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An elastic plate is considered with middle surface limited by ex­
ternal boundary 80. . The plate is assumed to have a vertical crack 
whose shape may change. It is required to find a crack shape to 
be called an extreme one such that the displacements of the plate 
have a maximal deviation from given functions . In other words we 
define a functional on the set of functions describing crack shapes, 
which characterizes a deviation of displacements from prescribed el­
ements . The problem is to maximize this functional. The cracks of 
finite length are considered with tips belonging both to the interior 
of the domain and to the external boundary 80.. Existence of ex­
treme crack shapes will be proved in both cases. Similar problems 
with simpler nonpenetration conditions were considered in Khlud­
nev (1992). The paper Khludnev (1989) was devoted to the case 
of normal displacements of a plate contacting with a rigid punch. 
A different approach to finding crack shapes was used in Banichuk 
(1970). Mathematical foundations of crack theory can be found for 
instance in Morozov (1984). 

1. Internal cracks 

A bounded domain 0. c R 2 is assumed to have a smooth boundary 80.. A 
trace of the crack shape on the plane x, y is described by the function y = 
b'!j;(x), where x E (0, 1), b is a parameter, (x, y) E 0.. The middle surface of 
the plate occupies the domain no = n \ r 0; r 0 is the graph of the function 
y = b'!j;( x) . Horizontal and normal displacements of the middle surface points 
will be denoted by W 0 = ( wf, wD and w0 , respectively, X0 = (W 0 , w0 ). We 
introduce the energy functional 

1 1 
Ilo(X) = "2bo(w, w) + 2Bo(W, W)- (F, x)o. 
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Here 

Ba(W,U) 

A.M . KHLUDNEV 

In6 {wxxUxx + WyyUyy + u(wxxUyy + WyyUxx) + 

2(1 - u)wxyUxy}dn0, 

f {Eu(W)Eu(U) + E22(W)E22(U) + Ufu(W)E22(U) + 
ln6 
Uf22(W)Eu(U) + 2(1- a-)E1z(W)El2(U)}dna , 

(w) . th t . t (W) 1(8w· 8w;) 0 1 t"ij 1s e s ram ensor, t"ij = 2 ~ + ax; , x1 = x, xz = y, < u < 2 , 

u = const, F = (h,Jz,Ja) is the vector of external forces, the brackets (., .)6 

mean integration over no. The model of the plate considered above is cha­
racterized by the following dependence on z of the horizontal displacements 
along the axis z : wt = Wi - zwx;, i = 1, 2 .. It is assumed that z = 0 corresponds 
to the middle surface . Let us denote by [1P] = 1P+ - 1P- the jump of 1P on r 6 , 

where 1P+ corresponds to the positive direction of the normalv6 = (vf, vg} to 
r 6 , and 1P- corresponds to the opposite direction . The aforesaid means that 
the nonpenetration condition for the crack banks may be written as follows 

[W6 - z\7w
6
]v

6 ~ 0 on f 0 , I z 1:::: h. (1) 

Here 2h = const is the thickness of the plate. The jam conditions will be 
imposed on the external boundary: 

aw6 

W 0 = W 0 = - = 0 on an . (2) an 
Let also 

H(no) = H 1
•
0 (no) x H 1

·
0(no) x H 2

•
0 (no), 

where H 5
•
0 (na) is the Sobolev space obtained by the closure in H•(na) of 

smooth functions equal to zero near an. The norm in H• (no) will be denoted 
by 11 . lls.n6 • By introduction of the closed and convex set 

Ko(na) = {(W, w) E H(na) I (W, w) satisfy (1)} 

the equilibrium state of the plate may be described by the following variational 
problem 

inf ITa(X) on Ka(no) · 

The latter is equivalent to the inequality 

x 6 E Ko(na): < IT~(x 6 ), X- x 6 > ~ 0 for all X E Ko(na), (3) 

where II~ (x 6 ) is the derivative of the functional ITa at the point x 6
• It is easily 

seen that a solution x6 = (W6 , w 6 ) of the problem (3) exists for every fixed 8 
and that the inequality (3) may be written in the form 

b 6 (w6 ,w - w6 ) + Bo(W6 ,W-W6)~(F,x-x6 )o for all xEKo(no)· (4) 
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At the first step we shall study the behaviour of the solution when 5 --+ 0. 
Convergence of the solution will be proved in an appropriate sense. To this 
end a one-to-one correspondence between no and no will be established. The 
function 'ljJ is assumed to belong to the space H&(O, 1) and, moreover, '1/J will be 
extended beyond the interval (0, 1) by zero. Let us choose domains n1 , n2 such 
that nl c n2, n2 c n, ro c nl for all small 5 and take a smooth nonnegative 
function ~ possessing the properties: ~ = 1 on n 1 , ~ = 0 in n \ n 2. The 
transformation of the independent variables 

x=x, fj=y-5'1/J~ (5) 

is mapping no onto no. The J acobian q0 = 1 - 5'1/J~y of this transformation is 
positive for all small 5. We denote u 6(x, fj) = w 6(x, y), U6(x, fj) = W6(x, y), 
w 6 = (U 6 , u 6) . Then the restriction (1) may be rewritten as 

(6) 

A set offunctions from H(no) satisfying (6) will be denoted by Ka(n0 ) . As a 
result the inequality ( 4) is reduced to the following 

bg(u6 , u- u6 ) + BB(U6 , U- U6 ) ~ (F 6 , w- w 6 )o 

for all w E Ka (no) . 

w 6 E Ka(no) 
(7) 

Here F 6 = {i 1 Fa, Fa(x, fj) = F(x, y), bg(u6 , u) = ba(w6 , w) , B8(U6 , U) = 
B6(W 6 , W) . It is clear that 0 E Ko(no) and ~ < q0 < ~ for all 5 small enough. 
We can substitute w = 0 in (7) as the test function. Taking into account the 
estimate 

bo(u, u) ~ c 11 u ll~.no 

and the first Korn's inequality which are valid in no one arrives therefore at the 
estimate 

(8) 

uniform in 5 :S 50 . It turns out that every element from K 0 (n0 ) may be 
approximated by elements from Ko(n0 ). This allows us to establish the following 
st atement. 

L EMMA. For every element (u 1 , u2, u) E Ko(no) there exists a sequence (uL u~ , 
u 6 ) E K 0(n0) such that as 5--+ 0 

(uf, u~, u6 )--+ (u1, u2, u) strongly in H(no). 

PROOF . The inclusion (u1 , u2 , u) E K 0 (no) means the validity of the following 
inequality 

[u 2]- z[uy] ~ 0 on fo, I z I:S h. 
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The function u;; - 8'1/Jxuy belongs to the space H 1•0 (n0). Hence, its traces on 

the lines fj = 0+, fj = 0- are the elements of Ht(y = 0±) . The difference of 
these traces belongs to Ht(fj = 0) and coincides with [u;;- 8'1/Jxug] on f 0 . Let 
us choose the extension of this difference from the space H 1 (R2) denoting it by 
Q. Consequently, the restriction of the function ~h I 8'1/JxQ I to n is the element 
of HJ(n). Now we may define in no 

First of all the inclusion (uL u~ , u6 ) E Kb(no) will be proved. In so doing we 
have to notice that the needed boundary conditions on an are fulfilled. Hence, it 
suffices to prove (6). It follows from the above considerations that the inequality 

holds on f 0 . Whence, one has on f 0 

(u1]( -8'1/Jx) + [u2] + 8'1/Jx[ul] + h I 8'1/JxQ I+ 
oz'I/Jx[ux- o'I/Jxug]- z[ug] 2: [u2]- z[ug] 2: o, 1 z l:s h, 

that is to say the inequality (6) takes place. The strong convergence of the se­
quence (uf, u~, u6 ) to (u1 , u2, u) in H(no) is obvious. Lemma has been therefore 
proved. • 

Thanks to (8) one may choose a subsequence from the sequence w 6 with the 
previous notation such that as 8 -+ 0 

w 6 -+ w weakly in H(no). 

Let us take any fixed element w E Ko(no) and construct a sequence w6 E 
J<6 (n0 ) strongly converging in H(no) tow. Taking into consideration the strong 
convergence F6 -+ F, q6 -+ 1 in L2 (n) we may therefore justify the passage to 
the limit 8 -+ 0 in (7) and get 

b0 (u, u- u) + B0 (U, U- U) 2: (F,w- w)o for all wE Ko(no) . (9) 

This inequality means that the limiting function w = (U, u) corresponds to the 
crack shape fj = 0. Thus the following statement has been proved : 

THEOREM 1 From the sequence x6 = w 6 of solutions of the problem (3) one 
can choose a subsequence weakly converging in H(no) to the solution w of the 

problem (9). 

Now we are in a position to prove the existence of the extreme crack shape. 
The formulation of the appropriate problem will be as follows. Let 1}i be a 
closed convex and bounded set in H~(O , 1). Every element '1/J E 1}i is assumed to 
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describe a crack shape. The space of functions analogous to H(Oo) is denoted 
by H(O.p ). The non penetration condition in this case has the form 

(10) 

Here (W.p, w.p) is the displacement, r 1/J is the graph of the function y = 7/J( X), 
v.p = (-7/Jx, 1)(1 + 7/J;)-~ is the normal to f.p. We denote by I<.p(O.p) the set 
of functions from H(O.p) satisfying (10). The solution X.p = (W.p,w.p) can be 
found from the variational inequality 

Let the functions W0 , w0 be given belonging to the space L2(0). We introduce 
the cost functional 

J('ljJ) =11 W.p- Wo llo,n, + 11 w.p- wo llo,n, 
and consider the optimal control problem 

sup J('ljJ) on 'l}i, (11) 

THEOREM 2 There exists a solution of the problem {11). 

PROOF. Let 7/Jn be a maximizing sequence. It is bounded in the space Hg(O, 1). 
Choosing a subsequence, if necessary, we may assume that as n --> oo 

7/Jn -+ 'ljJ weakly in Hg(o, 1). 

In view of the imbedding theorems the additional convergence 

I 7/J~x - 7/Jxx I < .!_ on (0, 1) 
n 

takes place. The unique solution xn = (Wn, wn) satisfying the following rela­
tions can be found for every n 

We choose domains 0 1 , 0 2 and a function ~ as above assuming r .pn c 0 1 for 
all n and consider the transformation of the independent variables 

As above the functions 7/J, 7/Jn are assumed to be extended by zero beyond the 
interval (0, 1). We obtain therefore a one-to-one mapping between O.pn and 
O.p with the positive J acobian Qn = 1 + ( 7/J - 7/Jn )~y for all sufficiently large n. 
The further reasoning remind this used to prove convergence of W 8 , w 8 . Let 
xn(x, y) = wn(x, y). The inequality (12) may be rewritten in the variables x, y 

wn E I<.pn(O.p): b*(un, u- un) + Bt(Un, (j- un) ~ (Fn,w- wn).p (13) 
for all wE I<.pn(O.p), 
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where 

Fn = q;:; 1 Fn, Fn(x, y) = F(x, y), 

I<.pn(O.p) = {(U,u) E H(O.p) I [U - z(ux + (1/!x -1/J~)uy,uy)](- 1/!~, 1) 2 0 

on f.p, jz j ~ h}. 

It is of importance that thanks to the above convergence of 1/Jn all derivatives 
of n( 1/J - 1/Jn )~ up to the second order being included in (13) are bounded. A 
priori estimates of solutions will be as follows 

with a constant c independent of n. Choosing a subsequence with the same 
notation one may suppose that as n ---> oo 

wn---> w weakly in H(O.p), strongly in L 2 (0..p). 

To justify the passage to limit in (13) we have to take into account that for 
every fixed w E I<.p (O.p) there exists a sequence wn E K.pn (O.p) such that 

wn ---> w strongly in H(O.p). 

This convergence can be proved as that of Lemma. Hence, it follows from (13) 
that 

< IT~(w),w- w > 2 0 for all wE K.p(O.p) , 

i.e . w = w(1jl). Moreover 

sup J (if;) limsup{ ll wn- Wo ll o,n.,n + 11 wn - Wo llo,n.,n} 
I I 

lim{ jj q;; 2 (Un- Won) ll o,n., + 11 q;; 2 (un- Won) llo,n.,} 
11 U.p - Wo llo,n., + 11 u.p - wo llo,n., = J(1jl). 

The latter means that the function 1/1 solves the problem (11). Theorem 2 has 
been proved. • 

The same reasoning allows us to prove an existence of solutions of the prob­
lem 

infJ(1/!) on IJI. 

2. Boundary cracks 

Let us consider the case when tips of a crack may belong to the external bound­
ary 80.. We assume that the points (0, 0) E 80. and (0 , 1) E 0. correspond to 
the tips of the crack . As above 0. 0 = 0. \ fo , f 0 is the graph of the function 
y = 51/J( x). In this case the function 1/1 is supposed to belong to the space 
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H(}(O, 1). Moreover, the tangent to the boundary 80. at the point (0, 0) and the 
tangent to the graph y = 61j;( x) at the same point are assumed to be different. 
The displacements of the middle surface of the plate can be found from the 
inequality 

(14) 

At the first step we intend to investigate the behaviour of the solution x6 when 
6 --> 0. To do this we choose domains 0.1 , 0.2 with boundaries 80.1 , 80.2 and a 
smooth function~ 2: 0 such that~= 1 in 01, ~ E C00 (0.), 01 C 0.2, 0.2 C 0., 
~ = 0 beyond 02 , {r6 \(0, 0)} c 01. In particular, it can be done ifthe equations 
of the boundaries near the point (0, 0) are chosen in the form y = a 2x, y = a 1x, 
y = fJ2x, y = fJ1x, fJ2 > 0, fJ1 < 0, a;, {3; - const, a2 > fJ2 > fJ1 > a1 ( see 
Khludnev, 1992). As earlier, the transformation of the variables x, y has the 
form x = x, y = y- 6'1j;f In view of the inclusion 'lj; E H(j(O, 1) we obtain 
'lj;(x) = o(x 2

), 'lj;x(x) = o(x), 'lj;xx(x) = o(1) near x = 0, so that the function 'lj;~ 
and its derivatives up to the second order are bounded when x--> 0, (x, y) E 0.. 
The scheme of further reasoning is analogous to that of section 1. Hence, we 
arrive at the following statement : 

THEOREM 3 From the sequence w 6 one can choose a subsequence with the same 
notation such that as 6 --> 0 

w 6 --> w weakly in H(Oo), 

where w is the solution of the problem 

wE Ko(Oo) : < ITri(w),w -w > ;:::: 0 for all wE Ko(0.0 ). 

Using the above arguments we may study the existence of extreme crack shapes. 
Let y = 'lj;(x) be the equation of the crack shape with tips at the points (0, 0) 
and (0, 1); (0, 0) E 80.. The convex closed and bounded set \ll C H(}(O, 1) is 
assumed to be chosen such that the above mentioned hypothesis concerning the 
discrepancy of the tangents at the point (0, 0) is fulfilled . The formulation of 
the problem will be as follows. It is required to maximize the cost functional 

sup J('lj;) on \ll , (15) 

where as before 

J('lj;) =11 W,p- Wo llo,n,. + 11 w,p- wo llo,n,. · 

The solution of the problem (15) also exists. We will omit the arguments . 
In conclusion we notice that the same reasoning allows us to prove the exis­

tence of extreme crack shapes in the case when the both tips of the crack belong 
to the external boundary: (0, 0) E 80., (0, 1) E 80. . 
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