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We consider the problem of optimal shape of an elastic solid 
occupying a multiply-connected bounded domain on the plane. The 
problem consists in finding a shape that minimizes the area (weight) 
of the elastic solid under the restrictions on displacements, stresses, 
geometry and so on. By using the fundamental solution we reduce 
the state equation (boundary value problem) to the singular integral 
equations on the boundary and so we reduce the above problem to 
the opt~m~zat~on on manifolds. By ai?plJ.ing smooth maps yve obtain 
the optimtzatiOn problem on the umt cucfe, prove the extstence of 
an optimal solution, and establish the Frechet differentiability of the 
mapping "control - function of state" . 

1. Introduction 

General approaches to the domain shape optimization for elliptic equations and 
their applications to the optimal shape design for various problems of mechanics 
are given in Litvinov (1987, 1989, 1990, 1994), Pironneau (1984) . Usually the 
domain shape optimization problems are formulated as follows. Let M be a set 
of controls. To each q E M, a domain Oq in Rn is assigned, and one considers 
the problem of finding a function uq defined on Dq that satisfies Aquq = fq· 
Here Aq is some elliptic operator acting from space Vq to space Hq, Vq and Hq 
consisting of functions defined in Oq and on its boundary Sq . The optimization 
problem is to minimize or maximize a goal functional under some restrictions. 
But in the general case, the goal and restriction functionals cannot be defined 
on various spaces Vq, q E M. Besides that, for the existence of the solution, it 
is necessary to have some continuity of the goal and restriction functionals with 
respect to the control q, but it is inconvienient to establish continuity when we 
work with various Vq's. So the following approach is used, Litvinov (1987, 1989, 
1990 , 1994) . A diffeomorphism Pq of the set Dq onto a fixed set D is applied and 
after the replacement of variables corresponding to the diffeomorphism Pq one 
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obtains the problems A(q)u(q) = f(q) in the fixed domain nand on its boundary 
S for all q E M. In this case, u(q) E V, where V is a space of functions defined 
on D, and the goal and restriction functionals may be defined on V. Thereby 
the general shape optimization problems and various optimization problems of 
mechanics were formulated, and the existence theorems, the differentiability of 
the function q _.. u( q), the differentiability of the goal and restriction functionals 
with respect to the control q, the necessary optimality conditions etc. were 
established, Litvinov (1987, 1989, 1990, 1994). But in some cases construction 
of the diffeomorphisms Pq for all q EM, transition to the problems A(q)u(q) = 
f(q) in the fixed domain D and solving of these problems may be difficult. We 
introduce and study another approach to the shape optimization, which is based 
on the transition to equations on the boundary, and so on solving optimization 
problem on manifolds . In this case, instead of the diffeomorphisms Pq we should 
define maps lq of the boundaries Sq, and the domains of the maps Iq should be 
same for all q E M. Denoting it by T, we obtain state equations on the fixed 
set T C Rn-l, while Dq ERn. Of course, such an approach may be used when 
fundamental solutions of state equations are calculated. 

The outline of the paper is as follows. In Section 2 we formulate the optimal 
_____________ shape problem for two dimensionaLe.lasti-G--SGlid; uand ureduce state equaLimr·~----­

(boundary value problems) in domains to singular integral equations on the 
unit circle. Further we prove some auxiliary results of singular operators on 
the unit circle (Section 3). In Section 4 we prove the existence theorem for 
the optimization problem, and establish the Fnkhet- differentiabilility of the 
mapping "control - function of state on the unit circle". 

2. Optimization problem for an elastic solid 

2.1. Formulation of the problem 

We consider a shape optimization problem for a two-dimensional elastic solid. 
Let M be a set of controls and to each q E M a bounded domain Dq C R 2 with 
a smooth boundary Sq be assigned. We suppose Dq to be multiply-connected, 
and denote by Sqo the external boundary of Dq, and by Sq;, 1 ~ i ~ p, the 
other components of Sq, where Sq; n Sqj = 0 for i f. j, and Sqo envelopes the 
other Sqk, and Sqk k = 1, ... , p do not envelop each other. Sq; is defined by a 
periodic function q; : ( - 7!', 1r) _.. R 2 , i = 0, 1, ... , p , see Fig 1. So we define a 
set of controls M by 

M { q=(qo,qr, ... ,qp), q; = (q;r,q;2)ECm+l(- 7r,7r)2, 

m is an integer, m 2: 3, ( d~; 1 (t)) 
2 

+ ( d~; 2 (t)) 
2 

> eo > 0, 

q;(t) E Q; 'v't E (- 1r,1r), i = 0, 1, .. . ,p } . (2.1) 

Here Q; are some open sets in R 2 such that 'v'q E M the above conditions on Dq 
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Figure 1. The domain r2q and the maps of its boundary. 

are satisfied, cm+l ( -1f, 7r) is a subspace of periodic functions in cm+l ([ -1f, 11"]). 
The periodicity of a function u E Ck([-11", 1r]) means that if ii is a periodic 
continuation of u on R with the period [0, 271"], then ii E Ck( [a, b]) for an arbitrary 
[a,b] CR. 

In the sequel we consider all periodic functions as being given on R or on 
the unit circle, in this case, points t + 21rk, k E Z, (Z is the set of integers) 
are identified . So we consider periodic functions on R/271" Z, where R/271" Z is a 
factor-group consisting of classes i = t + 271" Z containing a point t . 

The set M is supplied with the topology generated by the topology of 
cm+1( -1r, 7r) 2(P+1). We mark that the mapping q; is a homomorphismof ( -1r, 1r] 
onto Sqi for arbitrary q E M, i = 0, 1, .. . , p. 

The operator Ag of the theory of elasticity is defined by 

Ag = - pJ} .. u- (>. + J.L)grad divu in r2g . (2.2) 

Here u = ( u 1 , u 2 ) is a vector function of displacements, >., J.l are positive con­
stants. We denote by c:( u) = ( C:ij ( u )), u( u) = ( O"ij ( u)) the strain and stress 
tensors 

1 (ou· ou ·) 
Cij(u) = 2 Ox; +ox~ ' 
O"ij(u) = >.divuO;j +2J.LC:ij(u), i,j = 1,2, (2.3) 

where Dij = { ~ if i = j 
if i =F j 

The traction operator Tq is defined on Sg by 

Tqu = ((Tqu)l, (Tqu)2), 
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(2.4) 

Here and below the summation over repeated index is implied, Vqj are the com­
ponents of the unit outward normal Vq to Sq. Various formulations of problems 
of theory of elasticity may be considered, in particular, displacement, traction, 
mixed and other ones (see e. g. Kupradze, Gegelia, Bashelishvili and Burchu­
ladze, 1979). We will be engaged in the traction formulation 

Tqu = :Fq on Sq. 

So we consider the problem: Find a function uq satisfying 

Aquq = 0 in Oq, 

(2.5) 

(2.6) 

(2.7) 

The case when a function of body forces, i.e. the right hand side of (2 .6), is not 
equal to zero, may be reduced to problem (2.6), (2.7). Further we suppose that 
the boundary Sqo is fixed, i.e. 

Sqo = S 't:/q E M, (2 .8) 

the surface forces :Fq are not equal to zero only on S, and they are fixed and 
self-balanced : 

:Fq = 0 on Sq; i = 1, . . . ,p, :Fq Is == (:F1,:F2) E Hm-3f 2(S)2, 

1 :F;ds = 0 i = 1, 2 , 1 (:F1x2- :F2x1 )ds = 0. (2.9) 

We introduce the spaces 

(2.10) 

Then the operator Gq = (Aq, Tq) is a linear continuous mapping from Vmq into 
Hmq, i.e. Gq E £(Vmq, Hmq), and by known results, Litvinov (1990) , Agmon, 
Douglis, Nirenberg (1964), Michlin (1973), Roitberg (1975) we obtain 

THEOREM 2.1 Let the set M be defined by (2.1}, and (2.8} , (2.9} hold. Then 
for each q E M the following representations are valid 

Vmq = Vmq EB Vmq , Hmq = Hmq EB Hmq , 

where Vmq = kerGq, Hmq = Gq(Vmq), Gq = (Aq, Tq) , EB is the sign of the di­
rect sum. The subspaces Vmq and Hmq are three-dimensional, and tp1 = (1, 0), 
tp2 = (0, 1), tp3 = (x2, - x1) is a basis in Vmq 1 1/J1 = ((1 , 0) , (1, 0)), 1/J2 
= ((0, 1), (0, 1)), 1j;3 = ((x2 , - x1), (x2, - x1)) is a basis in Hmq · 

For each q E M, there exists a unique Uq E Vmq satisfying (2. 6}, (2. 7). 
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We introduce the following functionals on M. 

W3 ( q) = r G'ij ( Uq )C:ij ( Uq )dx - C3 , ln. 

499 

(2.11) 

where c1, c2, c3 are positive constants. Note that other functionals on M may 
also be considered. Now let 

M1 be a compact subset in M . 

In particular, the set M1 may be defined by 

M1 { q = (qo,ql, ... ,qp) EM, q;(t) E Q; Vt E (-1r,1r], 

Q; are closed subsets in Q; , 

llq; llcm+l,a([-11' ,11']) S c, a E (0, 1], i = 1, .. . ,p} 

(2.12) 

We remind that q0 is considered to be fixed (see (2.8)), Ck,a denotes a Holder 
space with the norm 

llullck ,"'([-11' ,11']) = llullck([-11' ,11']) + sup I ddk~ (t)- ddkt~ (t')l fit- t'la . 
t,t'E[-11',11'] t 

We define a set of admissible controls Ma as follows 

Ma={ qEM1, \ll;(q)SO i=1,2,3}, (2.13) 

and consider the optimization problem: Find q satisfying 

qE Ma, \l1 o (ij) = inf \l1 o( q). 
qEMa 

(2 .14) 

From the physical point of view, problem (2.14) corresponds to the minimization 
of the area (weight) of an elastic solid under the restrictions on displacements, 
stresses and strain energy. Other restrictions of the form Wk(q) S 0 may also 
be considered. 

2.2. State equations on boundaries and on the unit circle 

Let G(x, y) = (G;j(x, y)) be a tensor of fundamental solutions of the equation 

Au = -J.Lt3.U- (A+ J.L)grad divu = 0, u = (u1, u2). (2.15) 
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G(x, y) is a symmetric tensor defined by 

i,j=1,2, (2.16) 

where 

[ 
2 ]1/2 

r = I:(x; - y;) 2 
, 

•=1 

Cl = -1/[87rj.t(1- a-)], C2 = 3- 4a-, 0" = A/[2(A + J.l)] . (2.17) 

From the physical point of view, the function G;j(x, y) defines a displacement 
u;(x) engendered by the unit force Pj(Y) concentrated at a point y and directed 
along the coordinate axis xi . 

By Bk(x,y) = (Bijk(x,y)) and Tk(x,y) = (Tijk(x,y)) we denote the defor­
mation and stress tensors at a point x that are engendered by the force Pk(y). 
Due to (2.3) and (2.16), we obtain 

(2.18) 

T;ik(x, y) (2.19) 

~i =Xi- y;, C3 = -1/[471"(1- a-)], C4 = 1- 20". 

The force t(x) = (t 1(x),t 2(x)) at a point x of a surface with a unit outward 
normalv = (111, 112) is defined by t;(x) = D"ij(x)vj(x). So denoting by R;k(x, y) 
the value at a point x of i component's of the surface force generated by Pk(y), 
due to (2 .19), we get 

(2.20) 

Let u = ( U!' u2) be a smooth function satisfying (2.15) in nq. By Betti's formula, 
Michlin (1962), Banerjee and Butterfield (1981), we obtain 

u;(x) = { [(Tqu)j(y)G;j(x, y)- Fqij(x, y)ui(Y)] dSy , 
ls. 

(2.21) 

where Fqij(x, y) = Rj;(y, x) for 11 = vq, i.e. 

Fqij(X, y) = 

(2.22) 
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The integral from the second addend in (2.21) should be understood in the 
sense of a Cauchy principal value. Because of the jump relation for Fq(x, y) = 
= (Fqij(x,y)) on Sq, Michlin (1962), Banerjee and Butterfield (1981), the rep­
resentation formula (2.21) yields the following expression 

xESq,i=1,2 . (2.23) 

Considering the problem (2.6), (2.7), we obtain the equation 

Nqu(x) = u(x) + 2 r Fq(x, y)u(y)dSy = /q(x), X E Sq ' (2.24) 
Js. 

where 

/q(x) = 2 { G(x, y)Fq(y)dSy . 
ls. 

(2.25) 

The boundary Sq is defined by the function q = (qo, q1, ... , qp) EM (see Fig. 1). 
Denoting Vqi(t) = u(qi(t)), i = 0, 1, .. . ,p, Vq = (vqo, ... , Vqp), we transform 
problem (2.24) to the following one 

f--J" Vqi(t)+2~ -1r Fq(qi(t),qj(r))vqj(r)D(qj)(r)dr 

gi(t), tE[-1r,1r], i=0,1, ... ,p. (2.26) 

Here 

(2 .27) 

and gi is independent of q because Fq is not equal to zero only on Sqo, and Sqo 
is fixed, see (2.8), (2.9). In the case of i = j, the integral in (2.26) should be 
understood as the limit of the integral 

F (t r) _ { Fq(qi(t), qi(r)) for 
qe ' - 0 for 

as c: tends to zero. 

it- ri ?: c; 

it- ri < c: 
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3. Spaces and operators on R/27r Z, auxiliary statements 

Define the space W m as follows 

Wm { u=(uo,ul, ... ,up), u;=(u;1 ,u;2)E.Hm-l/2(-7r,7r)2, 

i=0,1, ... ,p, m2::3}. (3 .1) 

By .H•( -1r, 1r), s > 0 we denote a subspace of periodic functions in H•( -1r, 1r). 
A norm in W m is defined by 

(3.2) 

Here, 

(3.3) 

where an, bn are the Fourier coefficients of the function v, i.e. 

00 

v(t) = ~0 + L:(an cos nt + bn sin nt), 
n=l 

11" an = - v(t) cos nt dt, 
7r -7r 

11" bn = - v(t) sin nt dt. 
7r -7r 

(3.4) 

Let 

(3.5) 

Here Vmq is ker(Aq, Tq) (see Theorem 2.1), /q is the trace operator on Sq, q 
is the function defined in (2.1). It follows from Theorem 2.1 that Wmq is a 
three-dimensional subspace in W m with the basis { <pqi}r=l, 

<pqi = (<pqi0 1 <pqil 1 • • • , <pqip) i = 1, 2, 3, 

<pqlk = (1, 0), <pq2k = (0, 1), <pq3k = (qk2, -qkl), k = 0, 1, . . . ,p, (3.6) 

qki are defined in (2.1). We denote by Jq the operator of the simple layer 
potential 

(Jqv)(x) = r G(x, y)v(y)dSy X E Sq , 
ls. 

(3.7) 

and let 

'1/Jqi = (Jqf3i) 0 q i = 1, 2, 3, 
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,81=(1,0) on Sq;, ,82=(0,1) on Sq;, ,83=(x2,-x1) on Sq;, (3.8) 

i=0,1, ... ,p. 

By (3.7), (3.8) we get 

'l/Jqi = ('l/JqiQ, 'l/Jqil, ... , 'l/Jqip) i = 1, 2, 3, 

'l/Jqij(t) = ~ [7r7r G(qj(t), qk(r)),B;(qk(r))D(qk)(r)dr, (3.9) 

j=0,1, ... ,p, 

D(qk) is defined by (2 .27). 

THEOREM 3.1 Let the set M be defined by (2.1) and (2.8), (2.9) hold. Let also 
the operator P(q) be defined by {2.26). Then P(q) E .C(Wm, Wm), and for each 
q E M, the following representations are valid 

Wm = Wmq EB vVmq = Emq EB Emq , (3.10) 

where Wmq = ker P(q), Emq = P(q)(Wm), Emq is a three-dimensional subspace 
in W m with a basis {'lj;qi }t=1 defined by (3. 9). There exists a unique Vq E W mq 
satisfying (2. 26). 

PROOF . The operator lq is an pseudodifferential operator of order -1 on 
Sq, and lq is an isomorphism from Hm- 3f 2(Sq) 2 onto Hm-lf2 (Sq) 2 , Chudi­
novich (1991), Wendland (1985) . It is obvious that if uq is a solution of problem 
(2.6), (2.7) then u = [qUq is a solution of problem (2.24) . On the contrary, if u 
is a solution of problem (2.24), then the function 

uq(x) = r [G(x, y)Fq(Y)- Fq(x, y)u(y)]dSy X E nq 
ls. 

is a solution of problem (2.6), (2.7). Problem (2.26) is obtained from 
(2.24) by a replacement of variables corresponding to the 1-1 mapping q E 
E cm+l ( -1r, 1r)2Cr+l) . And so TheQrem 3.1 follows from Theorem 2.1. • 

REMARK . The space vVmq is defined non-uniquely by (3.10), and so we define 
vVmq so that vVmq be orthogonal to Wmq with respect to scalar product in 
L2( -7r, 7r)2(r+l). 

We define the operator f ql E .C(W m, W mq) by 

r ql is the ope,rator of orthogonal projection } 
of Wm onto Wmq with respect to scalar 
product in L2 ( -1r , 1r ) 2Cr+l). 

We also define an operator fq2 E .C(Wmq, Emq) as follows 

3 

u = L:c;<pq;, 
i=l 

3 

fq2u = L:c;'tf;q;. 
i=l 

(3.11) 

(3 .12) 
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THEOREM 3.2 Let the set M and the operator Pq be defined by (2.1} and (2.26} 
accordingly. Then the operatorNq = P(q)+f(q), where f(q) = fq 2 ofq1 is an 
isomorphism from Wm onto Wm. 

Indeed, it is obvious that f(q) E .C(Wm,Emq) and f(q)(Wm) = Emq· Therefore, 
by Theorem 3.1 the operator P(q)+f(q) is a continuous bijection from Wm onto 
Wm, and so by the Banach theorem P(q) + f(q) is an isomorphism from Wm 
onto Wm. 

LEMMA 3.1 Let the set M and the operatorf(q) = fq2ofq1 be defined by (2.1), 
(3.11}, (3.12}, and qn --> q0 in M (M is supplied with the topology generated 
by the cm+l( -71', 11')2CP+l) topology). Then iif(qn)- f(q 0)il.c(wm,Wm) --> 0 as 
n--> oo. 

PROOF. Let u = (uo, u1, ... , up) E Wm. By (3.11) we have 

p 3 

llfqniU- u11Lc-11' ,11')2(p+Il = ~~n L iiuk- L c;<pqnikiiLc-11',11')2. (3.13) 
I k=D i=l 

We denote by c;n a solution of problem (3.13), i.e . Cin minimize the norms in 
(3 .13). Then we get 

3 p p 

Cjn L L(<pqnik 1 <pqnjk)£2(-11',11')2 = L(uk, <pqnjk)L2(-11',11')2 

i=l k=O k=O 

j=1,2,3. (3.14) 

The matrix of the system (3.14) is non-degenerate because the functions 
{<pqn;}~=l are a basis in Wmqn. Therefore Cin are defined uniquely. Let now 
qn --> q0 in M. Then <pqnik --> <pqDik in cm+l( -71', 11') 2

, and so Cjn --> CjQ as 
n--> oo, where Cio is a solution of problem (3.14) for n = 0. As the embedding 
of cm+l( -71', 11') into L2( -71', 11') is compact, we obtain that Cin--> CjQ uniformly 
for all u E f{, where f{ is an arbitrary bounded set in M . 

It may be shown that '!f;qnij --> '!f;qoij in flm(-11',11') 2 as qn --> q0 in M . 
Therefore f(qn)--> f(q 0

) in .C(Wm, Wm) · • 

In the space Wm we define the operator N(q) as follows 

v = (vo, VI, ... , vp) E Wm , N(q)v = {(N(q)v);}f=o , 

(N(q)v)i(t) = t, 1: Fq(q;(t), qj ( r)}vj ( r)D(qj )( r)dr (3.15) 

tE[-11',71'], i=0,1, . .. ,p. 

By (2 .26) we have 

P(q) =I+ 2N(q) , (3.16) 

where I is the unit operator in Wm. 
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LEMMA 3.2 Let the set M be defined by {2.1} and the operator N(q) be defined 
by {3.15}, {2.22}, {2.27). Then N(q) E .C(Wm, Wm) and the function N: q-+ 
-+ N(q) is a continuous mapping from M into .C(Wm, Wm)· 

PROOF. By (2.22) we have 

Here 

Fq(q;(t), qj(r)) = (Fqkn(q;(t), qj{r)))~,n= 1 , 

Fqkn(q;(t), qj(r)) = p(~: t) { c4[ Vqk(qj(r))(qjn(r)- q;n(t))­

-Vqn(qj(r))(qjk(r)- q;k(t))] + 

+ [ 
b + 2(qjk(r)- q;k(t))(qjn(r)- q;n(t))] 

C4 kn p(r, t) X 

2 

X L(qjs(r)- %(t))vqs(qj(r))}. (3.17) 
•=1 

2 

p(r,t) L(%(t)-qj 5 (r)) 2
, 

•=1 

vq(qj(r)) (a(r)dd~2 (r),-a(r)dd~1 (r)), (3.18) 

a(r) = [ ( dJ~'(r))' + ( dJ~'(r)) T'' 
In the cas!] when i f. j, the elements Fqkn(q;(t), qj(r)) are non-singular and 
they gene.'a.t~ .,:moothing operators. So we consider the case when i = j. As 
q; E (7m+ 1 ( -1r, 1r) 2 , by (3.18) and the Taylor formula we get 

I~( q;,( r) - q;,(t) )v,,(q; ( r)) I = lA( r, t)l :5 '(t - r)'. 

Therefore the terms containing A( r, t) as a factor in (3.17) generate a non­
singular operator. The two remained addends in (3.17) are singular and similar. 
Soit is sufficient to show that the operator R(q) defined by 

U E fJm-1/2( -?r, ?r), 

1
11" 1 

(R(q)u)(t) = -(-)Vqk(q;(r))(q;n(r)- q;n(t))D(q;)(r)u(r)dr, 
_,.. p r, t 

is a continuous mapping from fim-l/ 2( -?r, 1r) into 
flm- 1/ 2 ( -?r, 1r), and if q~-' -+ q0 in M, then R(q~-') -+ R(q0 ) in 
.C(iJm-1/2( -?r, 1r), iJm-1/2( -?r, 1r)). 

(3.19) 
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By the Taylor formula we obtain 

q;n(r)- q;n(t) = qin(t)(r- t) + aq(r, t), (3.20) 

2 2 

p( r, t) = 2)q;.( r) - q;.(t))2 = L qi.(t)2( r- t) 2 + ,Bq ( r, t), (3.21) 
s=l s=l 

/aq(r, t)/ ~ c/r- t/ 2
, /,Bq(r, t)/ ~ c1 /r- t/ 3

. 

Substituting (3.20), (3.21) into R(q)u we get 

R(q)u = R1(q)u + R2(q)u, 

qin(t) 1 wq(r)u(r) dr' 
2 r r- t 2:: qi.(t)2 

(R1(q)u)(t) = 

s=l 

(R2(q)u)(t) = l H(r, t)wq(r)u(r)dr. 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

Here r is the unit circle with the center at 0 on the plane x1 Ox 2 , the origin 
of count of the curvilinear coordinate on r is a point of r lying on Ox 1 , the 
direction of count is counter-clockwise 

wq(r) Vqk(q;(r))D(q;)(r), H(r,t) = eq(r,t)/fq(r,t), 

eq(r,t) (~qi.(t)2) a9(r,t)(r -t)- qin(t)bq(r,t), 

f, ( r, t) = (t, ,;, (t)')' ( r- t)' + (t, q;,(t)') p, ( r, t)( r - t) . (3.26) 

We remark that the function r --+ r - t is discontinuous on r at the point 
ro = t + 1r. Define the operator R3 as follows 

(R3u)(t) = 1 wq(r)u(r) dr . 
r r- t 

(3.27) 

It is obvious that R 3 u is the convolution on r of the principal value of the 
distribution 1/t and -wqu. We denote by ck(f) the Fourier coefficients of a 
function f for the complex form of a Fourier series 

ck(f) = -
2
1 1" f(t)e-iktdt . 
7r -rr 

Then we have, Schwartz (1961) 
00 00 

(3.28) 
k=-oo k=-oo 
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Since ICk(1/t)1 ~ const Vk (see Edwards 1979) and Wq E cm( -7r, 7r), the 
Parseval equality and (3.28) yield 

00 

IIRauiiL(-rr,rr) = 27r L ick(Rau)l 2 ~ clluiiL(-rr,rr)· 
k=-oo 

For a # 0, we get 

a-1[(R3 u)(t +a)- (Rau)(t)] = 
a_ 1 { [wq(r)u(r) _ wq(r)u(r)] dr = 

lr r- t - a r- t 
_ 11 wq(r + a)u(r +a)- wq(r)u(r)d 

a r . 
r r- t 

By (3 .29), (3.30) we obtain that if u E H1( -1r, 1r) then 

(!(n3u)) (t) = £(r-t)- 1
:

7
(wq(r)u(r))dr 

(3 .29) 

(3.30) 

and II RauiiHl(-rr,rr) ~ c111ui1Hl(-rr,rr) · By analogy, we have IIRaullfim(-rr,rr) ~ 
~ c1ilui1Hm(-rr,rr)' and taking into account (3.24), (3 .27) we get 

R 1(q)u E .C(ifm( -1r, 1r), ifm( -1r, 1r)) and from } 
the condition q~-' -> q0 i~ M it follo~s that 
R1(q~-')-> R1(q 0 ) E .C(Hm( - 1r, 1r), Hm( -1r, 1r)) 

(3 .31) 

By interpolation, Lions and Magenes (1968), we obtain that (3.31) holds for m 
replaced with m- 1/2. The operator R 2 is smoothing and satisfies also (3.31). 
Therefore (3.19) holds. • 

p 

We remind that by S1q we denote a domain in R2 with a boundary Sq = U Sqi, 
i = O 

Sq are defined by a function q = (q0 , q1, .. . , qp) (see Section 2.1. , Fig. 1) . 

THEOREM 3.3 Let the set M be defined by (2.1} and qn-> q0 in M . Then for 
each sufficiently large n there exists a mapping Pn such that Pn is a cm -diffeo­
morphism of Dqo onto Dqn and Pn -> I in cm(Dqo )2 ' where I is the identity 
mapping in Dqo, i.e. I(x) = x. 

PROOF. In the beginning we will prove the theorem for the case when S1qn and 
S1qo are simply connected . Let Sn, Sa be boundaries of S1qn, S1qo accordingly, o 
be a small positive number and 

Go= {x E S1qo, inf llx- Yll > o}. 
yE So 

(3.32) 

Let also To be a boundary of Go and Fa = stqo \ Go, see Fig . 2. By s we denote 
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Figure 2. The domains nq", nqo and their boundaries. 

points of a parametrization of To. Then we can consider that s E R/27r Z. 
Outside of Go we define the curvilinear coordinates (s, r), the axis r at points 
is normal to To. Let now 

(3.33) 

Then for sufficiently large n, we have Sn n To = 0, and we define the function 
In : R/27r Z X [0, 8]---> R2 as follows 

m+l 
ln(s, r) = (s, f3n(s, r)), f3n(s, r) = 2:: ank(s)rk, (3.34) 

k=l . 

0
:; (s, 0) = 1, a;~n (s, 0) = 0 k = 2, .. . , m , Q(s , f3n(s, 8)) E Sn. (3.35) 

Here Q is the transformation of the curvilinear coordinates ( s, r) onto the Carte­
sian coordinates (x1, x2) . By (3.34), (3.35) we get 

anl(s) = 1, ank(s) = 0 k = 2, ... , m, (3.36) 

and (3.33) yields an(m+l)(s)---> 0 uniformly with respect to s. Therefore In is a 
1-1 mapping. Since Sn E cm+l we obtain from (3.35) that 

an(m+l) E Cm( -7r, 1r). (3.37) 

Now we define the mapping Pn : Oqo ---> R 2 as follows : 

p x _ { x for x E Go 
n( )- (QolnoQ- 1 )(x) for xEOqo\Go (3.38) 
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By (3.34)- (3 .38) we get that Pn is a cm-diffeomorphism of Dqo onto Dqn and 
Pn ---+ I in cm(f2qo )2 . 

In the case when Oqn and Oqo are multiply-connected, we introduce the 
curvilinear coordinates (s, r) in the vicinity of each component of the boundary 
of the domain Oqo, the functions fn are defined in each vicinity, and by analogy 
with (3.38), we define a cm-diffeomorphism of Dqo onto Dqn. • 

4. Optimization problem on R/ 27r Z 

4.1. State equations and functionals 

By Theorem 3.1 for each q E M, there exists a unique Vq satisfying 

Vq E vVmq> P(q)vq = g, ( 4.1) 

where the operator Pq and g = (g0 ,g1 , ... ,g) are defined by (2.25)-(2.27). So 
the function M 3 q ---+ Vq E w m is defined. 

THEOREM 4.1 Let the set M be defined by (2.1}, and (2.8}, {2.9} hold. Then the 
function q---+ Vq defined by a solution of problem (4 .1) is a continuous mapping 
from M into Wm. 

PROOF . We define the mapping J : M x Wm---+ Wm by 

J(q, u) = (P(q) + f(q))u - g, ( 4.2) 

and by A we denote the implicit function defined by A(q) E Wm, J(q, A(q)) = 0. 
Since f(q)vq = 0 (see (3.11) and Remark in Section 3.), we obtain J(q, vq) = 0, 
i.e . A(q) = vq. By Lemmas 3.1, 3.2 and (3.16) the function q---+ P(q) + f(q) is 
a continuous mapping from M into £(Wm, Wm). By Theorem 3.2 the operator 
P(q) + f(q) is an isomorphism from Wm onto Wm. Now Theorem 4.1 follows 
from the implicit function theorem, Schwartz (1967). • 

THEOREM 4.2 Let the set M be defined by (2.1}, and (2.8}, (2.9} hold. Let 
also the functionals 1li; i = 0, 1, 2, 3 be defined by (2.11}, where uq E Vmq is a 
solution of problem (2. 6}, (2. 7}. Then 1li; are continuous on M functionals. 

PROOF . The continuity of the fu-nctional 1lio is obvious. We prove the con­
tinuity of the functional 1Ji 2 . The proof for the other functionals is analogous. 
Let 

(4.3) 

We denote by un and u0 the solutions of problem (2.6), (2 .7) for q = qn and 
q = q0 accordingly. By (2.21) we have 

un(x) =-t, 1: Fq(x, qj(r))vqnj(r)D(qj)(r)dr + P(x) 

X E Oqn 1 ( 4.4) 
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u0 (x) =-t, 1: Fq(x, qJ(r))vqoj(r)D(qJ)(r)dr + P(x) 

X E Slqo, (4.5) 

P(x) = l", G(x,qo(r))F(qo(r))D(q0 )(r)dr. (4.6) 

Here q0 is the first component of an element q EM, qo is fixed and :F = (F1 , F 2), 

see (2.8), (2.9), Vqnj, Vqoj are the solutions of problem (2.26) for q = qn and 
q = q0 accordingly. 

By Theorem 3.3 for each large n, there exists a cm-diffeomorphism Pn of 
Dqo onto Slqn. So we define the function un as follows: 

(4.7) 

For an arbitrary q E M , the operator of the double layer potential Bq defined by 

is a linear continuous mapping from W m into Hm (Slq )2 . So by ( 4.3) and Theo­
rems 3.3, 4.1, we obtain 

(4.8) 

By the replacement of variables corresponding to the cm-diffeomorphism Pn we 
have 

Uij(un)( x) = O'ij(un)(Pn(x)) x E Dqo · 

Due to (4 .8), (4.9), we get w2 (qn)-+ \.II 2 (q0 ). • 
(4.9) 

THEOREM 4.3 Let the set M be defined by (2. 1} and (2.8} , (2.9} , (2.12} hold. 
Let also the functionals W; i = 0, 1, 2, 3 and the set M a be defined by (2. 11 }, 
(2.13}, Ma being non-empty. Then there exists a solution of problem (2.14). 

Indeed, by (2 .12) and Theorem 4.2 we get that Ma is a compact set in M, The 
functional Wo is continuous on M , and so there exists a solution of problem 
(2 .14). 

For the sensitivity analysis and for the construction of approximate solutions 
of problem (2.14) it is useful to calculate the derivative of the function q-+ vq, 
where vq is a solution of problem ( 4.1). So we consider this problem. 
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We introduce the notation 

A(q) = Vq. ( 4.10) 

It follows from the proof of Theorem 4.1 that A is the implicit function defined 
by A(q) E Wm, J(q,A(q)) = 0, J(q,u) is determined by (4.2). By applying 
(3 .17) and representation (3.23)-(3.26), it may be shown that q--+ P(q) is a 
continuously Fnkhet-differentiable mapping from M into .C(Wm, Wm)· It may 
also be shown that q --+ r q is a continuously Frechet-differentiable mapping 
from M into .C(Wm, Wm) · By P'(q), f ' (q) we denote the derivatives of these 
mappings at a point q. So by applying the theorem on differentiability of an 
implicit function, Schwartz (1967), we obtain that A is a continuously Frechet­
differentiable mapping from M into Wm and its derivative at point q E M is 
defined by 

A'(q)h = -(P(q) + r(q)) - 1 [(P'(q) + r'(q))h] A(q), (4.11) 

where h = (ha, ht, .. . , hp), h; = (hit, h;2), h; E (7m+l (-1r, 1r)2, ho is equal to 
zero since the component Sqo is fixed (see (2.8)). 
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