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In the present paper the structural sensitivity and optimization 
of linear elastic frames with elastic hinges is discussed. The sensi
tivity analysis is carried out with respect to hinge location, stiffness 
and prestress . The sensitivity operators for structural response for 
load combined with initial distortions, forced vibrations, eigenvibra
tions and buckling are derived using unified variational approach. 
Illustrative numencal examples are presented. 

1. Introduction 

Structural engineers often design internal hinges or semi rigid joints in beam or 
frame structures. The reason is that these connections can facilitate manufac
turing and erection process and therefore diminish the cost of the structure. 
For example the hinges are often designed in prefabricated reinforced concrete 
frames, whereas the semi rigid joints are widely used in steel frames. The second 
reason for designing flexible connections is that they can improve the static or 
dynamic response of a structure by decreasing its stiffness and increasing com
pliance. Lower stiffness is particularly advantageous when high distortions are 
induced in a structure, e.g. due to temperature changes or imposed displace
ments, Garstecki, Mr6z (1987). 

Computer analysis and experimental study of structures with semi rigid 
connections and connections with gaps have recently focused great attention, 
Gawycki (1992). Application of optimization formalism to finding of the best 
position and stiffness parameters of joints can remarkably improve the struc
tural response, Garstecki (1988), Garstecki, Thermann (1992). The effects of op
timization of joints can be similar to the effects of optimization of supports since 
the joints can be considered as internal constraints connecting substructures, 
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whereas supports play the role of boundary constraints. The problem of opti
mal position and stiffness of supports has been discussed in a number of papers 
e.g. Akesson, Olhoff (1988), Garstecki, Mr6z (1987), Mr6z, Rozvany (1975), 01-
hoff, Akesson (1991), which demonstrated the practical applicability of derived 
sensitivity operators and optimality conditions. 

In the present paper the structural sensitivity of linear elastic frames with 
elastic hinges is discussed. The sensitivity operators with respect to variations 
of hinge position, stiffness and prestress are derived. For better understand
ing only simple types of hinges will be considered, where the discontinuity 
of the slope of deflection line occurs, however, the theory can easily be gen
eralized for joints in which discontinuities of other kinematic fields occur, for 
example the discontinuity of displacement field or torsion angle. The formu
lation can also be extended to plates, Dems, Mr6z (1992). 

Section 2 is devoted to structures subject to static load and to initial dis
tortions. Forced vibrations are considered in Section 3. In Sections 4 and 5 
the sensitivity of eigenfrequency and buckling load are discussed, respectively. 
Generalization of the theory is discussed in Section 6. Section 7 presents nume
rical examples which illustrate the application of the derived formulae. Section 
8 contains concluding remarks. 

2. Structures subject to load and initial distortion 

Consider a frame or beam structure, illustrated schematically in Fig.la. The 
beam is rigidly supported at the point a and elastically supported at the point 
b with stiffness coefficient J{b. Let Rb denotes the reactions, whereas u de
notes transverse displacement. For brevity we will use the simple beam theory, 
hence M and k denote the bending moment and curvature k = -u" , respec
tively. The generalization to bending combined with longitudinal strain or to 
Timoshenko beam theory is straightforward. In the latter case M and k 
should be replaced by vectors of generalized stress and strain, M = {M, T} 
and k = { k, v}, where T and v denote shear force and average shear strain, 
respectively. 

Assume that there is an elastic hinge at an unspecified point x = Xz , where 
the discontinuity of the slope of deflection line occurs with a step "-z 

(1) 

which for brevity will be called hinge rotation. 
Let us assume that the structure is subject to load p (Fig. la) and that initial 

distortion ki is induced. Note that in general ki is kinematically inadmissible, 
therefore elastic strain ke occurs so that the total strain k is admissible, where 

(2) 

Here D denotes the bending stiffness coefficient. In the case of simple beam 



Structural sensitivity analysis a.nd optimal design of frames with respect to joint location 409 

a) mnJTip 
t j 

u 

Figure 1. Elastic beam. a) Original structure: displacement field and its varia
tion. b) Adjoint structure. 

theory D = E I. In the case when M and k represent vectors of generalized 
stress and strain then D represents a cross sectional stiffness matrix. 

As a measure of structural response the following functional will be assumed 

G= 1F(u,M)dx (3) 

where F is an arbitrary Gateaux differentiable function of displacements u 

and stress M and the integration is performed over the length of all structural 
elements. The functional (3) can play the role of the objective function or 
constraint. 

Our aim is to find the sensitivity derivatives of the functional (3) with 
respect to small variations of the scalar control parameters specifying the joint 
at Xz. Figure la also shows the structure for which Xz , Kz and Mz take the new 
values x;. , K;* and M;. , whereas the external load p and initial distortion ki 
remain unchanged. All kinematic and static fields of this structure are indicated 
by the superscript asterisk. 
The variation of (3) takes the form 

f (oF oF ) 
8G= }L ou8u+ oM{JM dx (4) 

where the variations 8u = u* - u and 8M = M* -M (Fig.la) are implicit 
functions of variations Dxz, DKz and 8Mz. In order to transform ( 4) to an explicit 
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form we introduce an adjoint problem. Assume that the adjoint structure, 
which is shown in Fig.1b, is similar to the primary structure and is subject to 

the fictit ious load p and initial distortion ki 

8F 
p(x, t) = 8u' 

- i 8F 
k = aM (5) 

The respective kinematic and static fields of the adjoint structure will be indi
cated by bar. The virtual work theorem with the use of forces from the adjoint 
problem (Fig.1 b) and variations of the primary kinematic fields (Fig . la), yields 

i (pou - M ok) dx + Mz K.z- MZ* K.;.- Mz(k;_- kz+) OXz 

+Rb Oub = 0 (6) 

Conversely, using adjoint kinematic fields and variations of primary static fields 
we obtain 

Henceforth we will use the notation for the integrals JL ... dx = J;- ... dx + 
fzL+ ... dx where the integration is performed with the extraction ofthe singular 
point x = x 2 • The integrals on the infinitely small region OXz = Xz+ - x2 _ are 
represented in (6) and (7) by the terms standing with OXz. Subtracting (6) 
from (7) we obtain 

i (pou - M ok + k oM) dx = -Mz K.z + Mz• ~~:;.+ 
-(M;- Mz)Rz + Mz(k;_- kz+) OXz - (M; - Mz)Rz+ OXz + 
- Rb oub +oRb ub = o (8) 

Let us first transform 
- - - -i -e - i 

-M ok + kbM =-M ok + (k + k ) oM = k oM (9) 

because M oke = D I;" oke = I;" D oke = ke oM. Introducing (9) into (8) and 
comparing it with (5) we see that the left-hand side of (8) is equal to oG in (4) . 
Let us also observe that due to the same support stiffness f{b in primary and 
adjoint structures, the last two terms in (8) vanish, because Rb oub = KbUb oub = 
Ub oRb. 
Since all variations are infinitely small we can write 

(10) 

(11) 
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because u~- -u~+ = kz- -kz+ = 0. Using (9)-(11) and retaining only the terms 
linear with respect to variations we transform (8) to the form 

(12) 

Note that the variations DKz and 8M2 are mutually dependent since they have to 
satisfy the physical law of the joint. Let us consider elastic hinge with stiffness 
coefficient Kz and initial distortion K~. Denoting by Kz the total hinge rotation 
and by K; its elastic part we can write 

(13) 

Hence 

(14) 

Assume that the initial distortion in the hinge of the adjoint structure (Fig.1b) 
is equal to zero, If; = 0, and the hinge stiffness /{ z = Kz. Therefore 

(15) 

Substituting (13)-(15) into (12) we can express the variation of G expli
citly in terms of variations of location Dxz, stiffness 8Kz and initial distortion 
of the hinge OK~ 

(16) 

Here Kz and Kz denote the total hinge rotations in the primary and adjoint 
structures, K; denotes the elastic part of Kz according to (13), Mz denotes 
the adjoint bending moment in elastic hinge, and M~ denotes the shear force. 

The formulae (12)-(16) can be applied to various particular problems of opti
mal design and active control of structures. In the classic case when the structure 
is subject to loads only and the functional G coincides with the total comple
mentary energy, then according to (5) p = 0, whereas the initial distortion 

is equal to the total primary strain ki = k which is kinematically admissible. 
Therefore ke = 0, M= 0 and Mz = 0, hence the variation (16) reduces to 

(17) 

From (17) it follows that extremum condition for 8G with respect to Ox 2 

reads T2 Kz = 0. Minimum compliance will be for Kz = 0 and maximum for 
Tz = 0. 
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In the following particular types of joints will be discussed. 

Perfectly rigid joint with initial distortion. 

Subject to sensitivity analysis is hinge location Xz and initial distortion /\:~ , 
whereas the elastic parts of rotations vanish, /\:; = K.; = 0. Hence the variation 
(16) takes the form 

(18) 

I deal hinge. 

In this case bending moments vanish, Mz = M z = 0, and the variation (16) 
reduces to 

(19) 

Cost of joint taken into consideration. 

Let us express the cost of joint as a function of generalized stress in the joint 
f = f(Mz), Rozvany, Mr6z (1975) . Consider a functional 

G = 1 F(u, M) dx + f(Mz) = 1 [F(u, M) + f(Mz) 8(x - Xz) ] dx (20) 

where o(x - xz) denotes Dirac's pseudo function. The initial distortion imposed 
on the adjoint structure will be equal to 

- i oF of 
k = oM + oMz o(x- Xz) (21) 

We notice that to allow for the cost of joint the concentrated initial distortion 
must be superimposed on the initial distortion and load, which were specified 
by (5). 
The derived formulae for sensitivity derivatives remain valid. 

3. Forced vibrations 

Consider again a frame type structure, illustrated schematically in Fig.1a. Let 
the structure be subjected to arbitrary load p(x, t) with vanishing initial dis
tortions . Small vibrations without damping are allowed for. We restrict the 
sensitivity analysis to the following functional 

G = fl f F(u)dxdt 
}to }L 

(22) 

with specified time interval (to, tt). In a special case the function G can represent 
the displacement at a prescribed point xa, then F(u) = u(x) o(x - xa), with 
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b(x) denoting the Dirac pseudo-function. More general behavioral functionals 
as those proposed in Haug, Choi, Komkov (1986) can easily be introduced . 
We will derive the sensitivity derivatives of (22) with respect to variations of 
hinge position bxz and hinge stiffness bl{z. For the sake of completeness we will 
allow for variations of the distributed cross section area bA and stiffness bD , 
too. 
Figure la again illustrates the structure for which the above control parameters 
take new values Xzo , K; and A* , whereas the external load remains unchanged. 
Assuming the Gateaux differentiability ofF, the variation of (22) takes the form 

it, j oF 
bG = -;;;- bu dx dt 

to L uU 
(23) 

where the variation bu = u* - u (Fig.la) is an implicit function of variations 
bxz, bKz, 6 A. In order to transform (23) to an explicit form we introduce again 
the adjoint struc.t.ure, shown in Fig.lb. It is similar to the primary structure 
and is subject to the fictitious load 

oF 
p(x, t) = ou (24) 

The virtual work theorem with the use of forces from the adjoint problem 
(Fig.l b) and variations of the primary kinematic fields (Fig. la), yields 

1: 1 {1 (pbu- pA:ri'bu- M bk) dx - Mz liz- Mzo ,.,;.+ 

-Mz(k;_- kzq.) OXz + Rb DUb} di = 0 (25) 

Conversely, using adjoint kinematic fields and variations of primary dynamic 
fields we obtain 

1:' {1 [-p(A*u*- Au) u- bMk] dx- (M;- Mz)~z+ 

+(M; - Mz )kz+ OXz + bRb Ub } di = 0 (26) 

where u = o2 u/ ot 2 and k = -u" = -82 u/ 8x 2
. The physical relations for the 

primary and adjoint structures are 

M=Dk, M=Dk 

and the respective relations for the hinge are represented by 

For small variations we can write 

bM = ~~ bAk+Dbk 

(27) 

(28) 

(29) 
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A*ii* - Aii = 8A ii + A 8ii 

A. GARSTECK! 

(30) 

(31) 

Let us subtract (25) from (26) with the introduction of (10), (11), (29)-(31). 
Retaining only the terms linear with respect to variations we obtain 

i t, J p8udx dt = 
to L 

1:' {[ [pA'ii8u - pA8iiu - p8Aiiu - ~~ 8Akk] dx+ 

+(M~ K:z + M~ ~z) bXz- K:z Kz 8Kz } dt (32) 

The integrands containing ii and 8ii can be integrated twice by parts with respect 
to time assuming the following initial conditions for the primary structure 

u(x, to)= uo(x), u(x,to) = vo(x) (33) 

and the terminal conditions for the adjoint structure, Haug, Choi, Komkov (1986) 

u(x, tl) = 0, 'ii(x, tl) = 0 (34) 

Using (23) and (24) we transform (32) to the following explicit expression for 
the variation of G 

8G = 

(35) 

where M~ represents the shear force at x = Xz. Note that the sensitivity 
operator with respect to 8A has been known in the literature, Haug, Choi, 
Komkov (1986) . 

Formula (35) can be applied to particular problems. The most common 
practical design problem consists in minimizing the amplitude of vibrations 
induced by harmonic load p = p( x) sin wt. Consider the steady state harmonic 
vibrations 

u(x, t) = u(x) sinwt (36) 

where ' indicates the amplitude. The objective functional can be assumed in 
the following form 

G = r u2 dx = ~ {T J [u(x, t)F dx dt (37) 
}L T Jo L 

with T = 2n'jw. According to (24) , the load of the adjoint structure is also 
harmonic, namely 

p = iu(x, t) = iu(x) sinwt 
T T 

(38) 
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and hence the steady-state adjoint vibrations are 

u(x, t) = t (x) sinwt (39) 

Introduction of (36) and (39) into (32) and integration with respect to time 
t = (0, T) with boundary conditions 

u(x, t) = u(x, t) = 0 (40) 

for t = 0 and t = T yields the sensitivity derivative of (37) 

oG = ~ {1 [pw 2ut - (aDjaA)kk ] oA dx+ 

( 41) 

Finally, consider the special case when the concentrated load P is applied 
at the point x = x 0 , namely 

p(x,t) = Po(x - x0 )sinwt (42) 

Assume the objective functional as the square of the amplitude at x = x 0 

(43) 

then, the adjoint structure is loaded with a concentrated force 

- () 4 , . P t = Tu0 smwt (44) 

The adjoint displacement t is proportional to u, namely t ( 4u0 j FT)u . 
Using the chain rule of differentiation 8(u5) = 2uo 8u0 we obtain from (41) 
the variation of the amplitude of the displacement under the concentrated force 

8u0 ~ {1 [pw 2uu- (8Dj8A)kk] oA dx+ 

+2M~ Kz OXz - Kz Kz {jf{z } 

4. Eigenvibrations 

(45) 

In the present Section we will examine the sensitivity of eigenfrequencies with 
respect to variations Oxz , 8Kz and 8A(x) . In the following one we will allow 
for a step-wise change of cross section Az+ - Az- and stiffness Dz+ - Dz- and 
hence the step of curvatures kz+ - kz- . Consider once more a structure shown 
in Fig.1a assuming the external load to be equal to zero, p(x, t) = 0. Let ~; 
denote the square of eigenfrequency i, and ui the respective eigenfunction. For 
brevity the subscript i will be neglected henceforth. The eigenfunction u and 
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its variation liu = u*- u is shown in Fig.1a. The state equation can be written 
in the following form 

f (Dkk- Apeuu) dx + Kz Kz Kz + L Kb Ub ub = 0 
jL b 

(46) 

where JL . . . dx = J;- ... dx + fzL+ ... dx. The last term in (46) represents the 
work of elastic supports. The variation of ( 46) yields 

l [ ~~ kk liA + 2Dk lik- peuu liA- 2Apeu liu- Apuu lie] dx+ 

+ [-(Az-- Az+)PeUzUz + Dz- kz- kz-- Dz+ kz+ kz+] lixz + 
+liKz Kz Kz + 2Kz Kz liKz + 2 L Kb Ub liub = 0 

b 

(47) 

The terms with multiplier 2 in ( 47) can be transformed with the use of virtual 
work equation. Accouning for the singularities of variations 8u and lik at x = Xz, 
we can write 

[ (Dk lik- Apeu liu) dx + Kz Kz (liu~-- liu~+)+ 

+Tz (liu~+- liu~_) + L Kb Ub liub = 0 
b 

(48) 

where liu~+- liu~- = Kz lixz and Tz = Mi. Subtracting (48) multiplied by 2 
from (47) and using (49) 

(49) 

we obtain the formula for the variation of the eigenvalue 

lie = JL A:uu dx {[ [ ~~ kk- peuu] liA dx 

+ [(Az+ - Az- )peuzUz + -Mz( kz- - kz+)- 2Tz Kz] 8xz 

+~~:z ll:z liKz} (50) 

The term Mz( kz- -kz+) represents transport of mass due to stepwise change 
of A at z = Z*. Formula (50) can also be used for maximization of the distance 
of adjacent frequencies, Olhoff, Parbery (1984). 

5. Buckling 

Consider a beam or frame structure schematically illustrated in Fig.1a. Assume 
that the transverse load p vanishes and that the structure is subject to the axial 
loading, so that before bifurcation only the axial inner forces are induced. For 
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brevity we will limit the considerations to one axial force P applied at the point 
b and we will assume rigid supports, hence ub = 0. The state equation and its 
variation take the following forms 

i (Dkk- Pu'u') dx + Kz K.z K.z = 0 (51) 

1 ,[ ~~ kk 6A + 2Dk 6k- u'u' 6P- 2Pu' 6u'] dx+ 

+ [Dz- kz- kz-- Dz+ kz+ kz+- Pu~- U~- + Pu~+ U~+] OXz + 
+6Kz K.z K.z + 2Kz K.z OK.z = 0 (52) 

The virtual work theorem yields 

i (Dk 6k- Pu' 6u') dx + Kz Kz (6u~-- 6u~+)+ 
+Tz (6u~+- 6u~_) = 0 (53) 

Subtracting (53) multiplied by 2 from (52) we arrive at the formula for the 
variation of critical force P 

6P = 1 {1 an J d .<::~Akk6Adx+[Mz(kz+-kz_)-2TzK.z+ (54) 
L U

1
U

1 
X L u 

-P(u~- + u~+) Kz] OXz + K.z K.z 6Kz} 

Note that M:_ = Tz + Pu~ and M:+ = Tz + Pui+ , hence the square bracketed 
term in (54) can be written in the equivalent form : 

Mz(kz+- kz-)- (M:_+ M:+)Kz . 

The formula (54) remains valid for elastically supported structures and can 
easily be generalized for the case of proportional loading, when the structure is 
subject to a set of forces. 

6. Generalizations 

The theory presented above can readily be applied for problems of numerous 
hinges. In this case the subscript z in the derived sensitivity gradients specifies 
the consecutive number of a hinge, z = 1, 2, . . . , N, and the portions standing 
with 6xz and 6Kz represent N-dimensional sensitivity vectors. Note that the 
sensitivity gradient for numerous hinges is evaluated in one computation. 

Structural symmetry constraints can easily be introduced here, too. Assume 
that groups of hinges have identical parameters. Such constraint reduces the 
number of independent components from m to f-l· Let us denote the new design 
variable bye , where e = {6, . . . , el'}. Then the variations 6G can be presented 
in the following way 

(55) 
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Figure 2. Optimal location of hinges in a steel frame subjected to load and 
support displacements. 

where A is a coincidence matrix with dimension (m x J1). For example for the 
frame shown in Fig.2 we have 

(56) 

7. Illustrative examples 

EXAMPLE 1. Steel frame designed for minimum of maximum stress. 

Consider a frame structure shown in Fig.2, subject to load Pl and p 2 and to 
settlement of the support B. Assume symmetrical location of hinges z1 = s1 = 
s 3 and z2 = s2 = S4. Our task is to find the coordinates of hinges z1 and z2 

, which minimize the maximum of the absolute value of the bending moment 
min maxI M I. To make the problem differentiable we reformulate it to the 
following form: 

objective function : 

constraints : 

min c 

M(x) ::=; c, -M(x) ::=; c 
(57) 

(58) 

The optimization problem was solved using the feasible direction method. 
The FE Method was employed for solution of primary and adjoint structures. 
Gradients of constraints (58) were computed using formulae (3),(5) ,(19), (55) 
and (56), at these nodal points xa, where constraints were violated or were 
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active . In the present case the function F( u , M) in (3) has the form F = 
M(x) o(x- xo), therefore according to (5) concentrated unit initial distortions 

ki = o(x - xo) are induced in the adjoint structure. The starting point was 81 = 
82 = 0. The optimal coordinates of hinges are 81 = 0.91 m and 82 = 2.09 m. The 
optimal value of the bending moment G = min max IMI = 486.6 kN m, whereas 
for the same structure without hinges we have G = 1004 kN m. 

EXAMPLE 2. Eigenvibration8 of a beam. 

To illustrate the sensitivity of eigenfrequencies to variation of hinge position 
consider a beam of constant cross section, shown in Fig.3a. 

Using FE Method we compute eigenfrequencies w and eigenmodes u for 
various hinge positions. After normalization J Apuu dx = 1 we obtain from 
(50) 

dw 1 
-d = --Tz /'O,z 

Xz W 
(59) 

where w, Tz and ""z denote the frequency, shear force and hinge rotation, re
spectively. Fig.3b shows the first three nondimensional eigenfrequencies wt = 
w;(pAL4 /D)~ as functions of hinge position TJ = xz/L. The sensitivity deriva
tives (59)2 are depicted in Fig.3c . All extrema of wt are regular and occur at 
points where ttw derivatives change signs. At points of maximum the hinge ro
tations ""z vanish and the maximal eigenfrequencies and associated eigenmodes 
are equal to the ones of a beam without a hinge. In fact, insertion of a hinge 
at an inflexion point of an eigenmode does not change the mode. Local min
ima of w 2 and w3 occur at points where the shear force Tz vanish , hence, the 
substructures vibrate with the respective frequency without interaction. The 
global infima of wi , w2 , and wj occur for TJ => 1, and in the limit they are 
equal to eigenfrequencies of a cantilever beam. 

The eigenmodes for characteristic hinge positions are plotted in Fig.4 . T he 
solid lines in Figs.4a,b,c represent the eigenmodes for hinge positions associated 
with maximal values of eigenfrequencies. The eigenmodes associated with min
imal values of w2 at TJ = 0.33 and w3 at TJ = 0.21 and TJ = 0.55 are depicted 
by dashed lines in Figs.4b,c, respectively. For comparison the first eigenmodes 
for TJ = 0.15 and TJ = 0.75 are shown in Fig.4a and the second eigenmode for 
TJ = 0.75 is shown in Fig.4b . 

EXAMPLE 3. Eigenvibration8 of a frame . 

In order to study the sensitivity of a real framework structure to variations 
of hinge position consider the steel frame shown in Fig.5. Assume the follow
ing cross sectional areas A , moments of inertia I and masses m: column 1 
-A = 84.5cm2 , I 23130cm4 , m= 300kgjm, column 2- A= 53.8cm2 , 

I = 8360cm4 , m = 300kg/m, beam 3- A = 84.5cm2
, I = 23130cm4

, 
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Figure 3. Eigenvibrations of a beam. a) The beam. b) Eigenfrequencies vs. 
position of hinge. c) Sensitivity of eigenfrequencies for variable hinge position. 
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Second eigenmodes. c) Third eigenmodes. 
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m = 1000 kg/m, beam 4 - A = 116 cm2 , I = 48200 cm4 , m = 1500 kgfm. 
Let the structure be symmetric and let x1 = x2 = X3 = X4 = x. 

We employ FE Method with the normalization of eigenmodes. Using (50) 
and the above symmetry constraint we obtain 

(60) 

were i denotes the number of eigenvalue. The coefficient ( -1 Y follows from the 
negative direction of x2 and X4. The first four eigenfrequencies w;, i = 1, ... , 4, 
are depicted in Fig.6a as functions of x. The intersection point A demonstrates 
the bimodal eigenvalues w2 = w3 = 29.71 rad/ sat x = 0.287 m. For x < 0.287 m 
we have wf, w~ , wg , w~ , where superscripts s and a indicate symmetric 
and antisymmetric eigenmodes, respectively. For x > 0.287 m we observe wf, 
w2 , w3 , w~. The sensitivity derivatives dw;jdx are shown in Fig.6b. The 
derivatives of w2 and w3 are discontinues at x = 0.287 m. The preferable region 
of hinge position is 0.8 m< x < 1.7 m, where the eigenvalues are well separated. 
Fig.6 demonstrates that w1 remains nearly constant. The plots of w 3 and w 4 

have regular maxima. Note that the optimality condition Kz = 0 , observed in 
example 2, is not valid now, because Equ.(60) involves summation. 

EXAMPLE 4. Buckling of a column. 

Examine the sensitivity of the lowest critical load P with respect to variations 
of hinge position Xz in the axially loaded structure shown in Fig .7a. Assume the 
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Figure 6. Eigenvibrations of steel frame with symmetrically located hinges. 
a) Eigenfrequencies vs. hinge position. b) Sensitivity of eigenfrequencies for 
variable hinge position. 
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Figure 7. Buckling of a beam. a) The beam. b) Critical load vs . position of 
hinge for various positions of support. c) Sensitivity of critical force vs. hinge 
position. 
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cross section to be constant, A= const. Solve the problem for various positions 
of the support B. 

Using the normalization J U 1
U

1 dx = 1 we obtain from (54) 

dP T ( I I ) dx = -2 z Kz + P Uz- + Uz+ K.z (61) 

The dependence of the nondimensional critical load P* = P L 2 j 1r D, on hinge 
position 'f/ = xz/L for various support positions v = XB/L is plotted in Fig.7b, 
whereas the sensitivity derivative dP* /dry vs. 'f/ is plotted in Fig.7c. 

For v = 1 and 'fJ < 0.301 the buckling mode NJ occurs with the left-hand bar 
remaining straight, whereas for 'f/ > 0.301 the mode NJ1 is observed with the 
right-hand bar rotating as a rigid body. For v = 1 and 'f/ = 0.301 the bimodal 
buckling and a jump of the sensitivity derivative is observed. For v < 1 the 
buckling mode NJn occurs for all hinge positions, and the curves P*(ry) have 
regular maxima, where dP* / dx = 0, and Kz = 0. The optimal hinge locations, 
denoted in Fig.7b by the dotted line, provide the buckling loads equal to the 
critical loads of beams without a hinge. 

8. Concluding remarks 

This paper presents the extension of the theory of optimal synthesis of struc
tures by consideration the sensitivity of static, dynamic and buckling response 
of structures with respect to variations of the position and stiffness of a set of 
elastic hinges. Insertion of hinges to a structure results in increasing its com
pliance. Therefore it can be beneficial in the case of interaction of external 
loads and distortions or support settlement, since more flexible structures can 
deform without high stress levels . Designing structures with proper compliance 
can play essential role in the case of dynamic loading, when the danger of res
onance occurs. As is illustrated by the examples, varying the hinge position, 
the distance between two adjacent eigenfrequencies can be maximized. The nu
merical examples demonstrate substantial structural sensitivity to variation of 
hinge location. 

The sensitivity gradients derived in the paper can be used in optimal de., 
sign and active control of structures. The subprogram of sensitivity analysis 
with respect to hinge parameters can easily be linked to standard programs of 
structural analysis. The access to the source code is not necessary since the 
sensitivity derivatives are expressed in terms of total displacements and stresses 
in hinges. 
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