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This paper is concerned with finding the most rigid microstruc
ture of a perforated composite material capable of sustaining a given 
stress. The context is that of three-dimensional linear elasticity, and 
the motivation comes from a problem of optimal shape design (see 
Allaire, Kohn, 1993A, where the two-dimensional case is investi
gated) . This question is equivalent to obtaining an optimal bound 
on the complementary energy for a composite obtained by micro
perforation of an isotropic material. An explicit formula for this 
bound is given, and for each value of the stress an associated opti
mal microstructure is exhibited in the class of so- called rank-three 
laminates. This result is the key of the three-dimensional numeri
cal algorithm for shape optimization proposed in Allaire, Francfort 
(1994). 
Keywords. Optimal bounds, composite materials, finite-rank lam
inates, shape optimization . 

1. Introduction 

This paper can be considered as a continuation of a previous joint work with 
R.V . Kohn (Allaire, Kohn, 1993B), which was concerned with optimal bounds 
on the effective behavior of composite materials obtained by mixing two lin
early isotropic elastic components. Such bounds are of paramount importance 
for studying problems of optimal design, both from the theoretical and numer
ical point of view (for details about the link between the theory of composite 
materials and optimal design, see e.g. Bendsoe, Kikuchi, 1988; Kohn, Strang, 
1986; Lurie, Cherkaev, Fedorov, 1982; Murat, Tartar, 1985). As the motiva
tion of Allaire, Kohn (1993B) was to explore the theory of composite materials 
in great generality, the results presented therein are not completely explicit . 
Rather, the obtained optimal bounds are presented as the maximum/minimum 
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value of some finite-dimensional concave/convex optimization problem. In the 
particular case of bounds on one energy in dimension two, explicit formulas for 
upper and lower bounds were obtained in the subsequent paper Allaire, Kohn 
(1993C). These explicit formulas in Allaire, Kohn (1993C) are the main ingredi
ent in our work Allaire, Kohn (1993A) on two-dimensional shape optimization, 
and yield new numerical algorithms for computing optimal designs (see Allaire, 
Kohn, 1993A; Allaire, Francfort, 1993; Jog, Haber, Bendsoe, 1993). To general
ize these algorithms to the three-dimensional case, explicit formulas for optimal 
bounds are thus required in dimension three, too. The purpose of the present 
paper is to furnish such crucial explicit formulas, which will be applied to op
timal shape design in Allaire, Francfort (1994). However, since overwhelming 
and tedious calculations arise in 3-D, we restrict ourselves to what is strictly 
necessary for shape optimization, namely a lower bound on the complemen
tary energy of a composite obtained by micro-perforation of a linearly isotropic 
elastic material (i.e. a mixture of a single material with void). 

The remainder of this introduction is devoted to establishing notations and 
reviewing basic facts about composite materials (for details and references see 
Allaire, Kohn, 1993B; Avellaneda, 1987; Francfort, Murat, 1986; Hashin, Shtrik
man, 1963; Milton, 1990). Consider two isotropic linearly elastic components, 
with Hooke's laws denoted by A 1 and A2, finely mixed in proportions 81 and 
82 respectively (81 + 82 = 1) . This fine mixture is a composite material whose 
macroscopic behavior is described by a linear effective Hooke's law A* (not ne
cessarily isotropic). Of course, A* depends on the components' properties and 
on the particular arrangement of the mixture. Suppose that the components A 1 

and A2 are given with fixed proportions 81 and 82, but that their microstructure 
is free or unknown. The celebrated G-closure problem is then to determine the 
set of all possible values of A* obtained by varying the microstructure. Unfor
tunately, this problem is still open, and we merely have some partial knowledge 
of the boundary of this set. In particular, the Hashin-Shtrikman variational 
principle gives the extremal values of primal or dual energies, < A* c, c > or 
< A*_, 0', 0' >, where c and 0' are given strain and stress respectively. These 
extremal values are called optimal bounds. Optimality -means that there exist 
some special microstructures (not necessarily unique) for which the correspond
ing energy is precisely the value of the bound. One can always find such optimal 
microstructures in the class of so-called finite-rank sequential laminates. Let us 
describe briefly what is a rank-p sequential laminate. It is obtained by p succes
sive laminations : in a first step the original components A1 and A2 are mixed 
in fine layers orthogonal to a fixed direction to produce a first composite A*(1); 
then A*(1) is again layered with A2 in another direction to produce A*(2), and 
so on. Finally, the rank-p sequential laminate A*(p) is obtained by layering 
A*(p-1) with A2. Remark that the first component A1 is used only in the first 
step, thus being the core of A*(p) (in other words, a sequential laminate looks 
as "plate-like" inclusions of A1 in a matrix of A2). By varying the directions 
and proportions of lamination at each step, and reversing the role of A1 and 
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A2 , one obtains a great variety of composite materials, including optimal ones. 
Finite-rank sequential laminates have a great advantage on their own : there 
exists an explicit formula for their Hooke's law (see Francfort, Murat, 1986; 
Tartar, 1985). 

So far, we have considered composite materials obtained by mixing two non
degenerate components. In this paper, we treat only the case of so-called perfo
rated composite materials obtained by mixing a single non-degenerate compo
nent with void (or holes). This is obtained in the limit of a very weak component 
A 1 whose moduli go to zero. To simplify the notations, the remaining compo
nent A 2 is simply denoted by A, with bulk and shear moduli "' and J.L, i.e. for 
any symmetric matrix ~ 

(1.1) 

where h is the identity matrix, and N = 2, 3 the spatial dimension. We also 
denote by A a quantity which has the same sign as the Poisson's ratio of A 

A="'- 2J.L. 
N 

(1.2) 

Equivalently, a perforated composite material A* is obtained by micro-perfo
rations of the original material A (the boundaries of the holes created this way 
being traction-free) . The proportion B of material A in the perforated composite 
A* is also called its density. The first goal of this paper is to compute explicitly 
an optimal lower bound f(u, A, B) for the complementary energy of a perforated 
composite A* of density B, under a given stress u 

(1.3) 

Recall that u, A and Bare fixed, and that the bound (1.3) is obtained by varying 
the microstructure of A*. The bound (1.3) is optimal, since by a matter of 
theory, Avellaneda (1987), there exists some special microstructure for which 
there is equality in (1.3). The second goal of this paper is to exhibit a finite
rank sequential laminate which saturates (1.3) : its parameters will be computed 
explicitly in terms of u, A, and B. In other words, this laminate is the most 
rigid perforated composite capable of sustaining the stress (}' (note however that 
it is not unique). 

These two goals were achieved in the paper Allaire, Kohn (1993A) for the 
dimension N = 2, and in the particular case of zero Poisson's ratio (or A = 0) 
for the dimension N = 3. Here, we generalize these results in dimension N = 3 
for any material A having positive Poisson's ratio (or A 2: 0). After this work 
has been completed, we learned from R.V. Kohn that the same computation has 
been done by L. Gibiansky and A. Cherkaev, Gibiansky, Cherkaev (1987). Their 
result is presented in a slightly different form and coincides with ours. Unfor
tunately, their work is in Russian and has not been published yet (although an 
English translation is in preparation). Anyway, we hope that the present paper 
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will provide these results in a clear and simple way for practical applications in 
shape optimization. 

The work reported here is a sequel of a long and fruitful collaboration with 
R.V. Kohn and G. Francfort; it is a pleasure for me to acknowledge their help 
and friendship. 

2. Presentation of the main results 

We begin this section by recalling some previous results concerning composite 
materials . At first, we give a form of the layering formula of Tartar-Francfort
Murat specialized to the case at hand. 

PROPOSITION 2.1 Let A* be a rank-p sequential/aminate of material A around 
a core of void, in proportion() and (1-B) respectively, with lamination directions 
(e;)l::;;::;p and lamination parameters (m;)l::;;::;p satisfying 0 ~ m ; ~ 1 and 
I:f=1 m; = 1 (these parameters are related to the proportion of material A at 
each step of the lamination process, see Francfort, Mu rat, 1986 for details). 
Then the Hooke's law A* is given by 

-1 p 

( 1 - ()) [A* -
1 

- A - 1] = () L m; f'i ( e;) (2 .1) 
i = 1 

where f'i ( e;) is a fourth order tensor {a degenerate Hooke's law) defined, for 
any symmetric matrix e, by the quadratic form 

< fJt(e;)e,e > = < Ae,e > -~ [1 Aee; l2- < Aee;,e; > 2]

-2p~>- < Aee;,e; >2 . 
(2.2) 

PROPOSITION 2.2 In space dimension N, the optima/lower bound on comple
mentary energy 

<A*-
1

CT,CT> 2:: f(CT,A,B) (2.3) 

is achieved by a sequential laminate of rank N {at most), whose directions of 
lamination coincide with the eigendirections of the stress CT. 

All the above results are classical. For example, Proposition 2.1 is nothing 
but a combination offormulas (6.11), (6 .18), and (7.6) in Allaire, Kohn (1993B) , 
while Proposition 2.2 is a direct consequence of Remark 3.7 and formula (7 .6) 
in Allaire, Kohn (1993B). 

REMARK 2.3 Proposition 2.2 is our starting point for the computation of the 
lower bound {2.3}. Indeed, to calculate its value f(CT, A, B) it is sufficient to min
imize < A*- 1 

CT, CT > among all possible rank- N laminates A* with lamination 
directions corresponding to the eigendirections of CT. In view of formula {2.1) 
for A*, this minimization takes place over the parameters (m; )l::;;::;N satisfying 
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0 ~ m; ~ 1 and 'I:;:,1 m; = 1. The good news is that it involves only one 
degree of freedom in 2-D, and two in 3-D. The bad news is that the inversion 
of the lamination formula {2.1) yields < A *-

1 
u, u > as an awful function of the 

(m;h<i<N (see Proposition 3.1). This inversion is the focus of section 3, while 
the minimization is accomplished in section 4. 

For the sake of comparison, we recall the bound in 2-D as obtained in Allaire, 
Kohn (1993A). 

THEOREM 2.4 In two dimensions, the bound (2.3} takes the form 

< A*-
1 

u, u > 2: < A-1u, u > + (~~: + :~~~- 8
) (hi+ lu21)2 (2.4) 

where u1 and u2 are the eigenvalues of the stress u (a two-by-two matrix in 
2-D ). Furthermore, the associated optimal rank-2 sequential laminate is char
acterized by its parameters 

(2.5) 

We also recall the bound in 3-D when the material has zero Poisson's ratio 
(see Allaire, Kohn, 1993A) . 

THEOREM 2.5 In three dimensions, assume the material satisfies A = 0. Then, 
labeling the eigenvalues of u in such a way that ju1l ~ ju2l ~ ju3j, the bound 
(2. 3) takes the form 

-1 1 (1- 8) 2 
<A* u,u> 2: <A- u,u>+~(hl+hl+lu31) (2.6a) 

if ju3j ~ ju1l + ju2j, and 

.-1 1 (1- 8) ((I I I 1)2 I 12) < A u, u > 2: < A- u, u > +~ u1 + u2 + u3 (2 .6b) 

if ju312: lu1l + lu2l· 
Furthermore, optimality in the first regime (2. 6a) is achieved by a rank-3 se
quential laminate with parameters 

ju3j + lu2i-lu11 lu11-1u21 + ju3j 
m1 = hi+ lu2l + ju3j' m2 = lull+ lu2l + ju3j ' 

(2.7a) 

lu1i + lu21-1u31 
m3 = hi+ lu2l + ju3j 

while optimality in the second regime (2. 6b) is achieved by a rank-2 sequential 
laminate with parameters 

m3 = 0 . (2 .7b) 
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We now turn to the main result proved in this paper, which holds for any 
material having positive Poisson's ratio. 

THEOREM 2.6 In three dimensions, assume the material A satisfies .A > 0. 
Then, the bound (2.3) takes the form 

(2.8) 

where, labding the eigenvalues of er so that rr1 :S u2 :S era, g(A, er) is defined by 

(A) if 0 :S u1 :S rr2 :Sera 
2J.L + ). 2 

g(A, er) = 
2
(
2

J.L + 
3

.A) (u1 + u2 + era) if era :S u1 + u2 (2 .9Aa) 

g(A, er) = (u1 + u2)2 +er§ -
2

J.l ~ 
3

). (u1 + rr2 + ua)
2 

(2.9Ab) 

g(A, er) 

g(A, er) 

if era- u2 > __ J.l_u1 (2.9Bc) 
- J.L+.A 

(C) the other cases are obtained from (A) and (B) by symmetry, changing er 
zn -cr . 

Furthermore, optimality in the regime (2.9Aa) is achieved by a rank- 3 sequential 
laminate with parameters 

era+ u 2 - u1 u1 - u2 +era rr1 + rr2 - era (2.lOAa) 
ml = ' m2 = ' ma = u1 + u2 + era 0"1 + 0"2 + ua rr1 + rr2 + ua 

in the regime (2. 9A b) it is achieved by a rank-2 sequential laminate with para

meters 

(2 .10Ab) 
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in the regime {2.9Ba) it is achieved by a rank-3 sequential laminate with pa
rameters 

f-l + ). 0"3 - 0"2 + +1-' >. 0"1 m - 1-' 
3- --- 1-'+2>. ' 

f-l 0"3 + 0"2 - 1-'+ >. 0"1 
(2 .10Ba) 

in the regime {2. 9Bb) it is achieved by a rank-2 sequential laminate with para-
meters 

(2.10Bb) 

in the regime {2.9Bc) it is achieved by a rank-2 sequential/aminate with para
meters 

m3 = 0. (2.10Bc) 

REMARK 2.7 Let us emphasize again that, by virtue of Proposition 2.2, the 
optimal sequential laminates described in Theorems 2.4, 2. 5, 2. 6 have lamina
tion directions (ei)1<i<N which coincide with the eigenvectors associated to the 
eigenvalues (a-;)1~;~-N-of the stress a-. Remark that, on the contrary of its 2-D 
analogue, the 3-D bound has different regimes corresponding t o optimal rank-
3, or rank-2, sequential laminates. Physically, a rank-3 laminate is optimal if 
the three eigenvalues of the stress are of the same order of magnitude {this mi
crostructure looks like isolated holes in a matrix of material). On the other hand, 
if one of the stress eigenvalues is large compared to the two other ones, then a 
rank-2 laminate is optimal {there is no lamination in the eigendirection of the 
dominating eigenvalue, and this microstructure looks like a matrix of material 
perforated by long pipes or channels (of holes) parallel to that eigendirection) . 
Let us also remark that, of course, Theorem 2. 5 is recovered by taking >. = 0 in 
Theorem 2. 6. 

As already mentioned in the introduction, Theorem 2. 6 has also been estab
lished by L . Gibiansky and A. Cherkaev in their unpublished work, Gibiansky, 
Cherkaev {1987}. Their proof (based on comparison between translation bounds 
and ad- hoc sequential laminates) is different from ours, and in our opinion, less 
systematic. 

From a practical point of view, and apart from the proof of Theorem 2.6, it 
remains to compute the Hooke's law of a rank-N sequential laminates, having 
mutually orthogonallamination directions, from the lamination formula (2.1). 
In view of applications in shape optimization (see Allaire, Francfort, 1993 where 
a stress- based formulation is used), we need to compute A*_, rather than A* 
itself. This is the focus of the next section. 
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3. Hooke's law of an orthogonal rank- N sequential lami
nate 

By definition, a rank-N sequential laminate is said to be orthogonal if its lami
nation directions ( e;)!:=:;;:=:;N form an orthonormal basis of !RN. The purpose of 

this section is to invert the lamination formula (2.1), that is to compute A* -
1

, 

for such an orthogonal rank-N sequential laminate . Recall that its lamination 
parameters (m; h:=:;;:::;:N satisfy 

N 

0 :::; m; < 1 , L m; = 1. (3.1) 
i=1 

Let us introduce new parameters (a;)!:::;:;:::;:N defined by 

(3.2) 

Throughout the remainder of this paper we assume that the material A has 
positive Poisson's ratio, i.e. 

(3.3) 

Combining (3.1) and (3.3), it is easy to see that a; is bounded by 

PROPOSITION 3.1 The inverse Hooke's law A*-
1 

of an orthogonal rank-N se
quential laminate is defined by the following quadratic form 

with 

- 1 _ 1 1 - B 
<A* u,u > = <A u,u > + 

2118 
G(a;,u) 

G(a;, u) = t 1- ;D_ m· + L,N=1 a;ul; - :, (z::::,N=1 u;;) 2 
i,j = 1,i'j:j ' J 

( 
N )2 A Li= 1 (a;- 1)u;; 

+ -N >- N "' 1 - - "'._1 a; N~< '--• -

(3.4) 

where u;j denotes the entries of a symmetric matrix u in the orthonormal basis 
of lamination directions. 
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REMARK 3.2 The quadratic form (3.4) defines a coercive Hooke's law A* in 
dimension N 2 3 as soon as none of the parameters m; is zero, that is, if the 
material is effectively laminated in all the N directions e;. (Indeed, m; > 0 for 
1:::; i:::; N implies that 1- m;- mj > 0 for 1:::; i,j:::; N and i =f. j). Thus, 
in three dimensions, an orthogonal rank-3 laminate is a realistic composite ma
terial. On the contrary, in two dimensions, we always have 1 - m; - mj = 0 ! 
Thus, formula (3.4) is valid only for stresses 0' which are diagonal in the basis 
of lamination directions (i.e. such that O'ij = 0). In other words, in 2-D, an or
thogonal rank-2 laminate cannot support a stress whose eigendirections are not 
aligned with the lamination directions. This fact has previously been recognized 
by many authors (see Allaire, Francfort, 1993; Jog, Haber, Bendsoe, 1993 for 
comments). 

REMARK 3.3 In view of (3.1} and (3.3), it is easily checked that the denomi

nator 1- >..(NK-) - 1 '2:::~ 1 a; in formula (3.4) is always positive. Furthermore, it 
can be equal to zero if, and only if, it corresponds to a rank-one laminate (i.e. 
all m; but one equal to zero). In other words, an orthogonallaminate of rank 
at least 2 can support any stress which is aligned with its lamination directions 
(in any spatial dimension), while a rank-one laminate can support only stresses 
orthogonal to its single lamination direction. 

PROOF. The starting point is the lamination formula (2.1) which gives for any 
symmetric matrix t: 

Let us define a matrix 0' by 

N 

0' = L m; fA. ( e;) € . 

i = 1 

With this definition (3 .5) becomes 

_, 1 - B 
A* (J' = A- 1

0' + --t:. 
B 

N 

B L m; fA. ( e;) t: . (3.5) 
i =1 

(3.6) 

(3.7) 

Thus, it remains to computet: in terms of 0'. The degenerate Hooke's law fA. ( e;) 
is defined by (2.2) . This yields 

1 N [ +).. ] 
0' =A €- - A L m; (A t:e;) ® e;- -

2
1-L , <A t:e;, e; > e; ® e; , (3.8) 

j-L i=1 j-L +A 

where ® denotes the symmetrized tensor product of two vectors, i.e. ( u ® v );j = 
1/2(u;Vj +ujv;) . Since A € = 2J-Lt:+>..(trt:)I2, formula (3 .8) can be developed as 
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N 

(]" = 2J-L L (1 - m; - m j )t:;jei ® ej 
i,j=l,if.j 

N [ 2 m· A 
+ 2J-L L (1 - ~)c;; + --, (trt:) (1 - m;) 

i= l 2J-L + " 2J-L + " 

From formula (3.9), inverting the off- diagonal terms is easy 

{]"jj c . . - -~---=---....,-

'1 - 2J-L(1 - m; - mj ) 
if i =F j . 

G. ALLA IRE 

(3 .9) 

(3 .10) 

Using definition (3.2) of the parameters a;, the diagonal terms are solutions of 
a N x N linear system 

N 
A A "'"" a;(]";; t:;; + -

2 
, (trc)(1 - m;)a; - -

2 
, (~ mjEjj )a; = -

2
- . 

J-l + " J-l + " i=l J-l 
(3 .11) 

To invert system (3 .11), we compute trc and ;:f=1 mjEjj by summing adequatly 
weighted lines of (3.11). This gives the following simple two- by-two system 

A routine calculation leads to its solution 

_ 1 "'\'N . . . 2J:lA (;:;'::_, <>;)(;:;'::_, a ;m ; u; ; ) 
trc; - N~< L....i=l a,(]"., + Nt<(2J.l+A) N - >.. "'\'N . 

"' L ... li=l a , 

(3 .12) 

which has been simplified with the help of the following identities 

L:m[a; = 
2

1-l + >. 'L:m;a; - 1 , 'L:m;a;= 
2

i-l
2
+ >. L:a;-N . N (N ) N (N ) 

i=l 21-l i=l i= l J-l i= l 
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Combining (3.11) and (3.12) gives the diagonal terms of c: in terms of those of 0'. 

Finally, multiplying equation (3.7) by 0' and replacing c: by its value in terms of 
q yields the desired result (3.4) . 

4. Proof of Theorem 2.6 

From Proposition 2.2, we know that the lower optimal bound f(O', A, B) on the 
complementary energy of a perforated composite of density B is attained by 
a rank-N sequential laminate whose lamination directions coincide with the 
eigendirections of the stress 0'. Proposition 3.1 gives the value < A* _, 0', 0' > 
of the complementary energy of such a laminate in terms of its lamination 
parameters. Therefore, to obtain the value of the lower bound, it is enough to 
mmimize this quadratic form over these parameters. Using (3.4), this means 
that 

f(O', A, B) ( 4.1) 

with 

(4.2) 

where O'i denotes the eigenvalues of 0'. Remark that there is no contribution from 
the off-diagonal entries of 0' since, by definition, 0' is diagonal in the basis of the 
lamination directions. The minimization in ( 4.1) is subject to the constraints 

2p. +). 
1 :::; Cl!j :::; --).- ' 

which is equivalent to 0:::; m;:::; 1, and 

N 
" 1 _ N 2p. 
L...t ;:;:- - - 2u +). ' 
i = l • r-

which comes from 2:~ 1 m; = 1. 

(4 .3) 

( 4.4) 

Let us briefly explain our strategy for minimizing ( 4.2). First, by ignoring 
the constraint ( 4.3) (but not ( 4.4)), optimality conditions are easily obtained 
which yields the values of the optimal parameters a; in terms of 0'. In a sec
ond step, the constraint ( 4.3) will be tested for those optimal parameters, and 
according to the value of 0' there will be two cases. If it is satisfied, then the 
minimum value of ( 4.2) is attained for a rank-N sequential laminate corre
sponding to those parameters; if not, then one of the a; is set equal to 1 (i.e. 
m; = 0), and ( 4.2) will be minimized over N- 1 parameters only (correspond
ing to rank- N - 1 sequential laminates). It won't be necessary to iterate this 
process (i .e. investigating lower and lower rank laminates) since the second step 
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of this calculation will be completed only in the three-dimensional case (for the 
2-D case see Allaire, Kohn, 1993A). Finally, the value of the bound (4.1) and 
the different regimes of optimal laminates will be deduced from these optimal 
parameters. 

LEMMA 4.1 Consider the minimization of (4.2} under the sole constraint (4-4). 
The optimal parameters O:i (if any) satisfy 

c 
(4.5) 

O:j = IO'j + Dl ' 

where the constant C is given in terms of D by 

( 
2 ) -1 N 

C = N - h 2::: la-; + Dl 
J-l + i=l 

(4.6) 

and D is solution of the piecewise linear equation 

D ,\ (2J-l + ,\),\ 
+ N,_tro-- (2J-L+N.\)(2(N - 1)J-L+N.\) 

(~ 1:: : ~ I ) = 0 . 
(4 .7) 

PROOF. The optimality condition, with the constraint that L~l o:£ 1 is fixed, 
is nothing but 

8G(o:;, a-) _ C2 

oak - o:~ 

for some positive constant C . Differentiating ( 4.2) gives 

8G(o:;, a-) - [ ,\ L~l (o:;- l)o-; ]2 - -=------'- - O'k + - N 
oak N "- 1- _L "'._ 1 o:i N"' L.,z _ 

This yields ( 4.5) with the following value of D 

The constraint (4.4) gives the value of C in terms of D, while equation (4.7) is 
obtained from the above formula forD by replacing O:i by its value (4.5). One 
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can also check that for the optimal (a;), defined by (4.5), the function G(a;, 0') 

takes the value 

(4.8) 

The next step is to solve equation ( 4.7) to compute the constant D. In the 
general case, this requires a formidable amount of computation; many different 
cases have to be investigated according to the sign of 0'; +D. For this reason, 
from now on we restrict ourselves to the dimension N = 3 (recall also that we 
assume>. 2': 0). In 3-D, labeling the eigenvalues of the stress 0' such that 

(4.9) 

there are two basic cases to investigate for solving (4.7) : the first one corre
sponds to 0'1 + D 2': 0, and the second one to 0'2 + D 2': 0 2': 0'1 + D (the two 
remaining cases 0'3 + D 2': 0'2 + D and 0 2': 0'3 + D are obtained from the previous 
ones by symmetry, changing 0' to - 0'). 

(1) Assume 0'1 + D 2': 0. 

Then, equation (4.7) reduces to 

A (2p, + A)3A 
D + 3K trO'- (2p, + 3A)( 411- + 3A) (trO' +3D) = 0 , 

which gives the following value for D 

This yields 

2p, +A 
C = ---trO', 

4p, 
and a; = (2p, + A )trO' . 

4p,O'; + AtrO' 

However, the constraint ( 4.3) on the lamination parameters is 

which, using ( 4.10), is easily seen to be equivalent to 

( 4.10) 

(4.11) 
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Remark that condition (4.11) automatically implies the assumption u1 +D 2:: 0. 
In view of (4.8), the extremal value of (4.2) corresponding to (4.10) is 

2J.L +A 2 
G(a:;, u) = 2(2J.L + 3A) (u1 + 0"2 + u3) . (4.12) 

Together with the admissibility condition (4.11), it is nothing else than regime 
(2.9Aa), (2.10Aa) in Theorem 2.6. 

(2) Assume 0"2 + D 2:: 0 2:: u1 +D. 

Then, equation ( 4. 7) reduces to 

A (2J.L + A)A 
D + 3/i: tru- (2J.L + 3A)(4J.L + 3A) (u3 + 0"2- 0"1 +D)= 0, 

which gives the following value for D 

-A 
D = 4(J.L + A)2 ((J.L + A)(u3 + u2) + (3J.L + 2A)ul) 

This yields 

and 

(4.13) 

Now, the constraint (4.3) on the lamination parameters takes the form 

2J.L +A 2J.L +A 
1 ~ a:3 ~ a:2 ~ -A- , and 1 ~ a:1 ~ -A- , 

which, combined with (4.13), and after a few lines of calculation (it helps to 
remark that the denominator of a:;, i = 1, 2, 3 is positive), leads to 

{ 

0"2 2:: 0 2:: 0"1 

0"3 - 0"2 < -=-t::__(Tl - 1'+>-

0"3 + 0"2 2:: 1'-l>- 0"1 

(4.14) 

A tedious, but simple, computation shows that ( 4.14) automatically implies the 
assumption u2 + D 2:: 0 2:: 0"1 +D. In view of (4.8), the extremal value of (4.2) 
corresponding to (4.13) is 

2J.L+ A J.L+2A 
( )

2 

G(a:;, u) = 2(2J.L + 3A) u3 + u2- J.L +A u1 . (4.15) 
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Together with the admissibility condition (4.14), it is nothing else than regime 
(2.9Ba), (2.10Ba) in Theorem 2.6. 

If condition (4.11) ((4.14) resp.) is not satisfied in case (1) (case (2) resp.), 
it means that G( ex;, u) does not attain its extrema inside the domain defined by 
the constraints ( 4.3), ( 4.4), but rather on the boundaries of that domain, which 
are made of rank-2 laminates. Let us consider the case of rank-2 laminates 
in the directions e1 and e2, i.e. ma = 0, (the other cases will be obtained by 
symmetry). Taking into account that cxa = 1, we now have to minimize the 
simplified expression of G(cx;, u) 

with the new constraints 

(4.16) 

and 

_!__+_!__ = 2(Jl+A). 
CX! CX2 2jl + A 

( 4.17) 

The optimality conditions under the sole constraint ( 4.17) are still of the same 
type as in Lemma 4.1, and the optimal parameters are given by 

A A 

where the constant A is given in terms of E by 

and E is solution of the piecewise linear equation 

>. (2Jl + A)A 
E+ 2(>- +l')(ul + u2) - 4(Jl + .X)2 (lul + E l + lu2 + El)· 

( 
u1 + E u2 + E ) O 
lu1 + E l + lu2 +El = · (4.18) 

The solution of ( 4.18) is similar to that of ( 4. 7), but a lot simpler since the 
corresponding value of the optimal parameters always satisfy the remaining 
constraints (4.16). Keeping in mind the labeling convention (4.9), there are 
again two basic cases (the remaining ones being obtained by symmetry, changing 
u in - u). 
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(A) Assume u 1 + B ~ 0. 

Then, the solution of (4.18) is B = A(u1 + u2)/(2p), and the corresponding 
parameters are 

(4.19) 

The constraint ( 4.16) is equivalent to 

( 4.20) 

while the value of G( a;, u) is 

G(a;, u) = (u1 + u2)2 + O"~-
2

/-L ~ 
3

A (tru) 2
. ( 4.21) 

(B) Assume u2 + B ~ 0 ~ 0"1 +B. 

Then, the solution of (4.18) is B = -A(u1 + u2)/(2p + 2A), and the corre
sponding parameters are 

(2p + A)(u2- u1) 
a 1 = Au2 - (2p + A)u1 ' 

The constraint ( 4.16) is equivalent to 

while the value of G( a;, u) is 

( ) ( 2 2 2) 2p A 2 G a;, u = u1 + u2 + u3 - --, 0"10"2- A (tru) . 
f.L + /1 2p + 3 

(4.21) 

( 4.22) 

( 4.23) 

The cases of rank-2 laminates in other directions (i.e. m1 = 0 or m2 = 0) 
are obtained by simply permuting the indices 1,2,3 in the above formulas. As 
a matter of fact, the extremal values ( 4.21) and ( 4.23) of G( a;, u) are mini
mum values, among rank-2 laminates, since, in the limit of rank-one laminates, 
G(a;, u) goes to infinity (see Remark 3.3). Furthermore, these minimum values 
are easily checked to be always larger than the extremal values (4.12) and (4.15) 
for rank-3 laminates, which are therefore minimum values themselves. 

The proof of Theorem 2.6 can now be completed by simply seeking the 
best rank-2 laminates when the admissibility conditions for the existence of an 
optimal rank-3 laminate are not satisfied in cases (1) and (2) above. We can 
safely leave to the reader the task of comparing the different optimal rank-2 
laminates (i.e. m1 = 0, m2 = 0, or m3 = 0). We simply indicate the final 
result. If the compatibility condition (4.11) in case (1) is not satisfied, then 
the minimum of G( a;, u) is attained for a rank-2 laminate corresponding to 
case (A) above (this is regime (2.9Ab) and (2 .10Ab) in Theorem 2.6). If the 
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compatibility condition (4.14) in case (2) does not hold, then the minimum of 
G( ai, ()) is attained for one of the following two rank-2 laminates : if ()3 - ()2 ?: 
- p.(p. + >.) - 1()1 , case (B) above is optimal (this is regime (2.9Bc) and (2.10Bc) 
in Theorem 2.6), and if ()3 + ()2 ::=; -p.(p. + >.) - 1 ()1 , interchanging directions 1 
and 3 in case (A) (i.e. m1 = 0) gives the optimal result (this is regime (2 .9Bb) 
and (2.10Bb) in Theorem 2.6). 

Let us conclude by remarking that a rank-2 laminate is required when one 
of the eigenvalues of the stress is large compared to the two other ones, and 
that, in such a situation, there is no lamination in the eigendirection of the 
dominating eigenvalue. 
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