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This paper is concerned with a potential method in a class of 
shape optimization problems. Potential representations are used to 
derive characterizations of the first variations of solutions of bound­
ary value problems when the domains on which the boundary value 
problems are defined are varied. In view of these characterizations, 
the first order necessary condition is derived for each of the shape 
optimization problems. A counterexample is given to show that the 
potential method is not omnipotent . 

1. Introduction 

In this paper, we shall study a potential method for deriving a boundary value 
problem that defines a function called the first order variation of the solution 
of the original boundary value problem. This variation of the solution will play 
an important role for deriving the first-order necessary optimality condition 
for shape optimization problems. Shape optimization problems are problems, 
Fujii (1986A) - Fujii (1990), in each of which an objective functional, de­
pending on (the shape of) a domain through the solution of a boundary value 
problem defined on the domain, must be minimized or maximized with respect 
to the domain. Pironneau (1973,1974) systematically studied the minimum 
drag problems, typical shape optimization problems, in both Stokes flows and 
Navier-Stokes flows. Zolesio (1981) developed his material derivative method 
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for sensitivity analysis of shape optimization problems. Sokolowski and Zole­
sio (1985) applied the material derivative method to sensitivity analysis of an 
elastic-plastic problem. Goto and the present author, Goto, Fujii, Muramatsu 
(1987,1990), studied shape optimization problems with a Neumann problem as 
a constraint. They gave the second-order necessary conditions for optimality 
using Taylor expansion to get variations of the solution. In this paper, we shall 
deal with the same problems using a different device, a potential method. 

. In section 2, we shall give the problem statement and the way for deriving the 
fiMt-order necessary optimality condition. In section 3, the potential method 
will be explained. In this paper, we shall confine ourselves to Neumann problems 
as a constraint . 

2. Problem and first- order necessary condition 

Let Rn ben-dimensional Euclidean space. Let 0 be a domain in Rn (n 2: 3); let 
r =: 80 be its sufficiently smooth boundary. Let sufficiently smooth functions 
k( x), f( x), h( x), and r( x) be defined in R n. Let a sufficiently smooth function 
g( x, u) be defined in R n x R. Let us consider the following boundary value 
problem (Neumann problem): 

Llu(x) - k(x)u(x) 

au (x) 
an 

f(x) 

r(x) 

(x E 0), 

(x E r), 

(1) 

(2) 

where we assume that k( x) 2: 0 ( k( x) =/= 0). Here, L1 is the Laplacian operator 
defined by 

82 82 82 
L1 = - + - +···+-- axy ox~ ox~ 

and a 1 an denotes the directional differentiation along the outward normal n. 
This boundary value problem admits, Courant (1962), a unique solution. We 
introduce as an objective functional the functional of solution u of the above 
boundary value problem, 

J(n; u) = l g(x, u) dx. (3) 

We require that the domain 0 satisfy 

l h(x)dx = x:(const .); (4) 

this constraint is a generalization of the requisition of constant volume. 
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PROBLEM STATEMENT 

Our problem is to find a domain n that minimizes the functional (3) of u, the 
solution of (1) and (2), under the constraint (4). 

In general, it is very difficult to find an analytical solution for this problem. 
Therefore, we shall look for necessary conditions for optimality, which help us 
to find an optimal domain numerically. In what follows, we assume that this 
optimization problem has a solution n. Then, the following question arises. 
What conditions must n and corresponding u satisfy? In order to answer the 
question, we begin with the definition of the first variation 8( 1)] of J(O; u) . 
Let p(x), (x E f) be a given sufficiently smooth function defined on boundary 
r . Let f be an arbitrary positive number. We consider at each point on r the 
normal and plot on it the segment Ep(x) , so that positive values of Ep(x) lie on 
the outward normal ii. If f is small enough, the end points of the segments form 
a smooth closed surface which encloses a new domain; hereafter, the surface will 
be denoted by r,, and n, stands for the new domain. We shall sometimes use 
the notation 8n = Ep; 8n will be called the boundary variation. If we substitute 
n, for n in boundary value problem (1) and (2), we get a new boundary value 
problem. Let u, be its solution. For newly obtained n, and u,, the objective 
functional is given by 

(5) 

Let o(E) denote quantities such that o(E)/f--+ O(f--+ 0). Let us define the first 
variation 8( 1)] by 

(6) 

In order to calculate this variation 8( 1)], we have to clarify the first variation cjJ 

of u defined by 

u,(x) - u(x) = c:cfi(x) + o(E). (7) 

To this end, we need a lemma. 
Let us consider a function w( x) which is twice continuously differentiable in 

n and continuous on nu r (i .e., w E C(IT) n C 2 (r2)), where n is a bounded 
domain with smooth boundary r in n-dimensional space Rn (n 2: 2). It is well 
known, Courant (1962), that w has the following potentiai representation: 

w(x) - { w(y) 
0
° U(x, y) df y + { 0

0
w(y) U(x, y) df y 

lr ny lr ny 

-l Llyw(y) U(x, y) dy (x E r2). (8) 
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Here, subscript y denotes the operation with respect toy. Function U(x, y) is 
a fundamental solution of .1 and is given by 

{ 

1 1 
- log--

u( ) _ 27r lx - Yl 
x,y - 1 

n(n- 2)wn lx - vln - 2 

(n = 2), 

(n ~ 3), 
(9) 

where Wn denotes the volume of the unit ball in Rn. The first term of the 
r.h .s. of (8) is called a double layer potential with density w(x); it is harmonic 
everywhere except on boundary r. The second term of the r.h.s. of (8) is called 
a single layer potential with density (fJw) l (fJn). Hereafter, let F(x) denote the 
single layer potential with density a(x) . Function F( x) is continuous throughout 
R n . It is also harmonic everywhere except on boundary r. More precisely, it 
satisfies 

.1F(x) = 0 (x (/_ r) . (10) 

On the other hand, its derivatives are discontinuous on r. In particular, we 
know that the following relation 

fJF fJF 
- !l = Wna(x) (x Er) (11) 

fJn + un-
is true, Courant (1962), for directional differentiation along ii, where ( fJF I fJn )+ 
denotes the limit from the outside and ( fJF I fJn )-, from the inside. The third 
term of the r .h .s. of (8) is a volume (Newtonian) potential with density .1w. 
Let G(x) be a volume potential with density fJ(x). It is well known, Courant 
(1962), that 

.1G(x) = - fJ(x) (x E 0) (12) 

holds . 
According to conventions, we shall call u( x) ( x E f) Dirichlet data and 

fJu l fJn(x) (x E f), Neumann data of u. Let w(x) be a function whose Neumann 
data are not known. Let its potential representation be given by 

w(x) - f w(y) >;a U(x,y)dfy + f a(y)U(x,y)dfy 
Jr uny Jr 

-l<1yw(y) U(x, y) dy (x E 0) . (13) 

Then the following question arises. Are the Neumann data of w(x) a(x)? In 
other words: does the relation aw(x)lan = a(x) (x E f) hold? As an answer 
to this question, we have the following lemma: 

LEMMA 2.1 Let n ~ 3. If a function w(x) is represented by {13}, then 

holds. 

aw (x) = a(x) 
an 

(x E f) (14) 
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REMARK 2.1 If n = 2, then the corresponding assertion is false . 

The proof of Lemma 2.1 and a counterexample for n = 2 will be given in the 
next section. If we use Lemma 2.1, we can characterize the first variation <P of 
u under looser assumptions for derivatives of u and uE. 

Let us confine ourselves to the case of n = 3 till the end of this section. We 
place the following assumption: 

AssUMPTION 2.1 We assume that there exists a function <P for u and uE such 
that 

uE(x) - u(x) = £</J(x) + o(f) (15) 

hold. Here {15} agree with (7). 

Under this assumption, we can discuss as in Fujii (1986B) and (1986C) using 
potential representations of u and uE to obtain the characterization for </J. In 
fact, we have the following expression for <P( x): 

<P(x) = - f <fJ
0
° U(x,y)dry 

Jr ny 

{ { ( 8
2
u or ) + lr - 8n2 (y) + on (y) p(y) 

+ gradrp(y) · gradru(y) }u(x, y)dfy 

-l k(y)</J(y)U(x, y)dy. (16) 

Here, gradr denotes the gradient operator on boundary r . In view of (12) and 
the fact that single layer and double layer potentials are harmonic in n, we can 
observe that 

Ll</J(x) - k(x)<fJ(x) = 0 (x E'n) (17) 

holds . Applying Lemma 2.1 to (16), we see that <P satisfies 

(18) 

Thus, we see that <Pis the solution of boundary value problem (17), (18). 
Using these equations, we can obtain an expression for the first variation 

oC 1)J of J(n; u) as 

oCl)J = [ p [g(x, u) + p(x) { ~:~ - ~:} + divr(p(x) gradru)] df. (19) 
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Here, divr stands for the divergence operator on boundary r. The new function 
p( x) is called the adjoint variable and is defined by 

Llp(x) - k(x)p(x) = ~~ (x) (x E D), (20) 

ap (x) = 0 an (x E f). (21) 

On the other hand, n, and n must satisfy (4) . This means that p must satisfy 

£ p(x)h(x) df = 0. (22) 

Since, n is the solution of the optimization problem, 6( 1) J represented by (19) 
must be 0 for all p that satisfy (22) (condition of stationarity). Hence, we get 
(see Goto, Fujii, Muramatsu, 1987, 1990) 

THEOREM 2.1 If domain n is an optimal domain, forthe corresponding solution 
u of (1), (2) and solution p of (20), (21), there exists a constant). such that 

g(x,u) + p(x) {~:~(x)- ~:} 
+ divr (p(x) gradru(x)) .Ah(x) (x E f) (23) 

holds. 

We have given an outline of deriving the first-order necessary optimality condi­
tion. 

3. Proof of Lemma 2.1 

Lemma 2.1 played an essential role in the former section. Lemma 2.1 is a classi­
cal result; however, the author does not know the statement as well as the proof 
in any other article. In this section, we give the proof and a counterexample for 
the case of 2-dimensional space . 

For the time being, let n 2: 3. Let D be a bounded domain in Rn with 
smooth boundary r. 
LEMMA 3.1 Let a function F(x) (x ERn) be defined by 

F(x) l a(y) U(x, y) dfy . (24) 

Then, if 

F(x) 0 (x E D) (25) 

holds, 

F(x) 0 (26) 

holds. 
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PROOF. Formula (24) means that F(x) is a single layer potential with density 
a(x) on r. As is pointed out in the former section, F(x) is continuous in the 
entire space. Thus, from (25), we see that 

F(x) = 0 (x E r). (27) 

Choose a point xo in the interior of D and fix it. Let us consider a ball of radius 
Ro with its center at Xo such that the ball contains D in its interior . Let f be 
an arbitrary positive number . Let us consider a sphere S of radius R with its 
center at x0 such that R > Ro and 

(R - Ro)n- 2 > ( 1 

2
) { ia(x) l df 

£n n- Wn lr 
(28) 

hold. Let D' be the domain surrounded by Sand by f. Let us estimate F(x) 
at x on S. From the representation (9) for U(x, y), we obtain the estimate 

IF(x) l llr a(y)U(x, y) dfy I 

S fr ia(y)l n(n - 2)w: lx- Yln-2 dfy 

S n(n - 2)w)R - Ro)n- 2fria(y) i dfy, 

using lx- Yi 2: (R - Ro). In view of (28), we get the estimate 

IF(x)l < £ (x E S). 

(29) 

(30) 

As is noted in the former section, F(x) is harmonic in D'. Hence, the maximum 
principle, Courant (1962), is applicable to the modulus of F(x). Namely, the 
maximum of the modulus ofF( X) in D' u r us is attained on r or on s. Thus, 
from (27) and (30), we can see that the estimate 

IF(x) l < £ (x E D') (31) 

is valid. Since £ is arbitrary and R is arbitrary, provided that it is large enough, 
we finally obtain 

F(x) = 0 (x E Rn - D). 

Therefore, from (25), (27), and (32), we observe that (26) holds. 

LEMMA 3.2 If the identity 

F(x) = l a(y)U(x,y)dfy = 0 

holds, we have 

a(x) = 0 (x E f). 

(x E. D) 

(32) 

• 
(33) 

(34) 
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PROOF. From Lemma 3.1 and (33), we see that 

F(x) = 0 (35) 

holds. In particular, 

aF = aF = O 
an- an - (x E f) 

holds. Function F(x) has been a single layer potential with density a(x ). Hence, 
from (11), we can see that (34) holds. • 

Now, we are in a position to prove Lemma 2.1. 

PROOF OF LEMMA 2.1 

There are two expressions (8) and (13) for w( x). If we subtract both sides of 
(13) from both sides of (8), we get 

t (%~ (y)- a(y)) U(x,y)dfy = 0 (x E D). (36) 

If we apply Lemma 3.2 to this expression, we obtain 

aw an (x) = a(x) (x E f). (37) 

This is nothing but the conclusion (14) of Lemma 2.1. • 
As for 2-dimensional spaces, the statement corresponding to Lemma 2.1 is 

not valid. Let us give a counterexample showing this fact. Let f be the unit 
circle with its center at the origin of R 2 . Let D be the unit disk surrounded 
by r. Let k be a constant. Let us define a function G(x) by 

G(x) =: f kU(x,y)dfy = 2_ f k log-l -
1
-

1 

dfy. lr 21r lr x- y 
(38) 

Let us show that G(x) = 0 (x E D). Since IYI = 1 (yE r), we see that 

G(O) = 2_ f k log-l
1

l dfy = o. 
27!' lr Y 

(39) 

On the other hand, from its definition, it is obvious that G(x) remains invariant 
with respect to rotation around the origin. Therefore, it is a function of only 
r = lxl; we can write G(r) instead of G(x). Since G(r) is harmonic in D, we 
can apply the mean value theorem, Courant (1962), to G(r). More precisely, 
for every circle SR with radius R (0 < R:::; 1), 

0 = G(O) = - 1
- f G(R) dSR, = G(R) 

27l'R lsR (40) 
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Since R is arbitrary, we have shown that 

c ( x) = fr k u ( x, y) dry = o (x E 0) ( 41) 

holds. A sufficiently smooth function u( x) has its potential representation: 

u(x) = { u(y) ,a U(x,y)dfy + { a~(y) U(x,y)dfy 
Jr uny Jr uny 

l Llyu(y) U(x, y) dy (x E 0). (42) 

Adding both sides of ( 41) to both sides of ( 42), we obtain 

u(x) = lr u(y) a~y U(x,y)dfy + fr (a;~~) +k) U(x,y)dfy 

lLlyu(y)U(x,y)dy (xEO). (43) 

If we apply to the above the assertion corresponding to Lemma 2.1, for any k, 
we get 

(x E f). (44) 

This is a contradiction. Therefore, Lemma 2.1 is not true for the case of n = 2. 

4. Concluding remarks 

In this paper, we gave an outline of deriving the first-order necessary condi­
tion for a class of shape optimization problems. In each of these problems, 
a Neumann problem has been the constraint. We also showed that potential 
representations for solutions of Neumann problems play an important role. Be­
cause of the existence of a counterexample for n = 2, we did not adopt potential 
representations in Goto, Fujii, Muramatsu (1987) and (1990); however, we had 
to assume the smoothnesses of the higher derivatives of the solutions and their 
variations. If we use potential representations, we have only to assume the 
smoothnesses of the lower derivatives. This fact is an advantage in developing 
the theory of shape optimization problems; we can much reduce the efforts of 
showing the smoothnesses of the derivatives. However, the counterexample for 
n = 2 shows that the potential representations are not omnipotent. Further­
more, the counterexample tell us that characteristics of boundary value problems 
depend not only on the type but also on the dimension of the space considered. 

Deriving the first-order necessary optimality condition produces numerical 
methods as by-products. These numerical methods are very important for engi­
neering. As for mathematical problems, existence problems as well as sufficient 
optimality conditions (see Fujii, 1994) are left. 
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