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This paper describes the development of a computational model 
for the topology optimization problem of a 2-D thermoelastic solid, 
with compliance objective function and an isoperimetric constraint 
on volume. The model is based on the optimal distribution of a ma
terial with variable "density", simulated through the introduction 
of a quasi periodic microstructure characterized by the introduction 
of small voids at the material microstructure level. The mechani
cal properties of this material are obtained using a homogenization 
method. Defining formally the Lagrangian assoc1ated witli the opti
mization problem, the optimality conditions are derived. The results 
of analysis are implemented in a computer code to produce numeri
cal solutions for the optimal topology, considering the temperature 
distribution dependent on design. The design optimization problem 
is solved through a sequence of linearized sub-problems . The influ
ence of the temperature on the optimal solution obtained is analyzed 
in illustratory problems. 

1. Introduction 

As a subarea of structural optimization, topology optimization distinguishes 
itself by its design variables, the topological characteristics of the structure. 
Type of elements in a structure, number of members in a truss or frame, number 
of joints and number of holes are examples of this class of variables (Bends!Zle 
and Mota Soares, 1993; Bendspe and Kikuchi, 1993). 

Unti l recently it has been very difficult to obtain a general formulation in
cluding such a broad number and type of variables. For example, the existing 
models did not permit, at least in a consistent way, the continuous variation 
from material to hole or from a truss element into a beam element. 

These problems were overcome through generalization of the topology opti
mization problem by introduction of a new model based on the optimal distri
bution of a material with variable "density", simulated by the introduction of 
a quasi periodic microstructure characterized by the introduction of very small 
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Figure 1. Topology optimization problem. Notation 

voids, and formulating it in the common framework of a linear elastic continuum, 
Bends0e and Kikuchi (1988). 

This paper describes an extension of this model to structures subject to ther
mal loads, introducing and studying its effects in the topology design. It is an 
extension of recent works, (e.g., Rodrigues and Fernandes (1992, 1993)), where 
the simpler situation of prescribed temperature variation was considered, to the 
case of a design-dependent temperature distribution solution of a steady state 
heat conduction problem . The equivalent (homogenized) material constants, 
elasticity, thermal conductivity and thermal expansion, are computed using the 
homogenization method. 

The problem is discretized using a virtual displacement based finite element 
method and the optimal solution is obtained using a first order augmented 
Lagrangian algorithm to solve the optimality conditions derived analytically. 

Numerical examples are presented. 

2. Analytical model 

2.1. The topology optimization problem 

Consider a structural component, occupying the structural domain n, subject 
to applied body forces b, boundary tractions t on ft, given temperature Ton 
f 9 and flux h on rh (see Figure 1). 

To introduce the material based formulation, consider the structural com
ponent made of a porous material with variable density ;.t. This material is sim-
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ulated by a microstructure obtained by the periodic repetition of small square 
holes (Figure 1). The optimization goal is then to minimize, with respect to 
the material density and orientation, the compliance, equivalent to the energy 
norm of the total displacement, with an isoperimetric constraint on the total 
volume. Based on the previous description, the topology optimization problem 
can be stated as 

min { b;u;dr2+ { f3{f(f.L,B)Te;j(x)dr2+ { t;u;df, (1) 
(O~p(X)~l, B(X)) ln ln lr, 

subject to volume constraint 

l f.l( x )dr2 ::; vol (2) 

l [EfJk 1(f.l, B)eij(u)ekl(w)- f3fJ (f.l, B)e;j(w)T- biw;] dr2 -lr t;w;df = 0, 

'Vw admissible (3) 

where T is the solution of the heat equation, 

1 H aT at 1 - 1 -k;j (f.l, B)~ ~dO- fTdr2- hTdf = 0, 
0 ux, ux1 0 rh 

vt = 0 on fg 

and T = g on r 9 (4) 

The superscript H in the material coefficients denotes the homogenized ma
terial properties defined in the next section. 

2.2. Homogenized material properties 

For the porous material proposed, obtained by the periodic repetition of an 
unit cell (see Figure 2) , the asymptotic homogenization method, relying on the 
microstructure local periodicity, is the natural model for the computation of the 
effective properties, Sanchez-Palencia (1980) . 

Assuming for the displacement u(x, xfo;) and temperature T(x, xfe.) an 
asymptotic expansion in terms of the cell parameter <:, where y = xj<:, (see 
Figure 2) , 

uo; (x, y) = uo(x) + <:u1(x, y) + e. 2u2(x, y) + .. . 

To; ( x, y) = To ( x) + <:T1 ( x, y) + <: 2T2 ( x, y) + .. . 

(5) 

(6) 

the homogenized solutions u 0 ( x) an To ( x), first terms of the asymptotic expan
sions, are then defined, as the limit e. -+ 0, by the equilibrium equations (3) 
and the steady state heat conduction equation ( 4) respectively, with the porous 
periodic material substituted by an "equivalent" homogenized material. 
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Figure 2. Unit cell 

In the case of homogeneous base material, the equivalent homogenized ma
terial properties are defined by, 

(7) 

(8) 

(9) 

as a function of the density parameter fJ (see Figs . 1, 2), where the set of 
periodic functions Xk 1 and €JP are the solution of the equilibrium equations, 

~ ox;/ ow; ~ ow; kl 
Eijpm-.'1--~dy= Eijkl~dy, X - Y-Periodic, 

¥ uym VYj ¥ VYj 

1::/w- Y-Periodic, (10) 

r k;j ~GP ~T dy= r k;p ~T.- dy, GP- Y-Periodic, Vf- Y-Periodic, (11) 1¥ uyj uy; 1¥ uy; 

defined on¥, the unit cell subdomain occupied with material (Figure 2). Equa
tion (11) is solved considering flux equal to zero on the boundary hole. This im
plies that along the structure change boundary the flux will be zero. The reader 
is referred to the works by Francfort (1983) and Brahim-Otsmane et al. (1989) 
for a complete description of the homogenization method as it applies to prob
lems in thermoelasticity. 
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2.3. Necessary conditions optimal solution 

In the former sections the proposed topology optimization problem was for
mulated. To obtain the respective necessary conditions, let us introduce the 
augmented Lagrangian L(u, v, T, T*, JJ, B, ry1 , TJ2, A) associated with the problem, 

L= ln[b;u;+fJ{f (JJ, B)e;j(u)T+fJ{f (J-L, B)e;j(v)T-E{fkz(JJ, B)ekz(u)e;j(v)+ 

H 8T8T* * ( ] + v;b;- k;j (JJ, B) ox; OXj + JT + 7]1 J-L- 1) -1]2/J dD + 

+ 2
1
!! { [max(O, A+ e (l JJdD- vol) r- A

2
} + 

+ f (t;u;+t;v;)df+ { hT*dr 
~. ~. 

(12) 

where the Lagrange multipliers v, T*, ry1 , ry2 and A are constrained by the set of 
inequalities and equalities, 

TJ1(x) 2 0 Vx E D 

1]2(x) 2 0 Vx E D 

A20 AEIR 

v=O on ru 
T* = 0 on r 9 

and e > 0 is the penalty factor . We should note here that the adjoint variables v 
and T* are introduced in the problem formulation in a natural way, as Lagrange 
multipliers associated with the equilibrium constraints (3-4). From the first 
variation of the augmented Lagrangian, the Karush-Kuhn-Tucker necessary 
conditions provide: 

From stationarity with respect to displacement u and temperature T, the 
equilibrium equations characterizing the adjoint variables v and T* are 

l[E[Jkl(JJ,B)e;j(v)ek!(fJu)- fJ{fe;i(fJu)T- b;fJu;]dD-

-i t;fJu;dr = 0, \ffJu admissible (13) 

1 }[ ) H mr oT* _ 
2(J;i e;i(u fJT- k;i ~~dD- 0, 

n ux, ux1 

\f{JT = 0 on f 9 and T* = 0 on f 9 (14) 

Comparing eqs. (13) and (3) we can conclude that v(x) = u(x). 
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Stationarity w .r. t. the design variables J.L( X) and 8( X) provides the optimality 
conditions 

o(JH {)Effk 1 {)kH {)T {)T* 
2-

0
'1 eij(u)T- -

0
'1 ekl(u)eij(u)-

0
'1 

-
0 

-
0 

+ 
J.L J.L J.L Xj Xj 

+ [max(O, A+{] (l J.LdD- vol)]) + 1Jl -1]2 = 0, Vx E D (15) 

From stationarity w .r. t. the Lagrange multipliers 7JI, 7]2 and A we obtain, re
spectively, 

and 

1Jl 2: 0, J.L- 1 ~ 0, 1JI(J.L- 1) = 0, Vx E D, 

7J2 2: 0, J.L 2: 0, 1J2J.L = 0, Vx E D 
(17) 

(18) 

These optimality conditions together with the equilibrium equations (3-4) 
provide not only a tool for the characterization of the optimal solution but also, 
by a recursive procedure, an iterative solution method. 

3. Computational model 

For the topology optimization with square holes, the dependence of the homoge
nized material coefficients on the density J.L is computed for a number of discrete 
values of J.L and then approximated by a polynomial interpolation on the whole 
interval [0, 1). 

The homogenized coefficients at the interpolation points are estimated by the 
program PREMAT, Guedes and Kikuchi (1990). This program uses adaptive 
finite element methods to interpolate the displacement functions Xkl and 8P. 

Using the fmite element method the discrete version of the problems (3-4, 
13-14) is obtained through an interpretation of the domain of the problem by a 
finite number of finite elements, such that n = u e=l,n" elements ne, and using 
continuous polynomial approximations for the displacement variable within each 
finite element. 

Once E!Jk 1(J.L, 8), kfJ (J.L, 8) and fJ!J (J.L, 8), the homogenized material properties 
interpolations, and the finite element solutions uh, Th and T*h are known, we 
are in position to solve the optimality conditions (15-16). 
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Using a constant interpolation of the design variables J.L( x) and B( x ), in each 
finite element, and defining its values in the eth element by J.le and Be the 
optimality conditions (15-16) are then defined for each finite element by, 

f)f3H 8EHk 1 okH ()Th oT*h 
2~e;j(uh)T- ~eki(uh)e;j(uh)- ~~-ll-+ 

UJ.le UJ.le UJ.le uX; UXj 

+ [ max ( 0, A+ f2 (l J.Ldrl- vol))] + 'f/1- 'f/2 = 0, (19) 

Based on these optimality conditions, the design variables J.le are updated 
iteratively using the first order augmented Lagrangian method, 

max{ (1- ()J.Lk; 0} if J.lk + TJDk :::; max{(1- ()J.Lk; 0} 

J.Lk +TJDk if max{(1- ()J.Lk; 0}:::; J.lk + 'T]Dk :::; 
J.lk+l = 

:::; min{(1 + ()J.Lk; 1} 
(21) 

min{(1 + ()J.Lk; 1} if min{(1 + ()J.Lk; 1}:::; J.lk + TJDk 

where the k th iteration descent direction vector Dk is defined as, 

BE{fkl h h af3{f h okff arh ar•h 
Dk = --ll-e;j(u )ekl(u ) - 2~e;j(u )T + ~~-ll--

uJ.Le UJ.le UJ.le uX; UXj 

In each iteration the Lagrange multiplier A is updated by the projection 
formula, obtained directly from the optimality condition (18), 

The material optimal orientation B is obtained by the direct solution of 
optimal equation (20) (see, e.g ., Pedersen, 1989, 1990; Susuki, 1991). · 

4. Example 

EXAMPLE A. In this example consider the initial design shown in Fig. 3a. The 
dimensions are 72 x 47.7 x 1 cm, the applied load has the value of 840 kg/cm2 

and the right and left sides are supported as shown in the figure. The volume 
constraint equals 30% of the total volume. The problem was solved using a 
60 x 30 9-node isoparametric finite element mesh. 
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Assuming as design variables the density J.1- and the orientation B, Figure 3.b 
shows the optimal topology obtained without temperature variation. Figures 3. 
c-f show the result obtained for constant and fixed temperature increments of 
T = 4° and 10° . 
EXAMPLE B. In this example let us consider the initial design shown in Fig. 4a. 
The dimensions are 72 x 47.7 x 1 cm3 , the applied force has the value of 1000kg. 
The volume constraint equals 40% of the total volume, 1340 cm3 . The problem 
was solved using a 60 x 30, 9 node finite elements mesh. Assuming only density 
J.1- as design variable, Fig. 4.b shows the optimal topology obtained without tem
perature variation and Fig. 4.c the result obtained assuming the temperature 
distribution fixed and T = 4°. 

Assuming now the temperature solution of the heat conduction problem (4), 
with the structure subjected to T = 4° on the left side boundary, T = 0° on 
the right side boundary and flux equal to zero on the remaining boundaries, 
Fig . 4.d shows the material distribution obtained and Figs. 4.d-e the respective 
temperature and flux distribution. From this solution we can observe a tendency 
to concentrate material in the region with lower temperature, so minimizing 
the contribution of the thermal loads to the total compliance, and also, as 
the temperature varies across the domain, a good agreement with the results 
obtained with constant temperature distributions ofT = 0° and T = 4° (Figs. 
4 b-e). 

5. Concluding remarks 

The development presented in this work extends the generalized topology opti
mization model to include temperature variation effects. Following the approach 
outlined in this report, the associated optimality conditions are easily obtained 
without resorting to highly elaborate mathematical developments. 

The problem is stated as a material distribution problem, considering the 
temperature dependent of design and is solved by finite element modeling and 
mathematical programming. 

In the numerical examples a strong dependence of the optimal topology on 
temperature distribution is observed. However, the homogenization model used 
to compute the effective thermal conductivity constants limits the optimization 
problem to cases of flux equal to zero along the structure design boundary, 
so that further work is required to consider other types of thermal boundary 
conditions. 
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b) Without temperature. 
a) Initial Design. Final Vol. = 999.5 cm3 

Initial Compliance = 1116. Kg cm 
Final Compliance=56.65 Kg cm 

-. 

c) T = 4°. Final Vol. = 992.6 cm3 

Initial Compliance = 1131. Kg cm 
Final Compliante=96.70 Kg cm 

e) T = 10°. Final Vol. = 879 cm3 

Initial Compliance = 117 4. Kg cm 
Final Compliance=162.3 Kg cm 

Figure 3. Example A 

d) T = 4°. Orientation 

f) T = 10°. Orientation 
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a) Initial Design. 

Optimal solution for temperature 
given and constant, T = 4°. 

d) 

H. RODRIGUES, P. FERNANDES 

b) Without temperature. 
Final Vol. = 1319 cm3 

Initial Compliance = 50 Kg cm 
Compliance = 3.4 Kg cm 

Temp. T = 4° on left boundary - T = 4° on right. 
Final Volume = 1319 cm3 

Initial Compliance = 53.6 Kg cm 
Final Compliance = 6.15 Kg cm 

.. ... ····· . .. ....... . 
···:::::::::::::··:.:::.: ::::··· 
••••.• .... ....... . .. ... •.. 

. . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . ····· ·· ······---·· ... :::: : : ~ ~:.:::::::::: 

a~]]m;:.~-~:mi 
. ··············· .. .. ... ..... .. . ··········· 

e) Temperature distribution 
at the optimal solution 

f) Flux distribution 
at the optimal design 

Figure 4. Example B 
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