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In this paper we present basic results concerning first order sensi­
tivity analysis of parametric mathematical programming problems. 
The idea behind this work is to present guidelines to the subject 
rather than to go into details. 

1. Introduction 

The aim of this review is to present basic problems, results and bibliographi­
cal notes for sensitivity analysis in mathematical programming problems. We 
consider the problem 

inf :J(x) 
subject to x E D; 

(1) 

where D is a subset of the Euclidean space Rm . We refer to this problem as an 
original or an unperturbed one. 

In the sequel we consider mainly problems where 

D = {x E Rml '!/i(x) = 0, i E J <pi(x) :<::; 0 for i E I} 

and the functions 1/Ji, <pi : Rn ---> R are continuously differentiable. 
Changes in data are taken into account by introducing a parameter u in the 

functions :J , 1/Ji , <pi . 
The resulting parametric optimization problem is of the form 

inf :J( u, x) 
subject to X E n( u) 

u Ew .· 

(2) 
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In what follows we assume that 

n(u) = {x E Rm l 1/i(u, x) = 0, i E J </(u, x)::; 0 i E I}, 

u E Rn' X E Rm' :J : Rn X Rm --+ R is continuously differentiable, n : Rn =t 
Rm is a closed-valued multifunction, and the functions 1/Ji, <pi : Rn x Rm --+ R 
are continuously differentiable. 

The marginal function p : Rn --+ R is defined as 

p(u) = inf :J(u, x). 
xEO(u) 

For problem (2) in general spaces the differential properties of the marginal 
function have been investigated by, e.g., Borisenko and Minchenko (1983), Min­
chenko (1984,1986), Hiriart-Urruty (1978), Rubinow (1985), Outrata (1990). 

Let us fix u0 E w , and let us denote by M the multivalued mapping which 
assigns to any u E w the set of solutions to the problem 

inf :J(u, x) 
subject to 1/Ji(u, x) = 0, i E J 

<pi ( u' X) ::; 0' i E I ' 

M(u) = argmin{:J(u, x): X E n(u)}' 

M(uo) := Mo, p(uo) = Po, n(uo) = n . 

(3) 

In particular, we are interested in results concerning differentiability of the 
optimal value function and the solutions to problem (3). There exist numerous 
papers and books concerning these problems e.g. Bank et al. (1982), Fiacco 
(1983), Levitin (1992). 

It was observed by Rockafellar (1984) that parametric problem (3) is equiv­
alent to the problem with perturbations appearing linearly in the r.h .s. only, 

inf :J( v, x) 
subject to 1/Ji(v, x) = 0, i E J 

<pi (V ' X) ::; 0 ' i E I 
(4) 

vi = ui, i = 1, 2, ... , n 

If we let (f.l, A, v), f.1 E RP, A E Rs, 11 E Rm to be multipliers corresponding 
to the constraints 1/Ji(v, x), i E J, <pi(v, x), i E I, vi = ui, i = 1, 2, ... , n, 
respectively, then the Lagrangian for problem ( 4) is of the form 

£(x, v, J.l, A, v) = £(x, v, f.l, .X)+ vT(v- u), 

where 
p 

£(x,u,f.1,A) = :J(u,x) + Lf.1i1/Ji(u,x) + LAi<pi(u,x). 
i=l i = l 
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is the Lagrangian for problem (3). 
If x is an optimal solution to problem (3) for the parameter value u 0 , then 

(x, v0 ) is optimal to problem (4) with the first order optimality conditions 

V x£(x, Vo, J.l, >.) = 0' 

V y£(x, va, J.l, >.) + (v)T = 0. 

Because of this transformation many results are stated only for the para­
metric problem of the form 

inf .J(x) 
subject to 'lj}(x) == ui, i = 1, 2, .. . ,p 

rpi(x):::; uP+i, i = 1, 2, ... , s 

2. Basic problems of sensitivity theory 

(5) 

PROBLEM 1 (consistency of the constraint sets rl(u) for u E w, and small 
llu- uall) When consistency of the constraint set rl( ua) for the original problem 
implies consistency of the sets rl(u) for u E w and llu- uall sufficiently small? 

When for a given Xo E n(uo) one can find positive constants ro ' Po' Go 
(depending upon ua, and xa) such that for all u E B(uo, r 0 ) the sets rl(u) are 
nonempty and 

dist(x, rl(u))) :S Co~(u, x) for x E B(xo, pa) 

where ~(u, x) = I:iEJ7f~(u, x) + I:iEIIrt'i(u, x)l measures the violation of the 
constraints x E rl(u)? 

According to Levitin (1992) the system 

7fi(u0 , x) = 0, i E J, rpi(uo, x) :S 0 , i E I 

is normal with respect to a given perturbation at x0 E rl(u0 ) if the inequality 
( *) holds. This problem was also investigated by Robinson (1976A,B) . 

PROBLEM 2 (stability of the optimal value; p0-stability) When the optimal 
value function p( u) is continuous on w at ua? 

In particular, when the function p( u) is Lipschitz continuous in a certain 
B(uo , ro)? 

This problems is adressed in many papers on different levels of generality. 
The classical results of Berge (1963) should be mentioned here as well as the 
paper by Hogan (1973A) and their finite-dimensional versions by Martin (1975), 
Wets (1985) (for linear programming problems), Hogan (1973C) (for convex 
programming problems), Evans and Gould (1970), Greenberg and Pierskalla 
(1972). 
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PROBLEM 3 (stability of the solution set; M - stability) When, for a certain 
r > 0, the solution set M(u) is nonempty for u E B(u0 , r 0 ) and the multivalued 
mapping M : Rn :::::t Rm is upper semi continuous and/ or upper Lipschitzian? 

For linear programming this question was addressed by Robinson (1977) , 
(1973B), Mangasarian (1982) and the book by Nozicka et al. (1974). For 

. quadratic programming results we can refer to Klatte (1985). For more general 
problems, this question was investigated by Robinson (1976B, 1973A), Stern 
and Topkis (1976), Shapiro (1988A). 

PROBLEM 4 (first order expansion of the optimal value function) When, for a 
given sequence { Un} , 

Un = (uo + EnU + u) E w 

where En----> + 0, u E w, u E w, t:;;- 1 llunll---+ 0, there exists 

lim {t:;;- 1 [p(un) - p(uo)]} = p1(uo; u)) 
n -+ oo 

How to compute p1(u 0 ; u)? 
When the function p( u) is direction ally differentiable and how to compute 

its directional derivatives? 
When the function p( u) is differentiable? 

The reference list concerning these problems is long. First of all, one should 
mention here the book of. Fiacco (1983) where the problem of differentiability 
of the optimal value function is investigated via the implicit function theorem. 
One of the first who adressed this problem was probably Danskin (1967) . In 
linear programming directional differentiability of the optimal value was investi­
gated by Williams (1963). In convex programming directional derivatives were 
investigated by Hogan (1973A), Gol'stein (1971). For general nonlinear prob­
lems directiona] differentiability was investigated by Gauvin and Tolle (1977), 
Gauvin, Dubeau (1982) , Rockafellar (1984, 1982), Gauvin (1993), Auslender 
and Cominetti (1990), Bonnans (1989), Bonnans, Ioffe, Shapiro (1992) . 

PROBLEM 5 (second order expansion of the optimal value function) When, for 
un = s;u/2 + o(s;), .there exists 

p2 (uo; u, u) = lim {2t:;;- 2 (p(un) - p(uo) - EnP
1 (uo; u]}? 

n-+oo 

How to compute p2 (u 0 ;u,u)? 

This problem was addressed in the papers of Shapiro (1985, 1988A,B), Bon­
nans (1992) . 

The above problems are related to differentiability properties of approximate 
(in particular, exact) solutions of perturbed problems. 
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Consider sequences {un}, {xn}, {8n} where Un E w, Un-+ u 0 , 8 2': 0, 8-+ 
0, Xn E M 0J un), such that with respect to this perturbation the problem is 
M -stable, i.e., 

dist(xn, Mo)-+ 0. 

where the set 

{x E O(u) : .J(u, x):::; Po + 8}, 

{xERm: cpi(u,x)::;b, iEI, 11/>i(u,x)l::;b, jEJ}. 

PROBLEM 6 Which points of Mo can be limit points of the sequence { Xn}? 

This problem is considered in some papers cited above, e.g. in Gauvin (1993) 
in relation to the differentiability of the optimal value function. 

PROBLEM 7 (differential properties of solutions) When 

(a) llxn - xall :::; O(llun - uall), 
(b) for {un} of the form(**) the estimation llxn- xall:::; O(cn) holds, 
(c) there exists x and a sequence {xn}, llxnll -+ 0, llxnll = o(cn) such that 

for { un} of the form ( **) the formula 

Xn = Xo +en X+ Xn 
holds. 

This problem was considered by Gauvin and J anin (1988A) and Jittorn­
trum (1984), Bonnans (1992), Bonnans, Joffe, Shapiro (1992), Shapiro (1988B), 
Auslender, Cominetti (1990), Malanowski (1987). 

3. Preliminaries 

DEFINITION 3.1 The marginal function p is locally Lipschitz near u 0 if for some 
neighbourhood N(u 0 ) of u 0 there exists a constant M > 0 such that for any 

u1, u2 E N(uo), 

Following Clarke (1983), a function p which is locally Lipschitz near u 0 

possesses the gradient \lp(u) at almost all points u E N(uo). 

DEFINITION 3 .2 (Clarke, 1983) The generalized directional derivative of 
p at u 0 in the directions, denoted by D 0 p(uo; s), is defined as 

D 0 p(u0 ; s) = lim sup 
U --+U o, t--+0+ 

p(u + ts)- p(u) 

t 

DEFINITION 3.3 (Clarke, 1983) The generalized gradient ofp at uo, denoted 
by ap( Uo) , is the convex hull of the set of limits {limn \1 uP( Un)} , where \1 uP( Un) 

exists and Un -+ ua as n-+ oo. 
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The generalized gradient op( uo) is a nonempty convex compact set. 

PROPOSITION 3.1 (Clarke, 1983) Ifp is locally Lipschitz near u0 , then for any 
sE Rn, 

D0 p(uo; s) = max{e ·si e E op(uo)}. 

i.e. 1 D0 p( UQ; S) is the SUpport function of op( Uo) . 

We write I( u, x) for the set of active indices, i.e., 

I(u,x) = {i E I I cpi(u,x) = 0}. 

DEFINITION 3.4 We say that the Mangasarian-Fromowitz (M - F) regularity 
condition holds at x E 0( uo) , if 
(i) there exists a direction TJ E Rm such that 

< \l x'l/i(uo, x), TJ > = 0 for i E J 

< \l xCf'i(uo, x), TJ > < 0 for i E I(uo, x) 
(ii) the (partial) gradients \l x'l/i ( uo, x) are linearly independent. 

It was proved by Gauvin and Tolle (1977) that if x is a local minimum 
of the problem, then the Mangasarian-Fromowitz condition is necessary and 
sufficient to have the set K(x) = K(u 0 , x) of Lagrange multipliers nonempty 
and compact. Moreover, the Mangasarian- Fromowitz condition is preserved 
under small perturbations. 

THEOREM 3.1 (Gauvin, Tolle, 1977) Assume that the Mangasarian-Fromowitz 
condition holds for some x E M ( uo) . Let { uk} and { Xk} be sequences such that 
Uk ----+ uo and Xk E M(uk), Xk----+ x. Then fork large enough the Mangasarian­
Fromowitz condition is satisfied at Xk and there exist subsequences {J.L 1, .A 1}, { x 1} 

with (J.L1,.A1} E K(u1,x1) such that (J.L1,.A1)----+ (p.),) for some (p.),) E K(u0 ,x). 

CoROLLARY 3.1 If M ( u0 ) is non empty and compact and if the M angasarian­
Fromowitz condition holds at each x E M(u 0 ), then K(u0 , x) is compact. 

In deriving formulae for directional derivatives of the optimal value function 
we need second order optimality conditions. 

For any feasible x E 0 we denote by T(x) the tangent cone of 0 at x, ie., 

T(x) = {yE Rml <. \lcpi(x), y > ::; 0, i E I(uo, x), < \71/Ji(x), y > = 0, 
i E .J} . 

Moreover, by C(x) we denote the cone of critical directions, 

C(x) = {yE T(x)l < \l.J(x), y > ::; O} . 

Now we can formulate second order necessary conditions, see e.g., Gauvin 
(1993), Fiacco (1983). 
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Let yE C(x) be any critical direction for a (M- F) regular local minimum 
x. There exists (p,, >.) E ]{ ( u 0 , x) such that 

yT\lz £(x, p,, >.) Y 2: o . 
Let x be a feasible point satisfying the first order necessary conditions with 

the set of multipliers K(x). 

THEOREM 3.2 Given any critical direction y E C(x), y =/::- 0, if there exists a 
(p., ).) E K(x) such that 

T -y £(x,p.,>.)y>O, 

then x is a strict local minimum. 

The above theorem provides the weak version of sufficient conditions. The 
strong version of sufficient conditions can be expressed by the formula 

which means that the Hessian of the Lagrangian is positive definite on C(x) \ {0} 
for any (p, , >.) E K(x) . 

We denote by ]{1 (x, y) the set of second order multipliers satisfying the 
second order necessary conditions for the critical direction y E C( x), i.e., 

4. Lipschitz continuity of the marginal function 

There exists classical results of Berge and Hogan providing continuity results 
for lower and upper continuity of the marginal function. In these results the 
assumptions are expressed in terms of continuity of the feasible set multi-valued 
mappmg. 

The following result is proved by Gauvin and Dubeau (1982) . 

THEOREM 4.1 Suppose that Q( u 0 ) =/::- 0, and n is uniformly compact around u 0 

{UuEUo r2(u) is compact). 
If the Mangasarian-Fromowitz condition holds at some feasible x E r2(u0 ) , 

then the marginal function p is continuous at uo . 

In this result the Mangasarian-Fromowitz condition is essential in proving 
the lower continuity of the marginal function . Without assuming this condition 
only upper continuity of p is guaranteed. 

For parametric linear programming problems of the form 

min (c(u)f x 
subject to A(u)x == a(u) 

B(u)x::::; b(u) 
(6) 
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it is enough to assume the boundedness of the solution set of the dual to get 
lower continuity of the marginal function. Namely, we have the following result 
due to Martin (1975) . 

THEOREM 4.2 (Martin, 1975) For any parameter value ua E w, if the set of 
optimal solutions is bounded, then the marginal function p is upper continuous 
at u 0 E w . If the set of optimal solutions to the dual problem is bounded, then p 
is lower continuous at u0 . 

THEOREM 4.3 (Gauvin, Dubeau, 1982) If D(uo) 'f. 0, 0 is uniformly compact 
around u 0 and if the M angasarian-Fromowitz condition is satisfied at each x E 
M ( uo) , then the marginal function p is locally Lipschitz at u0 . 

Uniform compactness of n as a multivalued mapping can be expressed di­
rectly through the functions defining the problem. Namely the following result 
is due to Levitin (1992). 

THEOREM 4.4 (Levitin, 1992) If 
(a) the functions .:J(u, x), tpi(u , x), i E I , 1/Ji(u, x), i E J are continuous on 

w x Rm and continuously differentiable with respect to x at each point of 
the set w x Rm, 

{b) for a certain 6 > 0 the set Mb(uo) is bounded, 
{c) for each x 0 E M(u 0 ) the Mangasarian-Fromowitz condition is satisfied, 
{d) for each Un E w l Un --+ Uo, Dn 2: 0, Dn --+ 0, Xn E nbJun) such that 

lim~_, 00 .:J(un,Xn) :S p(uo) we have lim~_, 00 jj xnll < +oo, ie., {xn} is 
bounded, 

then there exists r > 0, L > 0 such that jp(u1) - p(u2)1 :S Lllu1 - u2 ll for 
u 1 ,u2 E B(uo,r). 

5. Directional derivatives of the marginal function 

It is a classical resul t of Hogan (1973A), Gol 'stein (1971) and Fiacco, Hutzler 
(1979) concerning the existence of the directional derivative of the marginal 
function in convex programming. 

THEOREM 5.1 (Fiacco , Hutzler, 1979) Suppose that the functions .:J , tpi, i E I 
are convex in x and the functions 1/Ji , i E J are affine in x. Moreover, suppose 
that all the function are continuously differentiable with respect to (u, x). If 
D(u0 ) 'f. 0, n is uniformly compact around uo and the Mangasarian-Fromowitz 
condition holds at each x E M(u 0 ) then the directional derivative p' (uo; d) exists 
for each d E Rn and 

p'(u0 ;d) = inf max \l,.C(x,u,f..L,>.)d. 
xEMo (!' ,>.)EK(uo,x) 

In non convex case this assumption does not assure the existence of the direc­
tional derivative . The following result was proved by Gauvin, Dubeau (1982). 



Sensitivity in mathematical programming 597 

THEOREM 5.2 (Gauvin, Dubeau, 1982) If D(uo) :f 0 and n is uniformly com­
pact near uo and the Mangasarian-Fromowitz condition holds at each x E 
M(uo), then for any direct ion dE Rn we have 

SUPxEM(uo) min(I',->-)EK(uo,x){\7 u.C(x, u, J1, >.)d} 

::; p-(uo;d)::; p+(uo;d) 

:S maxxEM(uo) max(J',A)EK(uo,x){\7 u.C(x, u, J1, >.)d} 

We say that problem (5) is stable at Uo if the set of feasible solutions n( u) 
is uniformly bounded in a neighbourhood of uo. The following result has been 
proved by Gauvin (1993). 

THEOREM 5.3 Let problem (5) be stable at uo and let all the optimal points 
x E M(u 0 ) satisfy the (M-F) regularity condition. Moreover, assume that for 
all x E M(u 0 ) the weak version of the second order sufficient conditions is 
satisfied. Then for any direction d the optimal value function is directionally 
differentiable at u 0 and 

p1(u 0 ;d)= min inf max {-<(J1,>.),d>}. 
xEM(uo) yEC(x) (!',>-)EK1 (x;y) 

The next result due to Gauvin, J anin (1988A) shows that directional dif­
ferentiability of the marginal function can be achieved provided there exists a 
Holder curve of solutions to perturbed problems. 

This result is formulated without any regularity assumptions. It covers some 
cases when the set of Lagrange multipliers K(x) is unbounded. 

If xis an optimal solution to problem (5) for uo = 0, then there exist numbers 
Ao ,J1i ,i E J, A;, i E I, not all equal zero, such that 

Ao'V:J(x) + LJ1;'V7/>;(x) + LA;'V<pi(x) = o, 
iEJ iEl 

Ao, A; ~ 0, i E I 

Ai<pi(x) = 0, i E I 

These are Fritz-John type necessary optimality conditions. Let K(x) be the 
set of all Lagrange multipliers ( Ao, J1, A), (J1, A) E RiuJ, satisfying the above 
necessary optimality conditions. The set K(x) contains normal multipliers, i.e., 

K(x) = {( 11 , A) E R1uJ 1 (1, J1, A) E .k(x)} 

Let K 0 (x) be the recession cone of K(x), ie., 

Ko(x) = {(J1, >.) E R1uJI (0, J1, A) E K(x)} 

THEOREM 5.4 (Gauvin, Janin , 1988A, see also Narayaninsamy, 1986) L et x 
and x(td) be optimal solutions to problems (5) for u = uo = 0 and u = td 
respectively. If 
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{i) K(x) '1- 0 and d satisfies < (J.L, ..\), d >> 0 for each (J.L, ..\) E K0 (u0 , x), 
(J.L, ..\) '1- 0, 

{ii} limSUPt!olx(td)- xl < +oo, 
then the marginal function has a directional derivative and 

p'(uo;d)= min inf sup{-(J.L,.Afd: (J.L,.A)EK1 (x,y)}. 
xEMo yEC(x) 

where as above K 1(x, y) is the set of second order multipliers. 

In the formula above C(x) denotes the convex cone of all critical directions 
at x. 

We say that problem (5) is directionally stable at a fixed parameter value 
u0 and for a given direction d if the solution set M(u 0 ) is nonempty and for 
any sequence {xi} of optimal solutions to problem (5) corresponding to the 
parameter value ua + trd, there exists a subsequence { xk} converging to the 
optimal solution x of (5) corresponding to the parameter value u0 . 

Directional stability is.a consequence of the uniform compactness conditions 
of n around u0 , or of the inf-boundedness condition used by Rockafellar (1984) . 

If at every optimal solution x E Mo the linear independence regularity con­
dition is satisfied, the directional derivative of the optimal value function can 
be obtained without any second order conditions. The following result has been 
proved by Gauvin, Tolle (1977) and Gauvin, Janin (1988B). 

THEOREM 5.5 If for any optimal solution x E M0 of the direction ally stable 
problem (5) the family {\71/>i(x), i E :J, \i'<pi(x), i E I(x)} consists of linearly 
independent vectors, then the marginal function p has a directional derivative 
given by the formula 

p 

p'(uo; d)= ~~{-(L J.Li(x)di + L >.i(x)di+P}, 
i=l i=l 

where (p( x), ..\( x)) is the unique normal multiplier vector associated with the 
optimal solution x . 

6. Computational aspects of directional differentiability of 
the optimal value function 

As we see the formulae for directional derivatives are minmax problems which 
are hard to solve. In the present section we consider convex problems with linear 
equality constraints. In this class of problems the above minmax formulae can 
be considerably simplified' (see Baumgart and Beer, 1992). 

We consider the problem 

inf :J(u, x) 
subject to 1/>i(u, x) = 0, i E J = {1, 2, .. . ,p} 

<pi ( u, X) :::; 0, i E I = { 1 , 2, " . , s} 
(7) 
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where cpi , i E I are convex with respect to x, '1/Ji , i E J, are affine with 
respect to x, '1/Ji(uo, x) = < ki(uo), x > +ci(uo), the functions :J, '1/Ji, cpi are 
differentiable with respect to u for all x at ua, and for the parameter value u0 

all the functions are differentiable with respect to x. 
Observe that for convex problems the set of Lagrange multipliers K(x) = K, 

i.e. K(x) = K(u 0 ) is independent of the solution point. 
The following theorem has been proved by Baumgart and Beer (1992). 

THEOREM 6.1 Consider problem (7) . Suppose that one element x E M 0 and 
one element (Jt, ~) E K(uo) are available. Let 

I(uo) = {i E I l cpi(x) < 0}, 

l(uo) = I\ I(uo) = I(x) = I(uo, x), 

J(uo) = {i E Il ~i > 0}, 

J(uo) = I\ J(uo). 

Then 

p'(ua;d) = minx,yER={< 'ilu:J(ua,x),d> - < 'ilx:l(ua,x),y > I 
\J x:l( ua, X) + ~iEJ(uo) ~i\7 x'Pi( ua, x) + ~iEJ pi ki( ua) = 0 

< 'ilu'Pi(uo, x), d > ~ < \J x'Pi(x, ua), y), i E l(uo) 

< 'ilu'l/i(uo, x), d > = < ki(uo), y >, i E J 
cpi(uo, x) = 0, i E J(uo) 

cpi(uo, x) ~ 0, i E J(uo) 

'1/Ji ( Uo, X) = 0, i E J 

7. Directional derivatives of the solution 

Directional differentiability of solutions have been investigated by several au­
thors, eg ., by Auslender, Cominetti (1990), Gauvin, Janin (1988A), Shapiro 
(1988B). Here we present the approach proposed by Gauvin and Janin (1988A). 
Let us consider any solution x to problem (5) and a fixed direction dE Rn . For 
an optimal solution x to problem (5) the linear approximation of (5) is given by 
the following linear programming problem 

min \J f(x)y 
subject to \Jcpi(x)y ~ di, i E I(x) = I(uo, x) = I(O, x) (8) 

\J'Iji(x)y = ds +i, i = 1, 2, ... ,p 

Let us denote the solution set of (8) by Y(x, d). The dual problem to (8) 
is of the form max{ - >.T dl .\ E K(u0 , x)}, where K(uo, x) denotes the set of 
Lagrange multipliers corresponding to problem (5) for ua = 0. The solution set 
of the dual problem is K 1 ( x, d) . This set is related to multipliers which are in 
some sense optimal for the direction d. Let 

I(x, d) = {i E I(x) l there exists y E Y(x, d) such that \Jcpi(x)y = di} 



600 E.BEDNARCZUK 

and let 

I*(x,d) = {i E I(x,d)l sup{A;I .A E I<1(x,d)} > 0}. 

The tangent subspace at x corresponding to the set of indices I*(x, d) is 
given by 

E = {zERmiV'I/i(x)z = O, i=1,2, ... ,p V<pi(x)z=O, iEI*(x,d)}. 

The following result is due to Gauvin and J anin (1988A). 

THEOREM 7.1 Let x be a solution to problem (5) at u0 and let d be a direction 
such that 
(i) I<1(x, d) = {~t*, .A*} is a singleton, 
(ii) the family {V7jii(x), i = 1, 2, .. . ,p, V<pi(x), i E I(x, d)} is linearly inde-

pendent, 
(iii) zTV 2 £(x,ft*,.A*)z>Ofor zEE, zopO. 
Then for any local optimal solution x(td) to problem (5) at td near x, the func­
tion t -+ x(td) has the right derivative x'(O+) = z*, wher·e z* is the unique 
optimal solution of the corresponding quadratic programming problem 

min zT C(x, .A*, ~t*)z 
subject to V<pi(x)z::; di, i E I(x) 

V7jii(x)z = di, i = 1, 2, ... ,p 
V :J(x)z = -(~t*, .A*f d. 

(9) 

8. Generalized gradients of the marginal function 

THEOREM 8.1 (Gauvin, Dubeau, 1982) IfD(uo) # 0, and n is uniformly com­
pact around u 0 , and if the M angasarian-Fromowitz regularity condition holds at 
every x E Mo, then 

ap(u0 ) c conv{ U U [VuL(x,uo;~t,.A)]}, 
xEMo (1',-')EK(ua,x) 

where conv stands for convex hull. 

THEOREM 8.2 (Gauvin, Dubeau, 1982) Let uo E w be given. Suppose that 
n( uo) # 0 and n is uniformly compact around Uo. Assume that at each X E Mo 
(LI) the partial gradients V x7fi(uo, x), i = 1, 2, ... ,p and V x<p(uo, x), i E I(uo, x) 

are linearly independent. 
Then, p is locally Lipschitz near uo, -p is regular (in the sense of Clarke) at 
u 0 and 

ap( uo) = conv{V uC(x' uo, ftx, Ax) I X E Mo}' 

where llx , Ax are the unique multipliers corresponding to ( u0 , x) and£( x, u, ft, A) 
= :f(u, x) + I:f= 1 ~ti7fi(u, x) + I::=l _Ai<pi(u, x) is the standard Lagrangian. 
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THEOREM 8.3 (Outrata, 1990) Assume that rl(uo) "# 0, rl is uniformly com­
pact around uo, and the functions :J, lj;i, i = 1, 2, ... ,p r.pi, i = 1, 2, ... , s are 
twice continuously differentiable. Let u0 E w, x 0 E M 0 and the Mangasarian­
Fromowitz condition hold at ( u0 , x 0 ) . Suppose that the problem satisfies the 
second order optimality conditions at xo E Mo for all multipliers (p., A) E 
K(uo, xo). Then Mo = {xo}, p is locally Lipschitz near u0 , and regular in 
the sense of Clarke at u0 , and 

ap(uo) = {V' .... £(xo, uo, p., .A)I (p., .A) E K(uo, xo)}. 

9. Parametric linear programming problems 

Let us consider the para~etric linear programming problems of the form 

inf eT x 
subject to A( u )x = a, 

B(u)x :S b, 

where A[Rn --+ Rpxm], and B[Rn --+ Rsxn], are continuously differentiable, 
p < m , and c E Rm , a E RP , b E R 8 

• 

We assume that for each u E w the polyhedron 

rl(u) = {x E Rml A(u)x =a, B(u)x :S b} 

is nonempty and uniformly compact and that the Mangasarian-Fromowitz reg­
ularity condition is satisfied at all x E rl( u) . This implies that the corresponding 
marginal function h is locally Lipschitz over w . 

We denote by J(u 0 , x0 ) subset of I(u0 , x 0 ) such that the vectors Ai(u0 ), i = 
1, 2, ... ,p, Bi(uo), i E J(uo, x0 ) are linearly independent. Moreover, we denote 
L(uo, xo) = {i E J(uo, xa)l Ao; = 0} . 

PROPOSITION 9.1 (Ben-Tal, Eiger, Outrata, Zowe, 1992) Assume that there ex­
ists a direction k E Rn such that for all sufficiently small {) > 0 the perturbed 
programs 

inf eT x 
subject to A(uo + rJk)x =a 

B(uo + rJk)x :S b 

have a solution X.? and multipliers Jl..? , A.? which satisfy the strict inequalities 

A.?i > 0 for i E L(uo, xo), 
< Bi(uo + rJk), X19 > < b; for i E I(uo, x) \ J(uo, xo). 

Then the formula 
p 

L: P,o;(\7 Ai(uo))T Xo + L: Ao;(\7 Bi(uo)T Xo E ap(uo) 
i =l i=l 

holds. 
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