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The pa.Per presents the structural and the sensitivity analyses 
for the optimization of axisymmetric shells subject to static and dy­
namic constraints and arbitrary loading. Thickness and shape design 
variables are considered. The model IS based on a two node frus­
tum conical finite element with 8 degrees of freedom given on Love­
Kirchhoff assumptions . The objectives of the design are minimiza­
tion of the volume of the shell material, maximizat10n of the funda­
mental natural frequency1 minimization of the maximum stresses or 
the minimization of maximum displacements. The constraint func­
tions are the displacements, stresses, enclosed volume of the struc­
ture; volume of shell material or the natural frequency of a specified 
mode shape. The sensitivities are calculated oy analytical, semi­
analytical and global finite difference techniques. The efficiency and 
accuracy of the models developed are discussed with reference to 
applications. · 

1. Introduction 

Structural optimization using finite element techniques requires sequential use 
of structural and sensitivity analyses combined with a numerical optimizer. The 
success of the structural optimization process depends on the proper choices with 
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respect to the finite element model, sensitivity analysis, objective function, con­
straints, design variables and method of solution of the nonlinear mathematical 
problem. 

This work presents a frustum-cone finite element model with 8 degrees of 
freedom, based on Love- Kirchhoff assumptions, for thin axisymmetric shell 
structures (Zienkiewicz, 1977) . The sensitivities with respect to the design 
variables, the thicknesses and/or radial nodal coordinates, are evaluated ana­
lytically, semi-analytically or by finite difference. 

The evaluation of sensitivities of structural response to changes in design 
variables is a crucial stage in the optimal design of complex structures, rep­
resenting a major factor with regard to the computer time required for the 
optimization process . Hence it is important to have efficient techniques to cal­
culate these derivatives. The simplest technique of evaluating sensitivities of 
response with respect to changes in design variables is through the finite differ­
ence approximation, called here global finite difference, which is computation­
ally expensive, or through the use of semi-analytical method (Zienkiewicz and 
Camp bell, 1973; Cheng and Liu, 1987; Barthelemy et al., 1988) or the analytical 
method as described in the next sections. These later methods can both be ap­
plied with the direct or adjoint structure technique for static type of situations 
(Haftka and Kamat, 1987). 

In this paper the formulation for the sensitivities of axisymmetric shells is 
presented for the general case of arbitrary loading. Other numerically based 
solutions are reported by Marcelin and Trompette (1988) using a finite ele­
ment with a two node straight element and/or a three node parabolic element 
based on Love-Kirchhoff shell theory associated to the semi- analytical method 
to evaluate the sensitivities. Others authors, such as Plaut et al. (1984) and 
Chenais (1987), present alternative theories and models for optimization of shell 
structures. Mehrez and Rousselet (1989) presented the analysis and optimiza­
tion of shells of revolution using Koiter's model with the implementation of 
B- Splines for the middle surface and finite element for displacements. More 
recently, Bernardou et al. (1991) used only the general continuous formulation 
of the problems and presented a methodology for optimizing the shape (middle 
surface and thickness) of an elastic general thin shell under different criteria. 

The formulation presented in this paper is applied to the minimum weight 
design of thin axisymmetric shell structures subject to constraints on displace­
ments, stresses, natural frequencies, volume of the shell material and enclosed 
volume of the structure . Maximization of the natural frequency of a chosen 
vibration mode, minimization of maximum displacement or alternatively mini­
mization of maximum stresses using a bound formulation is carried out. A com­
parative study of analytical versus semi- analytical and global finite difference 
shows the advantage of analytical sensitivities with regard to the accuracy and 
the advantage of semi- analytical sensitivities with regard to CPU time. 

The ADS (Automated Design Synthesis) program ofVanderplaats (1987) is 
used to solve the nonlinear mathematical programming problem. 
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2. Thin axisymmetric shells 

Structural analysis of axisymmetric shells using finite element methods requires 
a discretized model where the complete shell can be idealized as a series of 
shell ring elements joined at their nodal point circles. Its behaviour will be 
characterized by the displacements of these nodal circles which are described in 
terms of a finite number of displacement variables or generalized displacements. 

For an arbitrary shell the strain-displacement relations for small displace­
ments in an orthogonal curvilinear system are given (Kraus, 1967) by : 

fJ ( u; ) 1 L3 
og; Uk ~ - +- ---- (i = 1,2,3) (1) 

ua; ff; 2g; k=l Oak y'gk 

{ij 1 [ 0 ( U; ) 0 ( Uj )] (i,j = 1,2,3;) (2) 
..;g:;g; g; OCXj ff; + gj OCX; y1ij i =j:. j 

where <; are the normal strains, a; the curvilinear coordinates, u; the displace­
ment components, g; the first fundamental magnitudes and rij the shear strains. 

Considering· t.he Love- Kirchhoff approximation of the theory of thin elastic 
shells which is based on the postulate that the shell is thin, the deflections of 
the shell are small, the transverse normal stress is negligible and normals to 
the reference surface of the shell remain normal to it and undergo no change 
in length during deformation . For a conical shell (Fig. 1) represented by its 
reference surface of revolution, the displacement components are represented 
as: 

u 1 = U(S, e, ~); u 2 = V(S, e, ~); u3 = w(s,e,o 
For this particular situation and assuming for thin shells 0 R; ~ 0, where 

1/ R; are the principal curvatures, equations (1) and (2) can be represented as : 

fJU 
<ss as 

<ee ~ ( ~~ + U cos qy + W sin qy) 

fJW 
(3) f(( 

8~ 

!se 
av 1 ( au ) - + - - - V cos 1J 
oS r oB 
fJW fJU 

{S( as + 8[ 

{8( ~ aw +r~ (v) 
r ae a~ r 

u U(S, B,e) 

V V(S,B,~) 
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z,u~ 

Figure 1. Frustum-cone finite element. Geometry and displacements. 

W = W(S,B,~) 

where U, V, W are the components of the displacement vector of a spatial point 
and S, B, ~ are, respectively, the coordinates along the meridian, parallel circle 
and normal to the reference surface of the shell (Fig. 1). 

Assuming the following displacement distribution : 

U(S,B,~) 
aU 

u(S, B)+~ 8[1(=o 

V(S, (},~) 
a V 

v(S, B) + ~ 8[ l(=o (4) 

w(s,e,o w(S, B) 

where u(S, B), v(S, B) and w(S, B) represent the components of the displacement 
vector of a point on the reference middle surface of the shell and ~~ I(=O and 

~~ I(=O represent, respectively, the rotations of tangents to the reference surface 

oriented along the lines S and (}. Let ~~ 1(=0 = f3s (S, (}) and ~~ I~=O = f3o (S, (}). 
Using the Love-Kirchhoff assumptions (Is(= /6( = 0), one obtains: 

f3s 

f3o 

aw 
as 

v . law 
-sm</J- -­
r r aB 

(5) 

The displacement vector U = [U V WjT of a given point (S, B, 0 can be 
expressed in terms of the displacement vector U = [u, v, w]T of the reference 
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surface and the rotations of tangents (fJs, fJe) of the same reference surface 
oriented along the parametric lines as : 

(6) 

Substituting relations (6) into the remainder of equations (3), the non- van­
ishing strains in the thin elastic shell are given by: 

( 

X 

where the operators ~m and ~J are, respectively : 

l 
a 0 0 

l as 
cos 1> 1 a sin p 

r r ae r 

1 a (_q_ - ~) 0 r: ae as r 

~, l 
0 0 

a, 
- as• 

0 sin p ..£_ 1 ( a2 a ) 
r2 ae - r 2 w + r cos 0 as 

0 2 sin p (r_q_ - cos 1/J) 2 ( a a2 
) 

r 2 as r2 cos 4> ae - r asae l 

(7) 

(8) 

(9) 

The quantities <S.S, f~e, 'Yse represent, respectively, the meridional, circumfer­
ential and shearing strains of the reference surface. The quantities xss and 
xee represent the changes in the curvature of the reference surface and xse 
represents the torsion of the same surface during deformation. 

Assume that the displacements u, v, w can be expanded in Fourier series of 
the type : 

N 

U = l)CnUn + CnUn) 
n=O 

where: 

[ 

cos nO 
Cn = 0 

0 

0 
sin nO 

0 

0 
0 

cos nO 

( , [- - - )T 
Vn = Un Vn Wn 

0 
cos nO 

0 

(10) 
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The first and second terms of equation (10) represent these components of 
displacements which are, respectively, symmetric and antisymmetric with re­
spect to the plane passing through 8 = 0 and Z, Un, Vn and Wn being the 
amplitudes of symmetric part and Un, Vn and Wn the amplitudes of antisym­
metric part for the nth harmonic and N is the number of terms in the truncated 
Fourier series. 

Since the angular dependence of displacement components is expressed in 
terms of trigonometric functions, the orthogonality properties of such functions 
yield a formulation of the problem as a series of uncoupled quasi two-dimensio­
nal problems, in which the displacement amplitudes Un, Vn, Wn, Un, Vn and Wn 

are the unknowns. The meridional dependence of these displacements ampli­
tudes along the frustum cone represented here only by the symmetric part, can 
for the sake of simplicity, be assumed as: 

l!n = 1\iq~n 

where: 

[1' 
0 0 0 

1\1= N1 0 0 
0 N3 N4 

N1 (1 - () 
N2 ( 
N3 (1 - 3(2 + 2(3

) 

N4 ((- 2(2 + (3)£ 
Ns (3( 2 - 2(3 ) 

N6 ( -(2 + (3 )£ 

N2 0 0 
0 N2 0 
0 0 N2 

0 l 0 

N6 

(= ~ 
£ 

(11) 

(12) 

1\1 being the matrix of shape functions , q~n the vector of displacement amplitude 
components in local coordinates, £ the length of the frustum-cone element, ri 
and ri the radial coordinates of nodes i and j and S the coordinate over the 
length of the frustum-cone element (Fig. 1). 

Substitution of equations (10) and (11) into equation (8) yields for the nth 
harmonic: 

f - B* q1 
mn - mn en (13) 

where 

[ " l [Bu 0 0 0 -B11 0 
0 0 l fssn 

0 B* = B21 B22 B23 B24 B2s B26 B21 B2s fmn = Eeen mn 
!~en B31 B32 0 0 B3s B36 0 0 

(14) 
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E~sn, E~on and /~on representing, respectively, the amplitudes for the nth har­
monic of the meridional, circumferential and shearing strains of the reference 
surface. The B:,.n are derived by applying the strain operator ~m to the dis­
placement shape functions yielding: 

Bu _.!. cosnB· 
l ' 

B21 !!..I. cos cjJ cos nB· 
r ' 

Bn !!..l.n cos nB· 
r ' 

B23 & sin cjJ cos nB· 
r ' 

B24 !:!i sin cjJ cos nB· 
r ' 

B25 !:!.:l. cos cjJ cos nB· 
r ' 

B26 !:!.:l.n cos nB· 
r ' 

B21 & sin cjJ cos nB· 
r ' 

(15) 

B2s & sin cjJ cos nB· 
r ' 

B31 _!f..I.n sin nB· 
r ' 

B35 -!:!.:l.~sinnB· 
r ' 

B32 - (t + ~ cosc/J) sin nB; 

B36 ( t - ~ cos cjJ) sin nB 

Considering the transformation matrix L relating nodal local coordinates (S,B,O 
to nodal global coordinates (r, B, z) (Fig. 1), one obtains the relationship be­
tween the displacements amplitudes in the local referential (q~J and the dis­
placement amplitudes in the global referential ( qeJ: 

(16) 

where : 

L= 

0 0 l 1 0 
0 0 ' 
0 1 

Substituting equation (16) into the strain-displacement relation (Eq. 13), 
one obtains the membrane terms of the strain-displacement in terms of the 
element degrees of freedom of the nth harmonic as: 

(17) 
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where: 

B =B* L mn mn 

For the bending terms the procedure is identical, yielding: 

X - B* ql In - In en 

where : 

Xln = 

and: 

IEha 

IB14 

Ehs 

IB22 

IB2a 

IB24 

IB26 

IB21 

IB2s 

IBa2 

IBaa 

1Ba6 

1Ba4 

1Ba7 

IBas 

[ 

Xssn l 
XBBn 
XSBn 

B• -
In -

6- 12( cos nO· 
£2 ' 

4 - 6( cos nO· 
l ' 

2- 6( cos nO· 
l ' 

N,nsinp cos nO· 
r2 ' 

[ : 

(
n 2 N 3 + cosc/>(6( - 6(

2
)) cosnO· 

r2 lr ' 

(
n 2 N 4 + (-1+4( - 3(

2
)cosc/>) cos nO· 

r 2 r ' 

N 2 n sin 4> cos nO· 
r2 ' 

(
n 2 N 5 _ (6( - 6(

2
)cosc/>) cosnO· 

· r2 lr ' 

(
n

2 N 6 + (2( - 3(
2
)cosc/>) cosnO· 

r 2 r ' 

(
_ 2sinp _ 2N1 cospsinp) sin nO· 

rl r2 ' 

(
_2nN3 cosp _ 2n(6( - 6( 2

)) • O· 
r2 lr Sin n , 

(
2sin 4> _ 2N2 sin c/>cosp) SI. 0· 

rl r2 n n ' 

( _ 2nN;
2
cos 4> + 2n(l-!( +3(

2
)) sin nO; 

(
2n(6(-6\') _ 2nN5 cosp) · 0· 

rl r2 Sill n ' 

(
2n(-2(+3(

2
) _ 2nN"cosp) sin nO· 

r r2 ' 

0 
0 
0 

(18) 

(19) 

Similarly if one considers the transformation of coordinates ( L) of the local 
referential (S,O,e) to the global referential (r,O,z), the changes of curvatures 
for the nth harmonic can be represented as : 

Xln = Blnqen 

where : 

(20) 

(21) 
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The constitutive equation for a linear elastic solid, considering infinitesimal 
deformation and orthotropic materials, can be written as : 

where: 

I. = [<7ss O"oo O"a O"s9 O"se O"oef 

f = [<'ss <'89 ~'EE /Se /Sf. /Bt.f 

(22) 

and V is the constitutive matrix for the three-dimensional linear elastic solid. 
As a consequence of the Love theory expressed by /SE = /BE = ~'EE = <7EE = 0, 

the system of stress- strain relations for thin orthotropic axisymmetric shells can 
be reduced to : 

r='DE 

where: 

r = [<7ss O"ee O"sef 

Eo 
E9 =----

l - vseves ' 

(23) 

E• _ Es 
s -

l - vseves 

where Es , Ee, Gse, vse, ves are Young's moduli, shear modulus and Pois­
son's ratio for the material referred to the S and B directions. Substitution of 
equations (7) in equations (23) yields : 

T = 'DE0 + ~VX (24) 

Integrating the stress distribution across the thickness of the shell by neglecting 
~/ R ~ 0 one obtains: · 

1 12 
T = hN + ~ h3 M (25) 

where: 

and: 

N = [Nss Nee Nse ]T (membrane resultants) 

M = [Mss Mee Msef (bending moments) 

h / 2 N 

N = j rd~ = Dm L ~'mn 
- h / 2 n = O 

(26) 
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J
h/ 2 N 

M = rede = DJ L:xfn 
- h/2 n=a 

(27) 

where Dm and DJ are the membrane and bending constitutive matrices given 
by: 

Dm = hV; 

The kinetic energy re of the eth element is given by the expression: 

re = ~ f eUrUdD = ~ {
2

rr fljh/
2 

eUrUlrded(dfJ 
2 ln 2 la la -h/2 

(28) 

where U = dU j dt, dD. is the elementary volume and is the mass per unit of 
volume. Substituting equation (5) into equation (6) and integrating over the 
thickness of the element one obtains: 

re = ~{] {
2

" {

1 

Mf D_lrd(dfJ + ~~ {
2

" t h3~T ~lrd(dfJ (29) 
2 la la 2 12 la la 

where: 

. d T 
QJ = -[u v w] 
- dt 

~ = ~[- aw ~ (vsin<P- aw) of 
dt aS r OfJ 

In equation (29) the first term represents the translational kinetic inertia 
and the second term represents the rotational kinetic inertia. It is important to 
take note that the coupled terms of Fourier series of the type (sin mB sin n.J) and 
(cos mfJ cos nfJ) for m =f n are not considered by making use of the orthogonality 
of the harmonic functions in the interval 0 ::::; fJ ::::; 211' and because the thickness 
is assumed uniform along fJ those terms are equal to zero, resulting for the 
integration in B: 

Ja2
rr cos nfJ cos mfJdB = A1 

J~" cos nfJ sin mfJdfJ = 0 

for m =f n 

A1 = 211'; A2 = 0 for m = n = 0 

fa2" sin nfJ sin mfJdfJ = A2 Al = A2 = 11' for m = n > 0 

(30) 

Substituting equations (6), (10) and (11) in the equation (29) for the frustum­
cone finite element one obtains : 

(31) 
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where: 

rlen = ~ Qen; Nn = CnN and Rn = CnR~ 
in which: 

R: = [: 

0 _!!..f'::!..J_ - !!.!:!i 0 0 - £J:!Ji. -~ 

l as as as as 

~sin <P 
nN3 nlN1 0 ~sin <P 

nN, nlNs 
r r r r 

0 0 0 0 0 0 0 

The kinetic energy can be represented in a simplified form as: 

N N 
Te _ 1 ~ ( ·T (Me Me ) . ) _ 1 ~ ( ·T Me . ) - 2 L..J qen nT + nR Qen - 2 L..J qen nqen 

n =a n =a 

(32) 

where M~ is the element mass matrix for the nth harmonic represented by: 

(33) 

The element mass matrices M~ are full (8 x 8) matrices which are evalu­
ated taking into consideration the orthogonality properties of the trigonometric 
functions (Eq. 30). 

The strain energy of the eth element is represented by the expression: 

Ee = ~ r TT cdrl = ~ {
2

" fljh/
2 

cTVcrP.df;d(,dB 
2 ln 2 la la - h/2 

(34) 

Introducing equation (7) in the above equation and taking advantage of the 
orthogonality properties of the trigonometric functions one obtains: 

1 N 
Ee = _ ~qT J(eq 2 L....,; en n en 

n =a 

with: 

(35) 

(36) 

(37) 

(38) 

where K:nn and Kin are the membrane and bending terms of the element stiff­
ness matrix for the nth harmonic. These matrices are evaluated analytically 
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in the 0 direction taking into consideration the orthogonality properties of the 
trigonometric functions (Eq. 30) . In the ( direction the integration is carried 
out by Gaussian Quadrature formulae. 

Expanding the surface loads p = [pu Pe PwJT in Fourier series, one obtains 
external work in the form of: -

(39) 

where: 

N 

E = L Cnlt; En= [p~ Pe P~f 
n=O 

Assuming a linear dependence between the above magnitudes of the forces 
vector and the components of this vector on the nodes of the frustum-cone finite 
element, one obtains: 

pn = 91p~n (40) 

where : 

PI _ [pn Pe, P~, M!' n n n Mpf en - Ui I Puj Pei Pwj 

[ N, 
0 0 0 N2 0 0 

~ l 91 = ~ N1 0 0 0 N2 0 
0 N1 0 0 0 N2 

( 41) 

Considering equations (6) , (10), (11) and (16) and substituting in equation (39) 
one gets: 

(42) 

Using Nn = CnN, making 91n = Cn 91 and/~ = 91nP~n and using the assumption 
of orthogonality of the trigonometric functions on the interval 0 :=:; B :=:; 21r, yields: 

N 

we= Lq'LP~ ( 43) 
n=O 

where : 

p~ = 12

" 11 

LTN~ f~rf.d(dB (44) 

is the load vector of the element for the nth harmonic which is consistent with 
the assumed displacement field used in deriving mass and stiffness matrices. 
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Vectors p~ are evaluated analytically in the () direction taking into considera­
tion the orthogonality properties of the trigonometric functions. In the ( direc­
tion the integration may be carried out by Gaussian Quadrature formulae or 
alternatively by using a symbolic manipulator. 

Problems of static equilibrium are governed by the variational principles for 
the minimum total potential energy, while the dynamic equilibrium is simply 
formulated in terms of Hamilton's variational principle. Then defining a La­
grangian function through the expression : 

(45) 

with: 

(46) 

and substituting the values of T•, E• and w• given by the equations (32), (35) 
and ( 43) in the Lagrangian function £, one obtains: 

(47) 

Applying the appropriate Lagrange equations of motion for equilibrium yields 
for the element and for the nth harmonic: 

(48) 

where: 

For the system these equations become: 

Mq+Kq=p (49) 

where M, K, q and p are, respectively, the mass and stiffness matrices, the 
displacement vector and the load vector of the nth harmonic. 

Assuming free undamped vibrations, the static and dynamic equilibrium 
equations for the nth harmonic can be represented symbolically, respectively, 
as: 

]{q 

Kq 

where w is the natural frequency. 

(50) 
(51) 
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3. Sensitivity analysis 

A typical optimization constraint such as a limit on a displacement, stress com­
ponent or effective stress can be represented by: 

(52) 

where b is the vector of design variables and j E (1, ... , m), m being the number 
of constraints. Thus the sensitivity of the constraint 9j is given by: 

dgj agj T dq -=-+ z· ­
db; ab; 1 db; 

where : 

is the vector of adjoint forces. 

(53) 

(54) 

For static constraints, the sensitivities are evaluated through the method 
of the adjoint structure where a virtual structure is defined that satisfies the 
equilibrium equation: 

(55) 

with Aj being the system adjoint degrees of freedom for the constraint Yi. The 
solution of the system equation (55) gives Aj. It should be noted that the adjoint 
structure is identical to the real structure, but subject to a different load. To 
increase computational efficiency, the already factorized form of the stiffness 
matrix should be used. Considering the static equilibrium equations (50) and 
differentiating these with respect to a design variable b; yields: 

I<!!:!!..._ = ap - aK q 
db; ab; ab; 

(56) 

Premultiplying by zJ one obtains: 

zT !!:!!..._ = zT K- 1 ( ap - ai< q) 
1 db; 1 ab; ab; 

(57) 

The inversion of the stiffness matrix K is easily avoided using the adjoint struc­
ture method through the solution of equation (55). Thus, the sensitivities given 
by equation (53) can be evaluated as: 

dgj = a9j +>.r (ap _ ai< q) 
db; ab; 1 ab; ab; 

(58) 

where aKjab; is the sensitivity of the system stiffness matrix and apfab; is 
the sensitivity of the system load vector. When the forces are independent of 
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the design variables the sensitivity of the system load vector is zero and then 
equation (58) simplifies to: 

(59) 

The term 8gj I ob; is usually zero or can easily be obtained. 
For dynamics, considering the mode of vibration Qk which corresponds to 

the natural frequency Wk, the eigenvalue problem, equation (51), is represented 
for the syste~ as: 

(60) 

Differentiating the above equation with respect to a design variable b; and 
premultiplying by qi one obtains: 

(61) 

Considering the modal normalization qi M Qk = 1, the sensitivity of the 
natural frequency corresponding to mode k with respect to changes in design 
variables is given by: 

(62) 

where aM I ob; is the system mass sensitivity matrix. Thus, in order to evalu­
ate the sensitivity of natural frequencies with respect to changes in the design 
variables there is no need to define an adjoint structure. 

4. Sensitivity analysis of axisymmetric shells 

The analytical derivative of the element stiffness matrix ( eqs. 37 and 38) with 
respect to a variable b';; (not necessarily a design variable) can be represented 
in a symbolic form as: 

where: 

0 ] ; 
Dt 



528 C. A. MOTA SOARES , J . INFANTE BARBOSA a.nd C . M. MOTA SCARES 

The derivative of the element force vector is: 

The derivatives of the mass matrix are obtained in a similar way. 
The derivatives of the arguments are evaluated at each Gauss point, sepa­

rately for membrane and bending, and numerical integration is used. Alterna­
tively, when the design variables are radial coordinates, the derivatives of Eq. 
(63) and mass matrix, and the integration of Eq. (64) and their derivatives 
op~jobic is carried out using a symbolic manipulator. Full details are presented 
in Barbosa (1990). 

When the design variables are thicknesses the sensitivities of stiffness matrix 
Ke or mass matrix Me, are easily obtained. In fact the mass matrix Me depends 
explicitly on the thickness while for the stiffness matrix J{e the dependence is 
only in constitutive matrices Dm and DJ. Assuming the thickness constant 
within the element one obtains: 

1 }'/e 3 }"e h ~mn + h '-Jn 

1 Me 3 Me 
h nr + h nn 

(65) 

(66) 

where, respectively, K;,n, KJn, M~r and M~n are the membrane and bending 
terms of the element stiffness matrix and the terms of element mass matrix due 
to translational and rotational inertia. 

For nodal coordinates or when the thickness distribution varies within the 
element, the shape of the model is related through the linking relation (Vander­
plaats, 1984): 

l = zc + Tb (67) 

where l is the vector of dependent variables (thicknesses and/or radial nodal 
coordinates of the finite element model), T the linking matrix which relates the 
vector of shape design variables b with the dependent variables and zc a vector 
of constant terms. 

With regard to shape design variables and considering the linking relation 
(Eq. 67), the sensitivities of the element stiffness, mass or load vector can also 
be obtained analytically through: 

{)Fe 2 {)Fe ob* 2 {)Fe 

m.= Lob* f)bk = Lob* Tki i = l,n 
' k = l k ' k = l k 

(68) 

where Fe can be the stiffness and mass matrices or load vector of the eth element 
and Tki is related to the linking matrix T through the topological finite element 
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code procedure, bi, being the value of the element nodal variable concerned, 
namely, the nodal coordinates of the two ring node frustum conical element 
(rk, zz; k = 1, 2). 

For static constraints, the sensitivities are evaluated through the technique of 
adjoint structure assuming that the structure satisfies the equilibrium equation: 

(69) 

For harmonic n, zin = oginfoqn is the vector of adjoint forces, qn the vector 
of system degrees of freedom and >.in the system adjoint degrees of freedom for 
the constraint gin· 

The sensitivities of a constraint function or the sensitivity of natural fre­
quency with respect to a design variable are evaluated efficiently at element 
level using equations: 

dgi 
db; 

dwk 
db; 

~(/:)gin "")..~T (/:)p~ _ /:)!{~ e)) 
~ ob· + ~ )n ob· ob· qn 
n==O ' eEE ' ' 

(70) 

(71) 

E being the set of elements e which are affected by the design variable b; and 
N the total number of harmonic terms. The element vectors >.j, qe and ql, are 
related with the system vectors >.i, q and qk of the nth harmonic, through the 
topological finite element code procedure. 

Semi-analytical method 

In this technique the vector of adjoint forces is obtained analytically and the gra­
dients of equations (58) and (62), with terms of the type oF job;, are evaluated 
by forward finite difference (FFD) technique through the approximation: 

oF F(b + ilb)- F(b) (72) 
ob; ~ ob; 

where ilb = [0, ... ' ob;' . . . ' 0] and Ob; is a small perturbation. It should be 
noticed that to evaluate F(b + ilb) for shape optimization, it is required to 
calculate the coordinate perturbations Or due to a design perturbation ob; and 
these are carried out through the linking relation. 

Finite difference technique 

A global finite difference approach is also used through forward finite differ­
ence and, alternatively, central finite difference (CFD). The sensitivities of a 
constraint with respect to a change Ob; in a design are then evaluated as: 

dgi 
db; 

gi(b + ilb)- gi(b) 
ob; 

(FFD) (73) 
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9j(b + 11b)- 9j(b- 11b) 
28b; 

(CFD) (74) 

which needs, respectively, one or two extra structural analyses for each design 
variable. 

5. Constraints 

Limit on displacements 

A constraint on a displacement is represented in a normalized form by: 

(75) 

where V is the real generalized displacement corresponding to system degree of 
freedom f and q0 is the maximum admissible generalized displacement. 

Expanding V by Fourier series, one obtains the vector of adjoint forces for 
the nth harmonic as: 

(76) 

where pis the total number of degrees of freedom and Cs = cos ne or Cs = sin ne 
relating the corresponding degree of freedom. For a general arbitrary loading, 
these vectors are obtained easily for the anti-symmetric terms. It should be 
noticed that the adjoint structure is identical to the real structure and it is 
subjected to a force or moment of intensity Cs / qo on the corresponding degree 
of freedom where the displacement or rotation is limited. 

Thus the sensitivity of a displacement constraint evaluated by Eq. (70), 
yields: 

dgj =~"').er (ap~ _ aK~ e) 
db· L.J L.J Jn ab· ab· qn 

' n=O eEE ' ' 

(77) 

For arbitrary loading, the final value of the sensitivity is then obtained by adding 
the corresponding contribution of the symmetric and anti-symmetric terms. 

Limit on stresses 

Limit on a stress or an effective stress is represented by: 

(78) 

where u0 is the maximum allowable stress, which may be different for tension 
and compression, and 0' is the stress component or the effective stress which 
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one pretends to constraint. For this particular element, the stresses, for the nth 
harmonic, are evaluated as: 

(Tm 
n *DmBmnq~ Anq~ (membrane stresses) (79) 

uf n :2DJBfnq~ Gnq~ (bending stresses) (80) 

where: 

f - [ f f f ]T 
tJ n - tJ SSn tJ OO n tJ SOn (81) 

(82) 

with (u53 n; u~5J and (u0t; ut8J being the meridional and circumferential 

components of normal stresses and ( u58n, u~ 8J the shear stress components 
for membrane and bending, respectively, for the nth harmonic. 

In the case of a meridional stress at the extreme fibers, the stress component 
is represented as: 

(83) 

For example, a stress constraint at Gauss point of element c corresponds to 
the element adjoint load vector zJn given by: 

zc = cosnfJ (AT ± GT) 
Jn Uo n, n, (84) 

The system adjoint force vector Zjn, for the nth harmonic, is assembled in a 
similar way as the system load vector (Eq . 50) 

Thus, for a pointwise limit on a stress, such as defined by Eq. (78), the 
sensitivity of stress constraint to thickness variation, evaluated by Eq. (70), 
yields: 

(8~) 

h being the thickness of the cth element where the constraint gj has been im­
posed. If the design variable is a radial coordinate, then Eq. (70) can be 
represented as: 

where the first terms of the second member of Eqs. (85) and (86) are evaluated 
only for the cth element where the stress constraint is imposed. 
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In the semi-analytical method, one obtains for the explicit term of Eq. (70) 
and only for the element with stress constraint : 

Limit on natural frequencies 

A constraint in the natural frequency of mode k can be easily evaluated once 
the eigenvalue problem is solved. Consider a normalized constraint of the type: 

(88) 

The sensitivity given by Eq. (71) is evaluated as: 

(89) 

where w 0 is the limiting natural frequency for mode k. 

Limit on volume of the shell material 

For the present frustum-cone finite element, the volume of the shell material is 
given by: 

I I 

V= L ve = 7r L J(r'2 - r})2 + (z2 - z})2(r·J' + r2)he (90) 
e=l e=l 

where I is the total number of elements. 
Impose the initial volume V0 of the shell material of the structure as constant 

and consider a normalized equality constraint of the type : 

V 
9j =- -1 = 0 

Vo 
(91) 

The derivatives are easily obtained for constant thickness and radial coordinates, 
yielding, respectively: 

dgj 

dh; 

dgj 

db; 
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Limit on enclosed volume of the structure 

The enclosed volume of the structure is given by: 

J J 

c = 2: ce = i 2: ((r2)2 + (r1)2 + (rfr2)) l(z2 - zl) l 
e=l e= l 

(94) 

J being the total number of finite elements which are related to the enclosed 
volume. 

Assume the initial enclosed volume Co of the structure as constant and 
consider a normalized equality constraint of the type: 

c 
Yi = 1-- = 0 

Go 
(95) 

Thus the sensitivity of constraint on the enclosed volume of the structure with 
respect to radial nodal coordinates perturbation yields: 

~~j = -
3
; 2: (l(z2- zf)l) {(r2 + 2rl)T{i + (2r2 + rf)Ti;} (96) 

' 
0 

eEE 

6. Optimal design 

The objective is minimization of the volume V of the material, maximization of 
natural frequency wk, minimization of the maximum stress 7f or minimization 
of the maximum displacement qf. The problem is stated as: 

min V(b) or maxwk(b) or min(max7f(b)) or min(maxq/) (97) 

subject to: 

Yi(b) :S 0 
Yk(b) = 0 
bf ~ b; :::: bf 

j = l,i 
k = i + 1,m 

a) 
b) 

i = 1,2, ... ,n c) 
(98) 

Constraints Yi are inequality constraints (such as displacement or stress) and Yk 
are equality constraints (enclosed volume of the structure or the volume of the 
shell material) , bf and bf are the lower and upper limiting bounds of the design 
variables and i, m, n are the number of inequality constraints, total number of 
constraints and total number of design variables, respectively. 

Bound formulation, Taylor and Bendsy:Se (1984), is used to solve min-max 
problem. The problem is restated as a simple minimization problem in terms 
of a bound f3 on the value of max 7f: 

min/3 

with : 

(f3 - f/3) < max7f ~ f3 
where f. is defined by the user . 

(99) 

(100) 
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Figure 2. Cylinder. Geometry and load 

7. Applications 

A computer program for personal computers has been developed based on the 
formulation presented. The illustrative optimal designs shown in this paper 
where obtained using the modified feasible direction method of the ADS pro­
gram, described by Vanderplaats (1984). 

Supported cylinder with end shearing force 

The load, geometric and material properties are: Q = 1000N /m; a = 1m; h = 
0.01m; L = 0.6m; E = 200 GPa (Young's modulus); v = 0.30 (Poisson's 
coefficient). A finite element model with 30 elements was considered (Fig. 2). 
The design variable is the thickness of the cylinder. 

The radial displacement distribution of the Love-Kirchhoff analytical solu­
tion (Kraus, 1967) is : 
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Figure 3. Radial displacements distribution. 
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which compares very favourably with the present numerical solution (Fig. 3). 
The sensitivity distribution obtained using discrete finite element model with 

the analytical method has a very good agreement (Fig. 4) with the theoretic 
sensitivity obtained by differentiating the above expression using a symbolic 
manipulator, yielding: 

dur _ dg _ P1 cos(P2) 
dh dh P3h(~)E 

where : 

3 2 1 
P1 = 3.948Qa>(l - v )•; 

p _ 1.316z(l - v 2)t 
2

- (ah)~ 

Simply supported cone-cylinder connection with internal pressure 

The geometric and material properties are: R = 1.0 m (cylinder radius), H = 
0.6 m (height of cylinder), h = 0.010 m (thickness), E = 200GPa, v = 0.3 . 

A finite element model with 50 elements was considered (Fig. 5). The design 
variables are 6 radial coordinates ( b1, ... , b6). Tables 1 and 2 show the sensi­
tivities for the initial design with respect to changes in the radial coordinates 
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Figure 4. Sensitivity distribution. 
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Sensitivities 
Source Perturbation bl b2 b3 b4 b4 b6 
CFD 0.001b; -0.0430 0.6042 4.6708 -12.7946 0.0926 5.7383 

Analytical -0.0430 0.6041 4.6703 -12.7940 0.0922 5.7387 
0.000000001b; -0.0430 0.6042 4.6708 -12.7946 0.0922 5.7387 
0.0000001b; -0.0430 0.6042 4.6709 -12.7942 0.0928 5.7390 

Semi- Analytical 0.00001b; -0.0430 0.6044 4.6811 -12.7507 0.1541 5.7679 
0.001b; -0.0428 0.6289 5.7062 -8.4132 6.2830 8.6519 
0.01b; -0.0410 0.8691 15.9369 29.7409 61.1342 34.3096 

Table 1. Sensitivities due to a radial displacement constraint 

Sensitivities 
Source Perturbation bl b2 b3 b4 b4 b6 
CFD 0.001b; -0.0077 0.8343 -6.5946 16.7119 -7.8595 -1.8374 

Analytical -0.0077 0.8342 -6.5940 16.7115 -7.8591 -1.8375 
0.000000001b; -0 .0077 0.8343 -6.5946 16.7121 -7.8591 -1.8375 
0.0000001b; -0.0077 0.8343 -6.5947 16.7114 -7.8598 -1.8376 

Semi-Analytical 0.00001b; -0.0077 0.8344 -6.6034 16.6458 -7.9269 -1.8488 
0.001b; -0.0077 0.8480 -7.4871 10.0850 -14.6369 -2.9660 
0.01b; -0.0077 0.9802 -16.3546 -48 .1310 -74.5055 -12.912 

Table 2. Sensitivities due to a meridional stress constraint 

for a displacement radial constraint in the junction (r = 1.0 m, z = 0.6 m) 
and a meridional stress constraint uss in the Gaussian point of the cylindrical 
element adjacent to the junction. The cone-cylinder connection is submitted 
to an internal pressure of p = 0.2MPa. The global sensitivities are calculated 
using central finite difference (CFD) with a perturbation of fl.b; = O.OOib;. 

From Tables 1 and 2 it is observed that the analytical sensitivities for shape 
design sensitivities compare very favourably with the global finite element sen­
sitivities obtained with the same model. It is also seen that the semi- analytical 
sensitivities only compare favourably for very small perturbations in the design 
variables, being highly influenced by the perturbation used, due to the trunca­
tion on the finite difference method . 

For the initial design the maximum meridional stress is uss = 105.4 MPa 
at the cylindrical element adjacent to the junction. The model is optimized 
considering a radial deflection of Ur 0 = 0.3 mm, a meridional stress limit of 
u 0 = 120 MP a and the enclosed volume of the initial design at 2.932 m3 (equality 
constraint). 

The optimal design is obtained in 14 iterations, 34 function evaluations and 
6 gradient evaluations, with a reduction of maximum stress of 68%. During the 
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AM/ SA FFD I SA CFD I SA 
CPU ratio 2.5 3.2 5.4 

Table 3. Evaluation of sensitivities 
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Figure 6. Initial design 

iteration process the enclosed volume of the initial design is an active constraint. 
For the optimal design the maximum meridional stress in the model decreases 
to uss = 33.5 MPa. 

A CPU ratio of 2.5 is achieved between the analytical/semi-analytical eva­
luation of sensitivities. Table 3 shows the CPU ratio between semi-analytical 
method (SA) versus analytical method (AM), global central finite difference 
(CFD) and global forward finite difference (FFD). 
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Figure 7. Optimal design (1st level) 

Conical structure clamped at lower end 

A conical shell clamped at lower end with geometry shown in Fig. 6 and 
material properties E = 200 GPa (Young's modulus), v = 0.15 (Poisson's co­
efficient) and g = 2410 Kg·m- 3 (mass per unit volume) is considered. The 
structure has been modelled with 68 elements. 

Table 4 shows the sensitivity results for the initial design with a good agree­
ment between the three methods . 

A two level optimization has been carried out . The objective of the design is 
the maximization of the fundamental frequency for the harmonic n = 0, with a 
constraint of enclosed volume of the structure in the first level and a constraint 
of volume of the shell material in the second level. 

On the first level the design variables are 2 radial coordinates b1 and b2 . The 
optimal design (Fig. 7) is obtained in 8 iterations, 41 function evaluations and 7 
gradient evaluation, with an increase in natural frequency of 49%. During the 
iteration process the active constraint is the enclosed volume of the structure 
(equality constraint) that is imposed constant and equal to 59 .157 m3 . The nat­
ural frequency of the optimum solution is in agreement with the plot (Fig.8) of 
natural frequency versus radial coordinates carried out through 12 finite element 
analyses using constant enclosed volume (59.157 m3) for the structure. 

On the 2nd level of optimization the design variables are 6 thicknesses, where 
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Sensitivities 
Source Perturbation bt b2 
FFD 0.001b; -271.606 284.140 

Analytical -271.637 284.192 
0. 000000001 b; -271.720 284.192 
0.0000001b; -271.724 284.182 

Semi-Analytical 0.00001b; -271.725 284. 183 
0.001b; -272.109 285.353 
0.01b; -273.633 290.049 

Table 4. Sensitivities due to fundamental frequency 
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Figure 8. FEM analysis 
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r~=1.790 m 

<J, = 1592 rod/ s 

~'~----------------------~ r2•2.417 m 

~:~~~~~TT~Trrr~~~~TTTrrr~~~ 
'o.o 1.0 2.0 J.O •.o 
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Figure 9. Optimal design (2st level) 

Figure 10. Clamped circular plate. Geometry and load. 



542 C. A . MOTA SOARES, J. INFANTE BARBOSA and C. M. MOTA SOARES 

Ullll:-t 

~~~~TMTnnT~~TnnTnTrnTn~nTTnnT~TM~~~ 
0.0 ~ 1 O.l Q.l 0.4 11.5 0.1 ~7 D.a 0.1 1 .a 

Radial coordinate - r (m) 

Figure 11. Sensitivities. Displacement constraint 

the initial design is the final design of the first level of optimization. The con­
straint is the volume of the shell material that is imposed constant and equal 
to 3.706 m3 . The optimal design (Fig.9) is obtained in 7 iterations, 27 func­
tion evaluations and 5 gradient evaluation, with a further increase in natural 
frequency of 24%. 

Clamped circular plate 

The material and geometric properties (Fig. 10) are E = 200 GPa, v = 0.30, 
a= 1 m, h = 0.025 m and the load is given by p = Po + Pl ~cos B; Po = 100 000 
Pa; p = 50 000 Pa. 

The plate has been modelled with 20 finite elements. Fig. 11 and Fig. 12 
show the sensitivity distribution due to thickness variation and constraints of 
displacement in ; = 0 and stress 0' at r = 0.97 m. They are compared with 
the results obtained using the theoretic sensitivity obtained by differentiating 
the expressions of Love- Kirchhoff shell theory. The agreement between the 
proposed model and the alternative results is quite favourable. 

The objective of the design is the minimization of the volume of the circular 
plate that has been optimized considering deflection and stress limits of q0 = 9 
mm and ITa = 150 MPa, respectively. The upper limiting bound of the design 
variables has been set to h :S 50 mm. .. 

The optimal design when five design variables (thicknesses) are considered 
is shown in Fig . 13 and is obtained with 9 iterations, 33 functions evaluations 
and 5 gradient evaluations. The reduction in volume with regard to the initial 
design was 21.2%. Both constraints are activated and the stresses are calculated 
for B = 0° ; B = 45"; B = 90°; B = 135°; 0 = 180°; 0 = 225°; 0 = 270° and 
0 = 315°. 
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Figure 14. Surface load variation 

Double supported cylinder-cone-cylinder connection 

The geometry for the initial design (Fig. 15) and material properties are: 
h = b2 = 0.8 m; b3 = 1.1 m; b4 = b5 = 1.4 m; h = 0.012 m; H = 2.2 m (Height 
of connection); E = 200 GPa; v = 0.3. 

A finite element model with 50 elements has been considered. The design 
variables are 5 radial coordinates (b1 , .. . , b5 ). Tables 5 and 6 show the sensitiv­
ities for the initial design with respect to changes in the radial coordinates for a 
maximum displacement radial constraint and for meridional stress using bound 
formulation. The cylinder- cone-cylinder connection is submitted to a external 
surface load with the distribution represented in Fig. 14. 

From Tables 5 and 6 it is observed that the analytical sensitivities for shape 
design compare very favourably with the global finite element sensitivities ob­
tained with the same model. As in axisymrnetric loading, it is also seen that the 
semi-analytical sensitivities only compare favourably in some design variables 
for very small perturbations, being highly influenced by the perturbation used, 
due to the truncation on the finite difference method. The results obtained for 
b5 using bound formulation are in discrepancy for all the perturbations used . 

A CPU ratio of 2.1 is achieved between the analytical/semi-analytical eva­
luation of sensitivities for a radial displacement constraint and a ratio of 1.9 for 
bound formulation. 

The double supported cylinder-cone-cylinder connection has been first op­
timized considering deflection and stress limits of, respectively, q0 = 1 mm and 
a-0 = 120 MPa. The optimal design is shown in Fig. 15 and is obtained with 35 
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Figure 15. Cylinder-cone-cylinder connection 

Sensitivities x 10 2 

Source Perturbation bl b2 b3 b4 
Analytical -0 .06193 -0 .9331 1.722 -0.7951 

CFD 0.001b; -0.06194 -0.9331 1.722 -0.7951 
FFD 0.001b; -0 .06213 -0.9331 1.723 -0.7946 

0.000000001b; -0 .06205 -0.9329 1.722 -0 .7953 
0.0000001b; -0.06204 -0.9329 1.722 -0.7952 

Semi- Analytical 0.00001b; -0.06191 -0.9323 1.723 -0.7947 
0.001b; -0 .04853 -0.8755 1.821 -0.7441 
0.01b; 0.0730 -0.3451 2.712 -0.3091 
0.03b; 0.342 0.923 4.692 0.511 

bs 
-0.3052 
-0.3052 
-0.3052 
-0.3051 
-0.3051 
-0.3051 
-0.3073 
-0.3269 
-0.3686 

Table 5. Sensitivities due to a radial displacement constraint 

545 
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Sensitivities x 10 -• 
Source Perturbation bt b2 b3 b4 bs 

Analytical 0.6249 -0.3942 -1.981 1.741 0.01773 
CFD 0.001b; 0.6263 -0.3894 -1.989 1.742 0.01759 
FFD 0.001bi 0.6259 -0.3898 -1.988 1.743 0.01756 

0.000000001b; 0.5951 -0.3209 -2.023 1.954 -0.1016 
0.0000001b; 0.5951 -0.3209 -2.023 1.954 -0.1016 

Semi-Analytical 0.00001bi 0.5947 -0.3219 -2.024 1.953 -0.1018 
0.001b; 0.5478 -0.4290 -2.150 1.872 -0.1229 
0.01bi 0.1211 -0 .1426 -3.281 1.163 -0.3139 
0.03b; -0.825 -0.3800 -5.752 -0.249 -0.7303 

Table 6. Sensitivities due to a meridional stress using bound formulation 

iterations, 89 functions evaluations and 19 gradient evaluations. It was found 
a reduction in meridional stress, with regard to the initial design, of-·39%. The 
maximum meridional stress in the model decreases from 0.638 MPa to 0.388 
MPa. Only the enclosed volume of the initial design (8.872 m 3 ), eguality con­
straint, is activated. The model has been also optimized considering the surface 
load distribution (Fig. 14) and an internal pressure of 0.5 MPa. The optimal 
design (Fig . 15) is obtained with 8 iterations, 19 functions evaluations and 3 
gradient evaluations. In this case the maximum meridional stress in the model 
decreases from 117 MPa to 79 MPa. It was used for bound formulation f.= 0.2 
for the first 10 evaluations, f. = 0.1 for the next 20 evaluations and f. = 0.05 
until the final design. 

Pressure vessel 

The last applications presented are pressure vessels with the same material pro­
perties (E = 210 GPa ; v = 0.3; {! = 7800 Kg·m- 3) and different geometries. 
The initial design (Fig. 16) has r 1 = 0.8 m, r2 = 1.4 m, h = 12 mm and height 
H = 19.5 m. The structure has been modelled with 95 elements. The design 
variables are 7 thicknesses ( h1 ... h1) and 1 radial coordinate b1 . Table 8 shows 
for the initial design the sensitivities due to fundamental frequency. For FFD a 
perturbation of 0.001b; was used. 

The objective of the design is to maximize of lower fundamental frequency. 
The analysis used 5 harmonic terms of Fourier series and 4 modes for each 
harmonic term. The optimal design was obtained in 5 iterations, 49 function 
evaluations and 5 gradient evaluations. During the iteration process the volume 
of the shell material of the initial design (1.656 m 3 ) was an active constraint and 
for thicknesses the interval 5 mm::; h; :::; 50 mm for lower and upper bounds, 
respectively, was used. The lower fundamental frequency is given for the first 
mode of harmonic term n = 1 and it is increased from 36 rad/s in the initial 
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Figure 16. Initial design. Figure 17. Minimization of maximum displacement. 

Sensitivities 
Source hl h2 h3 h4 hs hs h7 bl 

Analytical -809.3 -533.2 369.8 629.9 212.2 99.39 275.0 4.373 

FFD -809 .0 -533.3 369.3 629.4 212.0 99.29 274.8 4.373 

Table 7. Sensitivities due to fundamental frequency 
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Figure 18 . Initial design. 

Design variables (mm) 
Source hl h2 h3 h4 hs hs h7 bl 
Initial 12.0 12.0 12.0 12.0 12.0 12.0 12.0 1400. 
Optimal 5.00 5.00 12.3 48.4 11.2 9.54 15.7 1402. 

Table 8. Design variables for initial and optimal designs 



A x isymmetr ic thin she ll stru ct u res si zin g a.nd shape optimizatio n 549 

Design variables (mm) 
hl h2 ha h4 hs hs h7 

Mota Soares et al 22.6 22.8 22.9 40.4 34.6 34.7 4.7 
Present 21.0 22.4 24.5 43.0 32.3 32.5 4.0 

Table 9. Design variables for optimal design 

design to 63 rad/ s in the optimal design. Table 8 shows the design variables for 
optimal design. 

The same geometry with thickness equal to 8 mm and same design variables 
was used to minimize the maximum displacement in node 1 (r = 0; z = 19.5). 
As lower and upper bounds 5 mm :S: hi :S: 12 mm and 0.15 m :S: r 1 ::; 2 m 
were used. The pressure vessel was submitted to wind load (Fig . 14) and the 
displacements are calculated about circumference for () = 0°; () = 45°; () = 60°; 
() = 90°; () = 135° and () = 180°. The optimal design (Fig. 17) was achieved 
in 2 iterations, 25 function evaluations and 2 gradient evaluations. The design 
variables (7 thicknesses and 1 radial coordinate) are set to the upper bounds 
in the final design and the reduction on displacement was 8.3% (2.743 mm to 
2.516 mm) 

The last case shown is a pressure vessel with the same material properties 
but using different geometry with r1 = 0.4 m, r2 = 0.65 m, h1 = h2 = h3 = 35 
mm, h4 = 45mm, h5 = h6 = h7 = 40 mm and height H = 21.4 m. The 
pressure vessel is submitted to wind load with the distribution represented in 
Fig . 14 and an internal pressure of 5.27 MPa. The design variables are 7 
thicknesses (Fig. 18) and the objective of the design is the minimization of 
the volume of shell material considering the maximum displacement and the 
maximum circumferential stress as constraints. The optimal design is obtained 
in 7 iterations, 30 function evaluations and 5 gradient evaluations. This design 
is in agreement with a simplified model used by Mota Soares et al (1987) as 
shown in Table 9. 

8. Conclusions 

The results presented show that sensitivity analysis of statical and dynamic 
constraints of axisymmetric shells are efficiently and accurately obtained using 
the analytical method here described. When the design variables are thicknesses 
all the described techniques calculate the response sensitivities with accuracy. 

From the observation of results it can be concluded that analytical sensitiv­
ities for shape design are more accurate than the semi-analytical ones. Hence 
analytical sensitivities should be recommended for shape optimization of ax­
isymmetric type structures although they are more difficult to obtain and more 
expensive in terms of CPU time when compared to the semi-analytical formu-
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lation. 
The semi-analytical techniques for sensitivities cannot be very accurate and 

it will require a very small perturbation to obtain acceptable results. However, 
this perturbation can create problems of numerical stability. 

The methods proposed were applied to several design problems and the nu­
merical results show that the frustum-cone finite element used, the algorithms 
developed to obtained sensitivities and the modified method of feasible direc­
tions of ADS make a promising tool to obtain optimal designs for axisymmetric 
laminate shell structures subject to arbitrary loading. 
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