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We consider the problem of optimal shape of an elastic solid
occupying a multiply-connected bounded domain on the plane. The
problem consists in finding a shape that minimizes the area (weight)
of the elastic solid under the restrictions on displacements, stresses,
geometry and so on. By using the fundamental solution we reduce
the state equation (boundary value problem) to the singular integral

equations on the boundar[y,l and so we reduce the above problem to
o

the optimization on manifolds. By applying smooth maps we obtain

the optimization problem on the unit circle, prove the existence of
an optimal solution, and establish the Fréchet differentiability of the
mapping “control — function of state”.

1. Introduction

General approaches to the domain shape optimization for elliptic equations and
their applications to the optimal shape design for various problems of mechanics
are given in Litvinov (1987, 1989, 1990, 1994), Pironneau (1984). Usually the
domain shape optimization problems are formulated as follows. Let M be a set
of controls. To each ¢ € M, a domain Qg in R" is assigned, and one considers
the problem of finding a function u, defined on Q, that satisfies Agu, = f,.
Here A, is some elliptic operator acting from space V; to space H,, V; and H,
consisting of functions defined in ©, and on its boundary S;. The optimization
problem is to minimize or maximize a goal functional under some restrictions.
But in the general case, the goal and restriction functionals cannot be defined
on various spaces Vg, ¢ € M. Besides that, for the existence of the solution, it
is necessary to have some continuity of the goal and restriction functionals with
respect to the control ¢, but it is inconvienient to establish continuity when we
work with various V;’s. So the following approach is used, Litvinov (1987, 1989,
1990, 1994). A diffeomorphism P, of the set {2, onto a fixed set €2 is applied and
after the replacement of variables corresponding to the diffeomorphism P, one




496 W.G. LITVINOV

obtains the problems A(g)u(q) = f(g) in the fixed domain Q and on its boundary
S for all ¢ € M. In this case, u(q) € V, where V is a space of functions defined
on Q, and the goal and restriction functionals may be defined on V. Thereby
the general shape optimization problems and various optimization problems of
mechanics were formulated, and the existence theorems, the differentiability of
the function ¢ — u(gq), the differentiability of the goal and restriction functionals
with respect to the control ¢, the necessary optimality conditions etc. were
established, Litvinov (1987, 1989, 1990, 1994). But in some cases construction
of the diffeomorphisms P, for all ¢ € M, transition to the problems A(q)u(q) =
f(g) in the fixed domain §2 and solving of these problems may be difficult. We
introduce and study another approach to the shape optimization, which is based
on the transition to equations on the boundary, and so on solving optimization
problem on manifolds. In this case, instead of the diffeomorphisms P, we should
define maps I, of the boundaries S,, and the domains of the maps I, should be
same for all ¢ € M. Denoting it by 7', we obtain state equations on the fixed
set T C R*~1, while Q, € R™. Of course, such an approach may be used when
fundamental solutions of state equations are calculated.

The outline of the paper is as follows. In Section 2 we formulate the optimal
shape problem for two-dimensional elastic-solid, and reduce-state—equations
(boundary value problems) in domains to singular integral equations on the
unit circle. Further we prove some auxiliary results of singular operators on
the unit circle (Section 3). In Section 4 we prove the existence theorem for
the optimization problem, and establish the Fréchet—differentiabilility of the
mapping “control — function of state on the unit circle”.

2. Optimization problem for an elastic solid
2.1. Formulation of the problem

We consider a shape optimization problem for a two-dimensional elastic solid.
Let M be a set of controls and to each ¢ € M a bounded domain 2, C R? with
a smooth boundary S, be assigned. We suppose §,; to be multiply-connected,
and denote by Syo the external boundary of Q,, and by Sz, 1 < ¢ < p, the
other components of Sy, where Sy NSy = @ for i # j, and Sy envelopes the
other Sy, and S k = 1,...,p do not envelop each other. Sj; is defined by a
periodic function ¢; : (—m,7) — R2%, i =0,1,...,p, see Fig 1. So we define a
set of controls M by

M = { q= (qﬂs q1y oy QP)J qi = (qil:qu) [ Cm'm+l(_1ri 17)2:

dgir \\* | (dgiz,\\°
m is an integer, m > 3, ( 5;1 (t)) + (%(t)) >cp > 0,

a(t) €Qi Vi€ (—mal, i=0,1,...,p }. 2.1)

Here @; are some open sets in R? such that Vg € M the above conditions on €,
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Figure 1. The domain Q, and the maps of its boundary.

are satisfied, C™+1(—m, 7) is a subspace of periodic functions in C™*+!([—m, 7]).
The periodicity of a function u € C¥([~m,7]) means that if @ is a periodic
continuation of u on R with the period [0, 2x], then & € C*([a, b]) for an arbitrary
[a,b] C R.

In the sequel we consider all periodic functions as being given on R or on
the unit circle, in this case, points ¢ + 27k, k € Z, (Z is the set of integers)
are identified. So we consider periodic functions on R/2nZ, where R/2nZ is a
factor-group consisting of classes ¢ = t + 27Z containing a point .

The set M is supplied with the topology generated by the topology of
CmH1 (—m, 7)2P+1), We mark that the mapping g; is a homomorphism of (—, 7]
onto Sy; for arbitrary g€ M,i=0,1,...,p.

The operator A, of the theory of elasticity is defined by

Ay = —pAu— (A + p)grad divu in Qg . (2.2)

Here u = (uy,us) is a vector function of displacements, A, pu are positive con-
stants. We denote by £(u) = (&i(u)), o(u) = (0yj(u)) the strain and stress
tensors

1 (0w | Oy
cut9)= 5 gy * i)

oi;(u) = Adivu 6;; + 2pe;5(u), 4,i=1,2, (2.3)
where 6;; = { é :f. :;j . The traction operator T} is defined on S; by

Tyu= (Tyu)1, (Tyu)2),
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(Tyu)i = os(v)v,; on & 4,5=12. (2.4)

Here and below the summation over repeated index is implied, vy; are the com-
ponents of the unit outward normal v, to S;. Various formulations of problems
of theory of elasticity may be considered, in particular, displacement, traction,
mixed and other ones (see e. g. Kupradze, Gegelia, Bashelishvili and Burchu-
ladze, 1979). We will be engaged in the traction formulation

Tou=F, on S,. (2.5)
So we consider the problem: Find a function u, satisfying

Aqug=0 in Q,, (2.6)

Tyug = Fy on S,. (2.7)

The case when a function of body forces, i.e. the right hand side of (2.6), is not
equal to zero, may be reduced to problem (2.6), (2.7). Further we suppose that
the boundary Sy is fixed, i.e.

the surface forces F; are not equal to zero only on S, and they are fixed and
self-balanced:

Fo=0on Sy i=1,...,p, fqlsz(fl,Fz)EH"“s-’z(S)z,

/ f;ds ={) 3= 1, 2 ) /(}-1172 e .’ngl)ds = 0. (29)
5 S

We introduce the spaces
Vg = H™(Qq)? ,  Hmq = H™*(Q)* x Hm_sﬂ(sq)z- (2.10)

Then the operator G, = (A4, T}) is a linear continuous mapping from V;,, into
Hpng, i.e. Gy € L(Ving, Hmg), and by known results, Litvinov (1990), Agmon,
Douglis, Nirenberg (1964), Michlin (1973), Roitberg (1975) we obtain

THEOREM 2.1 Let the set M be defined by (2.1), and (2.8), (2.9) hold. Then
for each ¢ € M the following representations are valid

qu =vmq®pmq 3 qu=ﬁr;zq®ﬁmq )

where I:"mg = kerGy, Hpng = G¢(Ving), Gq = (Aq,Ty), @ is the sign of the di-
rect sum. The subspaces Ving and Hp, are three-dimensional, and 1 = (1,0),
0= (0,1), 93 = (z2,~21) is & basis in Ving, Y1 = ((1,0),(L,0)), ¥ =
=((0,1),(0,1)), ¥a = ((z2, —z1), (z2, —x1)) is a basis in Hp,.

For each ¢ € M, there exists a unique uy € Vin, satisfying (2.6), (2.7).
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We introduce the following functionals on M.

Volg) = fnqu,

lIIr1(9’) = ilé%lx |uq($)| —C€ U € f’mq y

2 1 5
Uy(q) = max, z [% (ug)(z) — —(au(u,)(z) + 0'22(“4)(-"?))5::] - c3,
Us(q) = ./n 0ij(ug)€ij(ug)dz — c3 , (2.11)

q

where c;, ¢y, c3 are positive constants. Note that other functionals on M may
also be considered. Now let

M be a compact subset in M . (2.12)
In particular, the set M; may be defined by
My = { g=(0,a1,--.,9) € M, gi(t) € Qs Vt € (~, 7],
Q,- are closed subsets in Q; ,
lgillemraqon,sp < 6@ € (0,1], i=1,...,p} .

We remind that go is considered to be fixed (see (2.8)), C*¥+ denotes a Holder
space with the norm

d*u N
lullneqonmn = lullexgono + s |0 - S| v

tt'g[—m,m]

We define a set of admissible controls My as follows

Mo=q{ qeM, Wi(g)<0 i=1,2,3}, (2.13)
and consider the optimization problem: Find § satisfying

q = inf ¥ )

7€ Moy Wo(2)=_inf olq). (2.14)

From the physical point of view, problem (2.14) corresponds to the minimization
of the area (weight) of an elastic solid under the restrictions on displacements,
stresses and strain energy. Other restrictions of the form Wi(g) € 0 may also
be considered.

2.2. State equations on boundaries and on the unit circle

Let G(z,y) = (Gij(z,y)) be a tensor of fundamental solutions of the equation
Au = —pAu— (X + p)graddivu = 0, u = (uy,uz). (2.15)
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G(z,y) is a symmetric tensor defined by

Gij(z,y) = a1 (025;';' tnr— &= y‘?_(;’"" - yj)) d=19 (2.16)
where
) 1/2
r= lZ(ﬂg = y,v)z] ;
c1=—1/[87u(l —0)], c2=3—40, o=A/[2(A+p)]. (2.17)

From the physical point of view, the function G;j(z,y) defines a displacement
u;(z) engendered by the unit force Pj(y) concentrated at a point y and directed
along the coordinate axis z;.

By Bi(z,y) = (Bijk(z,y)) and Ti(z,y) = (Tijk(z,y)) we denote the defor-
mation and stress tensors at a point = that are engendered by the force Pi(y).
Due to (2.3) and (2.16), we obtain

Bijk(z,y) = :,—; [(1 — 2v)(6ixj + 6jx&i) — 6ij&x + %Ei&jfk} . (2.18)
Tijk(z,y) = j—ﬁ [@(&k{f + 6ik&i — 6ijk) + ;25&63'&] ; (2.19)

&i=zi—yi, ca=-—1/[4r(1—0)], ca=1-20.

The force t(z) = (ti(z),t2(z)) at a point z of a surface with a unit outward
normal v = (v, v2) is defined by ti(z) = o3;(z)v;(z). So denoting by Rix(z,y)
the value at a point z of i component’s of the surface force generated by Py(y),
due to (2.19), we get

Rik(z,y) = i—i [64(%& — i) + (&ﬁ‘k + 2&&) & Vj] : (2.20)

r2

Let u = (u1, uz) be a smooth function satisfying (2.15) in Q,. By Betti’s formula,
Michlin (1962), Banerjee and Butterfield (1981), we obtain

w(e)= [ (00 )G 2,) = Pz, s ]85,
2€Q,, i=1,2, (2.21)
where Fyij(z,y) = Rji(y, ) for v =1, ie.
Fui@y) = e — ) - v @ — =)+

+ (04553‘ + 2(% - x;)gyj -l Ij)) (yk = Ek)n‘-’qk(b’)]- (2-22)
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The integral from the second addend in (2.21) should be understood in the
sense of a Cauchy principal value. Because of the jump relation for Fy(z,y) =
= (Fyj(z,y)) on Sy, Michlin (1962), Banerjee and Butterfield (1981), the rep-
resentation formula (2.21) yields the following expression

%w(ﬂ) = /S q [(Tyw);(¥)Gij (2, y) — Faij (2, y)u; (y)] dSy ,

z€S8,, i=12. (2.23)

Considering the problem (2.6), (2.7), we obtain the equation

Wule] =l 2/ Filz, pyulg)dS, = fi(z), 2€5,, (2.24)

q
where

fu(e) =2 f G, ) Fy(4)dS, - (2.25)

q

The boundary S, is defined by the function ¢ = (g0, ¢1,...,9p) € M (see Fig. 1).
Denoting vgi(t) = u(qi(t)), « = 0,1,...,p, v4 = (vg0,...,Vgp), We transform
problem (2.24) to the following one

(P@wi(®) = wi®)+23 [ Faa, ()P

g:(t), te[-m,7), i=0,1,...,p. (2.26)

I

Here

D(g;)(r) = [(dj—()) + (%) ] Y a0=heo, e

and g; is independent of g because F, is not equal to zero only on Sgo, and Sgo
is fixed, see (2.8), (2.9). In the case of i = j, the integral in (2.26) should be
understood as the limit of the integral

/ " Fye(t, 7)vgs(r) D(gs)(r)dr,

N‘

_ | Fy(ai(t),qi(r)) for [t—71|>¢
Foe(t,7) = { 0 for jt—7|<e

as ¢ tends to zero.
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3. Spaces and operators on R/27Z, auxiliary statements

Define the space W, as follows
Wi = { u = (uo, U1, ..., Up), Ui = (Ui, ti2) € ™ 1?(—n,1)2,

i=0,1,...,p, m>3} . (3.1)
By H*(—m,), s > 0 we denote a subspace of periodic functions in H*(—,).
A norm in Wy, is defined by
i oz 1/2
[|v]fm = ( z”uik“?}m_u:{_x'#)) : (3.2)
i=0 k=1

Here,

n=1

00 1)‘2
oll gmmsragn,my = [aa+ S(a2+ bﬁ)n*m-l] , (3.3)

where a,, b, are the Fourier coefficients of the function v, i.e.

o0

v(t) = 32—0 + Z(an cosnt + by, sinnt),
n=1
i ¥ 1 F* .
an=— | v(t)cosntdt, b= = v(t) sinnt di. (3.4)
™ —_ -1
Let
Wing = (1gVmg) 04 - (3.5)

Here Vpn, is ker(Ay,T,) (see Theorem 2.1), v, is the trace operator on S, ¢
is the function defined in (2.1). It follows from Theorem 2.1 that Wi, is a
three-dimensional subspace in W, with the basis {¢g:}7_;,

Pqi = (‘pqiD:‘Pqi'lj . -:‘Pq:’p) = 1s2)3 )
eotk = (1,0), @g2r = (0,1), @gar = (qk2,—qk1), k=0,1,...,p, (3.6)

qxi are defined in (2.1). We denote by J, the operator of the simple layer
potential

(Jqv)(z) = A G(z,y)v(y)dS, z€S,, (3.7)

and let

wqi:(']qﬁi)oq 1= 1:2:31
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B1=(1,0) on Sg, B2=(0,1) on Sy, Bz = (z2,—z1) on S, (3.8)

izolll"'lp -
By (3.7), (3.8) we get
wqi — (¢qi0; %.‘1, ‘e -:¢qip) = 112:3 )
P T
Yeii () =) [ G(aj(t), ax(7))Bi(ar()) D(gk)(r)dr, (3.9)
k=0Y T
7=0,1,...,p,

D(qg) is defined by (2.27).

THEOREM 3.1 Let the set M be defined by (2.1) and (2.8), (2.9) hold. Let also
the operator P(q) be defined by (2.26). Then P(q) € L(Wyn, Wy), and for each
q € M, the following representations are valid

Win = Wing ® Wing = Emg ® Emg , (3.10)
where Wing = ker P(q), Emg = P(¢)(Win), Emg is a three-dimensional subspace
in W with a basis {hgi}3_, defined by (3.9). There ezists a unique vy € Wi,
satisfying (2.26).

Proor.  The operator J; is an pseudodifferential operator of order —1 on
S,, and J, is an isomorphism from H™~3/2(5,)? onto H™~1/2(S,)?, Chudi-
novich (1991), Wendland (1985). It is obvious that if u, is a solution of problem

(2.6), (2.7) then u = y,u, is a solution of problem (2.24). On the contrary, if u
1s a solution of problem (2.24), then the function

uy(z) = fs Gz, 9)Fo(y) — Folz,i)u(s)ldS, =€

is a solution of problem (2.6), (2.7). Problem (2.26) is obtained from
(2.24) by a replacement of variables corresponding to the 1-1 mapping ¢ €
€ ™+ (—m,7)*®+1), And so Thearem 3.1 follows from Theorem 2.1. W
REMARK. The space qu is defined non-uniquely by (3.10), and so we define
qu so that qu be orthogonal to qu with respect to scalar product in
Ly(—mw, w)2p+1),

We define the operator T'yy € L(Win, Wing) by

I'y1 is the operator of orthogonal projection }

of Wy, onto Wi, with respect to scalar (3.11)

product in Lo(—m, 7)2(+1),
We also define an operator I'ys € ﬁ(ng,E’mq) as follows
3 3

u=Y cipg, Fpu= > eithyi - (3.12)

$=1 =1




504 W.G. LITVINOV

THEOREM 3.2 Let the set M and the operator Py be defined by (2.1) and (2.26)
accordingly. Then the operator Ny = P(q)+T'(q), where I'(q) = T'y2 0 Tq1 is an
isomorphism from Wy, onto W,,.

Indeed, it is obvious that I'(g) € £L(Wm, Em,) and I'(q)(Wim) = Epm,. Therefore,
by Theorem 3.1 the operator P(q)+TI'(g) is a continuous bijection from W,, onto
Wm, and so by the Banach theorem P(gq) + I'(¢) is an isomorphism from W,,
onto W,,.

LEMMA 3.1 Let the set M cmd the operatorT'(q) = Tya0Ty; be defined by (2.1),
(8.11), (3.12), and ¢" — ¢° in M (M is supphed wzth the topology generaled
by the Cm+1(—m, 7)2(P*+Y) topology). Then ||T'(g™) — T'(q )H,;(mem) — 0 as
n — co. _
ProOF. Let u = (ug,uy,...,up) € Wp. By (3.11) we have

3

ITgniu — MIIL,(_?r YA+ = man e = cipgmitllgo(om e (3:13)

i=1

We denote by ¢;, a solution of problem (3.13), i.e. ¢;; minimize the norms in
(3.13). Then we get

3 P P
Cin D, D (Paniks Pgnik)La(-m,m)2 = D _(Uk, Pgnik)La(-x,%)3

i=1 k=0 k=0
i=1,2,3. (3.14)

The matrix of the system (3.14) is non-degenerate because the functions
{(pgn,;}?:l are a basis in qun. Therefore ¢;, are defined uniquely. Let now
g" — q° in M. Then @gnip — Pgoik in C‘m“(-—:ﬁ', m)2, and so ¢;, — cig as
n — oo, where c;q is a solution of problem (3.14) for n = 0. As the embedding
of C™+1(—m, ) into Ly(—m, ) is compact, we obtain that ¢, — c;o uniformly
for all u € K, where K is an arbitrary bounded set in M.

It may be shown that ¥gni; — %404 in Em(—ﬂ,ﬂ)a as ¢ — ¢" in M.
Therefore I'(g") — T'(¢°) in L(Win, Wp).

In the space W, we define the operator A/(g) as follows
'U_'('UOTU-I-I"'I EWY’HS N(qv"”{(N U}}i =01

V@) Z [ @) ()P )i (3.19)
te[-ma], i=0,1,...,p.
By (2.26) we have
P(q) =I+2N(9), (3.16)

where I is the unit operator in W,,.
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LEMMA 3.2 Let the set M be defined by (2.1) and the operator N'(q) be defined
by (3.15), (2.22), (2.27). Then N(q) € L(Wm, W) and the function N : ¢ —
— N(q) is a continuous mapping from M into L(W, Wy,).

Proor. By (2.22) we have
Fy(4i(2), 45(7)) = (Farn(2:(1), 4i(T)))3 et
Fun(@:®),0(1) = —2-{ca] vge(0i(r))(gsn(7) = ain(®)) -

P(‘-" t)
~ven (i (7)) (@j1(7) — ai(®))] +

i [c45k,. 4 Hae(r) - ?*'kf()gr(gn(r) ~ gin (t))] "
i%a(f) G (1) } (3.17)
Here .
p(r,t) = i‘hs t) — g;5(7))%,
@) = (a0 L2, -atn W), (3.18)

—-1/2

a(r)

Il

(o) )]

In the case when i # j, the elements Fyrn(gi(t),q;(7)) are non-singular and
they geneiuts ¢ymoothing operators. So we consider the case when i = j. As
€ Cm+1(—m, m)?, by (3.18) and the Taylor formula we get

2
> (@is(7) = qis (1) s (:(7) | = |A(r, 1)] < et = 7).

=1

Therefore the terms containing A(7,1) as a factor in (3.17) generate a non-
singular operator. The two remained addends in (3.17) are singular and similar.
So it is sufficient to show that the operator R(gq) defined by

RS gm'—lﬁ(_ﬁ: 7‘-):
R@u)®) =/ Fllt)uqk(qe(rn(qm(r) — gin(t)) D(as)(r)u(r)dr,

is a continuous mapping from ™~ /2(—m, r) into
Hm=12(—x 7), and if ¢¥ — ¢° in M, then R(¢*) — R(¢°) in
L(H™-Y2(=n,x), H™/2(=m,)).

(3.19)
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By the Taylor formula we obtain

gin(7) — @in(t) = gin(t)(T — 1) + a4(7,1), (3.20)

p(r,t) =D (gis(r) — ais(®))? = ) da@)*(7 = 1)° + By(7 1), (3.21)
s=1 s=1

[t]q(‘.",t)l S le _tl2’ lﬁq(ﬂtn S CI‘T“tls' (322)
Substituting (3.20), (3.21) into R(q)u we get
R(q)u = R1(q)u + Ra(q)u, (3.23)
Rl = el [ 2D, (329
> di(t)?
(Ra()u)(t) = / H(r, t)wy(r)u(r)dr . (3.25)
r

Here T is the unit circle with the center at 0 on the plane z;0x;, the origin
of count of the curvilinear coordinate on I' is a point of I' lying on Oz, the
direction of count is counter-clockwise

we(r) = var(g(r))D(@)(7), H(71) = eq(r,1)/fo(7,1),
eg(r:t) = (ZQE,(UE) ag(7,8)(7 — 1) = gin(D)bg(7, 1),

fo(r,t) = (ZQE, ) (r—1)? (ths )ﬁq ”)(T—f) (3.26)

We remark that the function 7 — 7 —t is discontinuous on I' at the point
70 = t 4+ w. Define the operator R3 as follows

T—1
It is obvious that Rau is the convolution on I' of the principal value of the

distribution 1/t and —w,u. We denote by ci(f) the Fourier coefficients of a
function f for the complex form of a Fourier series
1

(=5 | f(t e~ Htdt .

Then we have, Schwartz (1961)

(Rsu)(t) = /P Selrjulr) 5, (3.27)

Y ler(Rau)?=4x Y |er(1/)er(~wou)l* . (3.28)

k=—co k=—o0
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Since |cx(1/t)] < const Vk (see Edwards 1979) and w, € C™(—m, ), the
Parseval equality and (3.28) yield

[Raullf yormy =27 D lee(Raw)? < cllull} (s ey (3.29)

k=—oo
For a # 0, we get
a'[(Rau)(t + a) — (Rau)(t)] =
i1 wy(T)u(r)  we(r)u(r) "
/] ¥

=1 —~a T1
_ gt [ walr+a)u(r +a) — w(r)u(r) |
= /P ) i (3.30)

By (3.29), (3.30) we obtain that if u € H!(—m, ) then

(5Re0) 0= [ (=07 F-tanlru(ry)ar

and [[Raullgs(yry < illullga(rs)- BY analogy, we have [[Raullgm(_s.r) <
< c1]|ull fzm(—r,x), 2nd taking into account (3.24), (3.27) we get

the condition ¢# — ¢® in M it follows that
Ri(g*) = Ri(¢°) € L(H™(—m, 7)), H™ (-7, 7))

By interpolation, Lions and Magenes (1968), we obtain that (3.31) holds for m
replaced with m — 1/2. The operator R is smoothing and satisfies also (3.31).
Therefore (3.19) holds. M

Ri(q)u € L(H™(—=,7), H™(—m, 7)) and from }
(3.31)

P
We remind that by Q, we denote a domain in R? with a boundary S; = U Siy
1=0

S, are defined by a function ¢ = (go,4q1,--.,9p) (see Section 2.1., Fig. 1).
THEOREM 3.3 Let the set M be defined by (2.1) and g™ — ¢° in M. Then for
each sufficiently large n there exists a mapping Py such that P, is a C™~diffeo-
morphism of Qo onto Qua and P, — I in C™(Q40)?, where I is the identity
mapping in Qqo, i.e. I(z) = z.

Proor. In the beginning we will prove the theorem for the case when ,» and
Qg0 are simply connected. Let S,, So be boundaries of Qgx, Q40 accordingly,
be a small positive number and

Go = {.?: e Qqn, yiEn;o ”I - y|| > (5} 2 (3.32)

Let also Ty be a boundary of G and Fy = Q0 \ Gy, see Fig. 2. By s we denote
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g A

Figure 2. The domains 4, Q40 and their boundaries.

points of a parametrization of Ty. Then we can consider that s € R/2nZ.
Outside of Gy we define the curvilinear coordinates (s, r), the axis r at point s
1s normal to Ty. Let now

" —¢° in C™Hi(—m, 7). (3.33)

Then for sufficiently large n, we have S, N7y = @, and we define the function
fn:R/2nZ x [0,68] — R? as follows

m+41
fal(8,7) = (5,Ba(5,7)), Bn(s,r) = Z ant (s)r*, (3.34)
aﬁ"( =1 2 ﬁ"( 0)=0 k=2,...,m, Q(s,Ba(5,6)) € Sa. (3.35)

Here @ is the transformation of the curvilinear coordinates (s, r) onto the Carte-
sian coordinates (z1,z3). By (3.34), (3.35) we get

an1(8) =1, anr(s) =0 k=2,...,m, (3.36)

and (3.33) yields @n(m41)(s) — 0 uniformly with respect to s. Therefore f, is a
1-1 mapping. Since S, € C™*! we obtain from (3.35) that

n(m+1) € C™(—m, ). (3.37)
Now we define the mapping P, : Qqu — R? as follows:

for z€ Gy

Eale)= { (QofaoQ )(z) for z€QE\Go ° (3.38)
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By (3.34)-(3.38) we get that P, is a C™-diffeomorphism of Q0 onto Q,» and
P, — I in C™(Qg)2.

In the case when Q,n and Qg0 are multiply-connected, we introduce the
curvilinear coordinates (s,7) in the vicinity of each component of the boundary
of the domain 40, the functions f,, are defined in each vicinity, and by analogy
with (3.38), we define a C™-diffeomorphism of Q0 onto Qg». M

4. Optimization problem on R/27Z
4.1. State equations and functionals
By Theorem 3.1 for each ¢ € M, there exists a unique v, satisfying
vg € Wing, Pa)v, =, (4.1)

where the operator Py and g = (go,¢1,...,9) are defined by (2.25)-(2.27). So
the function M 3 ¢ — v, € Wi, is defined.

THEOREM 4.1 Let the set M be defined by (2.1), and (2.8), (2.9) hold. Then the
function ¢ — v, defined by a solution of problem (4.1) is a continuous mapping
from M into Wp,.

Proor. We define the mapping J : M x W,,, — W, by

J(g,u) = (P(g) + T(g))u — g, (4.2)

and by A we denote the implicit function defined by A(q) € W, J(g, A(g)) = 0.
Since I'(g)vy = 0 (see (3.11) and Remark in Section 3.), we obtain J(g, v,) =0,
i.e. A(¢) = vg. By Lemmas 3.1, 3.2 and (3.16) the function ¢ — P(q) + I'(q) is
a continuous mapping from M into £L(Wn, Win). By Theorem 3.2 the operator
P(q) + I'(q) is an isomorphism from W, onto W,,. Now Theorem 4.1 follows
from the implicit function theorem, Schwartz (1967). M

THEOREM 4.2 Lel the set M be defined by (2.1), and (2.8), (2.9) hold. Let
also the functionals W; i = 0,1,2,3 be defined by (2.11), where ug € Vppy is a
solution of problem (2.6), (2.7). Then ¥; are continuous on M functionals.

Proor. The continuity of the functional ¥y is obvious. We prove the con-
tinuity of the functional ¥y. The proof for the other functionals is analogous.
Let

" —¢° in M. (4.3)

We denote by u™ and u® the solutions of problem (2.6), (2.7) for ¢ = ¢™ and
q = ¢ accordingly. By (2.21) we have

u"(z) = — Z[_’; Fy(z,q7(T))vgnj (T)D(q;-‘)(r)dr + P(z)
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ul(z) = — Z/r Fy(z, q?('r))vqoi('r)D(q?)(r)dr + P(z)

J -

re .Qqu, ; (45)

Pe)= [ Gz, a0(r))Flao(r)) Digo)(r)dr- (46)

-

Here gq is the first component of an element ¢ € M, qq is fixed and F = (Fy, Fy),
see (2.8), (2.9), vgnj, veo; are the solutions of problem (2.26) for ¢ = ¢" and
g = ¢° accordingly.

By Theorem 3.3 for each large n, there exists a C™-diffeomorphism P, of
Q40 onto Qgn. So we define the function @ as follows:

i (z) = u(Py(z)), " € H™(Qpo)?. (4.7)

For an arbitrary ¢ € M, the operator of the double layer potential B, defined by
i "
weWn (B)@) =Y [ Fieau(nDe)rin =€,
i=07-%

is a linear continuous mapping from W,, into H™(2,)2. So by (4.3) and Theo-
rems 3.3, 4.1, we obtain

" — u® in H™(Qgp)% (4.8)

By the replacement of variables corresponding to the C™-diffeomorphism P, we
have

) = max 3 [~ 5 (o) + 7)) s

5:i(@)(2) = 03 (u")(Pa(z)) 2 € Dyo. (4.9)
Due to (4.8), (4.9), we get ¥a(¢") — ¥s(¢°). M

THEOREM 4.3 Lel the set M be defined by (2.1) and (2.8), (2.9), (2.12) hold.
Let also the functionals ¥; i = 0,1,2,3 and the set My be defined by (2.11),
(2.18), My being non-empty. Then there exists a solution of problem (2.14).

Indeed, by (2.12) and Theorem 4.2 we get that M is a compact set in M, The
functional ¥y is continuous on M, and so there exists a solution of problem
(2.14).

For the sensitivity analysis and for the construction of approximate solutions
of problem (2.14) it is useful to calculate the derivative of the function ¢ — v,,
where v, is a solution of problem (4.1). So we consider this problem.
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We introduce the notation
Ma) = vy, (4.10)

It follows from the proof of Theorem 4.1 that A is the implicit function defined
by Mgq) € W, J(g,A(g)) = 0, J(q,u) is determined by (4.2). By applying
(3.17) and representation (3.23)—(3.26), it may be shown that ¢ — P(q) is a
continuously Fréchet-differentiable mapping from M into £L(W,,, W;,). It may
also be shown that ¢ — T, is a continuously Fréchet-differentiable mapping
from M into L(Wm, Wm). By P’(g), I'(¢) we denote the derivatives of these
mappings at a point q. So by applying the theorem on differentiability of an
implicit function, Schwartz (1967), we obtain that A is a continuously Fréchet-
differentiable mapping from M into W, and its derivative at point ¢ € M is
defined by

N(g)h = —(P(q) + T'(g))~" [(P'(9) + I'"(9))h] A(9), (4.11)

where h = (ho, hi,..., hp), hi = (hi1, hiz), hi € C™+ (=, )2, ho is equal to
zero since the component Syo is fixed (see (2.8)).
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