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The paper concerns the optimization problem of an elastic plate 
governed by the Kirchhoff equation. It is assumed that the plate is 
simply supported on a part of its boundary and free on the remaining 
part. The static case with a random loading is considered. The 
first order necessary conditions of optimality are derived. Results 
of computations obtained for deterministic and random cases are 
compared. · 

1. Introduction 

Deterministic optimization problems for the Kirchhoff plate are considered 
e.g. in Mysli:riski, Sokolowski (1985). Some related results on the existence of an 
optimal solution and the necessary optimality conditions (for random loadings) 
are given in Gq.tarek, Sokolowski (1988) and in Mysliriski, Sokolowski (1985) 
in the deterministic case. The finite element method, Ciarlet (1978), Strang, 
Fix (1973) is applied to obtain the finite dimensional approximations of the 
problem under consideration. Standard numerical methods of optimization are 
used, Findeisen, Szymanowski, Wierzbicki (1980). 

2. Control problems with loading as a random parameter 

Let 0 C R2 be the domain occupied by the plate and 80=I\Uf2, where 
rlnr2 = 0. Let w = {v E H 1(0)1 V= 0 on rl} and V= L2(Q;H2(0)nW). 
Let (Q, :F, P) be a probabilistic space, where Q is a discrete set of w;, i EN, :F 
is a a--algebra spanned on n, P::F--+ ( 0, 1 ) is a probabilistic measure on n, 
P({w;}) = p;. 

In the case of a transversal force f(w; X!, X2), (xl, X2) E O,w En, acting on 
the plate, the state equation for the Kirchhoff plate model is the same as in the 
deterministic case. It can be written as follows, Mysli:riski, Sokolowski (1985): 
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where D = (Dijkl), i,j,k,l = 1,2 is a tensor of plate stiffness, w: n X 0 -t R 
is displacement, wE V, f(w; x1, x2) is given. 

There exists tensor b = (bijkl), i,j,k,l = 1,2 such that: 

(2.2) 

where h : 0 -t R denotes plate thickness, h E L00 (0). We assume that the 
tensor b is symmetric, i .e. 

bijkl=bjikl = bklij, i,j,k,/ = 1,2 (2.3) 

The following boundary conditions satisfied almost surely, for a simply sup
ported plate on f 1 and free on f 2 , Myslinski, Sokolowski (1985), are prescribed: 

w(w) = 0 on rl a.s. inn, Mn(w) = 0 on f 1 a .s. inn, (2.4) 

Mn(w) = 0 on f 2 a .s. inn, M~(w) = 0 on f2 a.s. inn, (2.5) 

where Mn is the so-called bending moment. Mn and M~ can be expressed by 
the following formulae 

where v is Poisson ratio which characterizes plate material, v E (0, 0.5); 
j E {1 , 2}, j # i and n = (n1, n2) is a unit normal vector on 80. 

(2.6) 

(2 .7) 

Let a(w; ·, ·) : V x V -t R be the bilinear form defined for the equation (2.1): 

(2.8) 
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and F(w)(-) : L2 (n; (H 2(0)nW)')---> R be the functional defined by fin stan
dard way. Then the equation (2.1) can be rewritten in the variational form: 

a(w; w, if;)= F(w)(if;) Vif; E V a.s. inn (2.9) 

If w = Wi, for i fixed, the deterministic equation of the Kirchhoff plate is 
obtained. Therefore: 

(a) the equation (2.1) with the boundary conditions (2.4)-(2.5) is equivalent 
to (2.9), 

(b) the solution w(w) E H2 (CJ)nW is unique. 
The above results (a) and (b) hold as well as for w, a random variable. 
The following control problem is considered: 

inf J(h), 
hEUad 

(2.10) 

where J is defined by 

(2.11) 

w is a solution to (2.1)- (2.5) for a given control h, E[·] denotes the mean value, 
Uad is the set of admissible controls, 

Uad {hE L00 (0) n H•(CJ)Ihmin ~ h(xt, x2) ~ hmax a .e. on 0,(2.12) 

0 < hmin < hmax, L h(x1, x2)dx1dx2 = c, llhiiH•(O) ~M}, 

hmin, hmax , c, M, s > 0 are given constants. As a particular case, for n a 
finite set, we have: 

N 

J(h) =~(Pi L w 2(wi, h, x1, x2)dx1dx2). (2.13) 

3. The existence of optimal solutions and the necessary 
optimality conditions 

LEMMA 1 For any s > 0, there exists a solution hE Uad to (2.10). 

The necessary optimality conditions for the problem under consideration can 
be formulated as follows, Cea (1971), since 

(3.14) 
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for any local solution h* to (2 .10), thus 

dJ(h*, V- h*) 2: 0 Vv E Uad, 

K . PlEKARSKl 

(3.15) 

where dJ(h*, v) denotes the directional derivative of J at h* in the direction v. 
From (2.11) we obtain 

dJ(h*,v) = E [l2w(w,h*,xl,x2)~~(w,h*,xl,x2,v)dxldx2], (3.16) 

where ~~ denotes the derivative of w(w, h) at h* in the direction v. 
It is easy to show, applying the implicit function theorem, Maurin (1976), 

that: 

(3.17) 

where pis a solution to the adjoint state equation, p E V: 

V</J E V. (3.18) 

4. Numerical examples 

Let J c. denotes an approximation of J where ~ is a parameter of approxima
tion. A pointwise transversal force acting at n(~) points on rectangular plate 
is considered and it is assumed that 

(4.19) 

where b, dare given. Computations are performed with the following values of 
parameters: 

V= 0.3, hmin = 0.8, hmax = 1.2, C = 0.25, b = d = 0.5. 
It is assumed that the plate is divided into 16 rectangles by partition of every side 
into 4 equal parts. Moreover initial values h1 = ... = hn(C.) = 1 are prescribed . 

Computations are performed for the following cases: 
1) for the deterministic loading fr = 1, r = 1, ... , n(~); 
2) for the deterministic loading fr = 1 for all indexes r such that (z1, z2) is 

a node point, except the point (0.125,0.375) where fr =50; 
3) for the deterministic loading fr = 1 for all indexes r such that (z1, z2) 

is a node point, except the points (0.125,0.375) and (0.375,0.125) where 
fr =50 ; 

4) for the random loading: 

- w1 takes place with probability Pl = 0.75 and fr(wl) = 1 for every 
node different from (0.125,0.375), where fr(wl) =50; 
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X1 0.000 0.125 0.250 0.375 0.500 
X2 

0.500 1.01 1.01 1.06 1.11 1.07 
0.375 1.00 1.00 1.09 1.19 1.11 
0.250 0.95 0.93 1.01 1.09 1.06 
0.125 0.88 0.82 0.93 1.00 1.01 
0.000 0.92 0.88 0.95 1.00 1.01 

Table 1. Plate thickness after optimization: Case 1. Value of J 6 at the starting 
point: h(ho) = 1.825 · 10- 2 . Value of h after optimization: h(h*) = 1.619 · 
lQ - 2. 

X1 0.000 0.125 0.250 0.375 0.500 
x2 

0.500 1.11 1.10 1.13 1.13 1.16 
0.375 1.10 1.00 1.01 1.02 1.12 
0.250 1.07 0.95 0.96 0.81 1.09 
0. 125 0.94 0.90 0.92 0.94 1.07 
0.000 0.93 0.92 1.00 1.06 1.04 

Table 2. Plate thickness after optimization: Case 2. Value of J A at the starting 
point: h(ho) = 2.153 .lQ- 1. Value of h after optimization: JA(h*) = 1.940 · 
lQ - 1. 

- w2 takes place with probability P2 = 0.25 and fr(w2) = 1 for every 
node different from (0.375,0.125), where fr(w2) = 50. 

5) for the random loading: 

- w1 takes place with probability P1 = 0.75 and fr(wl) = 1 for every 
node different from (0.125,0.125), where fr(wl) = 50; 

- w2 takes place with probability P2 = 0.25 and fr(w2) = 1 for every 
node different from (0 .375,0.375), where fr(w2) = 50. 

6) for the random loading: 

- w1 takes place with probability P1 = 0.75 and fr(w1) = 1 for every 
node different from (0.375,0.375), where fr(w 1) = 50; 

- w2 takes place with probability P2 = 0.25 and fr (w2) = 1 for every 
node different from (0 .125,0.125), where fr(w2) = 50. 

The results of computations are presented in Tables 1-6. 
In Cases 1, 3, 5, 6 the optimal plate thickness is symmetric because of the 

symmetric loading . In each Case significant concentration of material along 
simply supported part of boundary (fl) is observed. 
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X1 0.000 0.125 0.250 0.375 0.500 
X2 

0.500 1.05 1.11 1.06 1.09 1.17 
0.375 1.08 1.00 1.07 1.14 1.09 
0.250 1.00 0.90 0.94 1.07 1.06 
0.125 0.87 0.83 0.90 1.00 1.11 
0.000 0.90 0.87 1.00 1.08 1.05 

Table 3. Plate thickness after optimization: Case 3. Value of J t:;. at the starting 
point: J t:;. (ho) = 6.271 · 10- 1

. Value of h after optimization: J t:;. (h*) = 5.070 · 
lQ-1. 

X1 0.000 0.125 0.250 0.375 0.500 
X2 

0.500 1.10 1.08 1.14 1.15 1.19 
0.375 1.10 1.00 1.03 0.95 1.16 
0.250 1.06 0.94 0.94 1.01 1.11 
0.125 0.94 0.90 0.95 0.81 1.09 
0.000 0.93 0.93 1.04 1.08 1.06 

Table 4. Plate thickness after optimization: Case 4. Value of J t:;. at the starting 
point: J t:;.(ho) = 2.153 ·10- 1 . Value of h after optimization: h(h*) = 1.869 · 
1Q-1. 

X1 0.000 0.125 0.250 0.375 0.500 
X2 

0.500 1.13 1.07 1.09 1.10 1.15 
0.375 1.07 0.94 0.96 0.98 1.10 
0.250 1.06 0.92 0.94 0.96 1.09 
0.125 1.04 0.90 0.92 0.94 1.07 
0.000 0.96 1.04 1.06 1.07 1.13 

Table 5. Plate thickness after optimization: Case 5. Value of J t:;. at the starting 
point: J t:;.(ho) = 8.360 · 10-1 . Value of h after optimization: h(h*) = 8.070 · 
10-1 . 

X1 0.000 0.125 0.250 0.375 0.500 
X2 

0.500 1.14 1.07 1.12 1.19 1.15 
0.375 1.05 0.93 1.03 1.13 1.19 
0.250 1.03 0.88 0.98 1.03 1.12 
0.125 0.95 0.82 0.88 0.93 1.07 
0.000 0.89 0.95 1.03 1.05 1.14 

Table 6. Plate thickness after optimization: Case 6. Value of J t:;. at the starting 
point: Jt:;.(ho) = 3.209-10- 1. Value of h after optimization: Jt:;.(h*) = 2.693 · 
1Q-1. 
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In Case 2 significant concentration of plate material takes place around the 
node with coordinates (0 .125,0 .375) because of incremented loading value at 
this point . 

In Case 3 additional regions of concentration of material (except r 1 ) appear 
around points (0.125,0.375) and (0.375,0.125). 

The optimal plate thickness in Case 4 (random loading) differs from the re
sults of Case 1,2,3. An additional amount of material around point (0 .125,0.375) 
appears compared to the Case 1. The optimal plate thickness is not symmetric, 
as in Case 3, although loading values at points (0.125,0.375) and (0.375,0.125) 
are the same. It is caused by different probabilities of loading values at the 
points. 

Case 5 and Case 6 differ because of different probabilities for loading values 
at points (0.125,0.125) and (0.375,0.375). 
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