), hence 
theorem 3 can be applied . • 

The following proposition yields a sufficient condition for assumption (16). 
Consider a fixed ball Z in R2N containing all points (y(t), q(t)), 0 ~ t ~ P, 
for all optimal states y and corresponding adjoint states q, whose existence is 
guaranteed by (12). For given A , B ERN write 

B = (A, B) E R 2
N and h(B , u) = B' g(A , u)- f(A , u). 

Let D be the projection of Z on the first copy of RN . 

PROPOSITION 5 Suppose that (12) holds. Then {16) is fulfilled if 

g, fx, 9x are Lipschitz on D X U; 

for every B E Z there exists a unique 

u*(B) = arg max [U, h(B, ·)] 

and u* is Lipschitz on Z. 

(25) 

(26) 

PROOF . Let u; , q;, i = 1, 2, be as in (16) . Put c = q;(O) . By (26) and the 
maximum principle 

u;(t) = u*[y;(t), q;(t)], i = 1, 2. (27) 

Hence (y;,q;), i = 1,2, are solutions on [O ,T] to the following initial-value 
problem 

iJ = g[y,u*( y,q)], q = -hx[y ,u*(y,q)], y(O) = x* , q(O) =c. (28) 

By (25), (26) we see that (28) has uniqueness in the large, since the riglit- hand 
side is Lipschitz continuous . It follows thc.t 

Yl = Y2 , q1 = q2 a.e . in [0, T], 

hence u1 = u2 by (27) and (26) . • 
REMARK. Extensions of theorems 3 and 4 may be obtained (by standard means) 
in the case when f = f(t,x, u), g = g(t , x, u), the control region U is unbounded, 
and the performance (1) is modified to 

.faT f[s , y(s) , u(s)] ds + k[y(T)] 

with a suitable function k : RN .- R . 
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3. Remarks and examples 

3.1. A comparison with some known results 

Theorems 3 and 4 are extensions of the results in Fleming, Rishel 1975, eh. VI, 
section 9. There it is shown that Tikhonov well posedness follows if one assumes 
convexity of U and off( x, ·), affinity of g( x, ·), uniqueness of the optimal control 
u*, and condition (15) for u*. (The dynamics g and the running cost f may 
depend on t, however only routine modifications of the proofs here are required 
to handle this case, as mentioned before) . These assumptions imply conditions 
(16) and (17). In Fleming, Rishel 1975 the dynamic programming approach is 
considered, while here only the initial state is perturbed. Theorem 3 obtains well 
posedness (a stronger property than Tikhonov's) by assuming differentiability of 
the value function, which is a necessary condition too, as shown by theorem 4. 
More important, the results of this paper follow from the abstract approach 
outlined in section 1, which unifies .several well posedness results, scattered in 
different fields of opti'mization theory. 

3.2. Other embeddings 

The same approach we followed for the embedding described in section 2 can be 
used to obtain well posedness of the given optimal control problem with respect 
to the following embeddings. 

3.2.1. Dynamic programming 

Given t E [0, T] and x ERN, replace the time interval [0, T] by [t, T] in (1), (2), 
(4), and (3) by y(t) = x. Then t)le relevant parameter is now p = (t,x), and 
p* = (0, x*). The differentiability properties of the value function V= V(t, x) 
at a given point are relevant as far as the Hamilton-Jacobi-Bellman equation 
is concerned. See Fleming, Rishel 1975 and Fleming, Soner 1993. We get a 
more restrictive well posedness concept than that of section 2, and results quite 
similar to theorems 3 and 4. 

3.2.2. Perturbations of the dynamics 

Given p E L2 ([0, T]), replace the state equations (2) by 

iJ = g(y,u) + p a.e. in [O,T]. 

Then the (infinite-dimensional) parameter is now p, and p* = 0. Results about 
the differentiability properties of this value function are in Clarke 1986 and 
Clarke, Loewen 1986. As an example, consider the nondifferentiable value func­
tion in example 1.2 of Moussaoui, Seeger 1992. By the corresponding version of 
theorem 4, such an optimal control problem is ill posed. 
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3.3. Examples 

The following examples exhibit well (or ill) posed optimal control problems in 
the sense defined by the embedding treated in section 2. 

(a) Let U be compact and convex, x* arbitrary, g(x, u) = A(x)+B(x) u, with 
A, B continuously differentiable and fulfilling the linear growth condition 
in (12). Assume that there exists a unique optimal control, and let f be 
continuously differentiable with f( x, ·) strictly convex (or, more generally, 
let (15) be fulfilled). Then, standard modifications of the proof given in 
Fleming, Rishel1975, eh. VI, th. 9.1 show that the problem is well posed. 
(Hence, by theorem 4, the value function is Frechet differentiable at x*). 

(b) The linear regulator problem : let 
g(x, u) =A x + B u, f(x, u) = x' P x + u' Q u, U = RM 

for suitable matrices A, B, P 2.: 0, Q > 0. We define X to be the set of 
all u E L00 ([0, T]) such that (4) holds. The proof of theorem 3 can be 
modified in a standard way to handle this case as well (even if A, B, P, Q 
are time dependent : of course, a direct proof of well posedness is readily 
obtained). Here f is bounded from below, and every asymptotically mini­
mizing sequence is bounded in L2 ([0, T]). Since Q > 0, we have Tikhonov 
well posedness of [RM, H(t, ·)]. As well known (see Fleming, Rishel1975) 
there exists a unique optimal control (hence (16) is fulfilled), and the 
value function is continuously differentiable everywhere (even for the em­
bedding of the dynamic programming type described in 3.2.1 above). We 
get well posedness from the modification of theorem 3 mentioned above. 
This is the simplest and best known well posed problem of optimal control. 

(c) Assumption (15) cannot be removed in theorem 3. Consider 
M = N = 1, g(x, u) = u, f(x, u) = x 2

, x* = 0, T = 1, U = [-1, 1]. 
This is an ill posed problem, since for the minimizing sequence of states 

Xn(t) =sin (nt)/n, 0::; t::; 1, 
the controls Xn do not converge strongly in P ([0, 1]). Here the Hamil­
tonian corresponding to the (unique) optimal pair u* = 0, y* = 0, is 
constant. Moreover the value function is 

V(p) =I p 13 /3 if I pI< 1, 
hence (14) holds, and (16), (17) are trivially fulfilled. 

(d) Let 
M= N = 1, g(x, u) = u x, f(x, u) = (u- 1) x, T = 2, x* > 0, U = [0 , 1]. 
Here the value function turns out to be V(p) = -p e, and the unique 
optimal co:qtrol is given by 

u*(t) ·= 1 if 0::; t::; 1, u*(t) = 0 if 1 < t::; 2. 

By explicit calculations , it is easily checked that (15) holds. Of course 
(14) and (16) are fulfilled. Due to theorem 3, the given problem is well 
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posed. This example is discussed in Clarke, Loewen 1986, section 4 (from 
a different point of view). 
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