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In this paper we are concerned with the time-dependent Navier-
Stokes equations coupled with the heat equation under the Boussi-
nesq’s approximation. We study the regularity of the strong solu-
tions and we consider an optimal control problem associated to these
equations. The problem consists in minimizing a functional invol-
ving the turbulence within the flow, the control being the heat flux
through the boundary of the domain occupied by the fluid. We prove
existence of optimal controls and derive some first order optimality
conditions.

1. Introduction

In this paper we consider three-dimensional incompressible flows described by
the following system

- —

O v+ (V)T +Vep= f 4 in Qr=0x(0,T),
or

ClhT i =g in Q
L KA;T+ 3§ -Ver=g in Qp, (1.1)

divy#=0 in Qp, §(0)=¢o in Q, §=0 on Br =T x(0,T),

(7(0) =6y in Q, 7=0 on 2%, 6,7=u on X},
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606 BE. CASAS

where 7' > 0 is given; Q C R® is an open and bounded set, with a boundary T of
class C%; ToUTy =T and ToNTy = 0; £% =T % (0,T) and T4 =T, x (0,T7);
v > 0 is the kinematic viscosity and & > 0 is the thermal diffusion coefficient:
denotes the velocity of the flow and p the pressure; T is the temperature in the
fluid; f € L%([0, 7], L*(R)*) are the body forces; g € L?(Qr) is a heat source;
u € L?(B}) is the heat flux through T'y; ¢g € Yo and 0y € L3(R) are the initial
velocity and temperature respectively; ﬁ-“ € L*®(Q7)? (it is a constant in the
classical Bénard type problems). The space Y} is defined by

Y ={7€ H(Q)® :divi=0} and Yo=Y nHLQ)?, (1.2)

where div denotes the divergence operator. It is easy to check that ¥ and Yj
are separable Hilbert spaces when they are endowed with the inner products

(ﬁ: E)Y =2 (g‘: 2)[.'3(9]3 + a(ﬁ) '?J
and

(ﬁ: Z)Yo = a(gl E);

respectively, with
3
a(if #) = Z/ Vyi(2)Vz()de Vi, 7€ HY(Q). (1.3)
§=1%8

In (1.1), ¥ is the state and u is the control. The issue is to minimize the
turbulence within the flow. A measure of the turbulence can be given by the
norm of the vorticity V. x ¥

Vi? X g‘: (6::;3)'3 - aﬁgy"h az_gy]. T 831.1}3; 6.‘!.‘1 2 — 61:2!}1)- (14)

REMARK 1 The L3(Q)-reqularity assumed for 0y will be used in Lemma 1 to
deduce L3([0, T, L4(Q))-regularity of the temperature function .

Before formulating the control problem properly, we need to analyze the
system (1.1), which will be done in §2. In §3, we formulate the control problem,
prove existence of a solution and derive the conditions for optimality.

The issue of controlling the turbulence of two-dimensional flows was first
studied by Abergel and Temam (1990); Abergel and Casas (1993) considered
the stationary case corresponding to three-dimensional flows; and Casas (1993A)
studied the control by the body forces of three-dimensional flows governed by the
evolution Navier-Stokes equations. The methods to treat the evolution problems
are different from those used for the stationary case. For time-dependent two-
dimensional flows the state equations are well posed, they have a unique strong
solution, and consequently it is not difficult to derive the optimality conditions.
For three-dimensional flows, there is no existence of strong solutions, in general,
and it is necessary to carefully formulate the control problem to achieve the
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analogous result. In the stationary case, in dimension two or three, we do not
have uniqueness of a solution. Two different techniques have been developed to
overcome this difficulty: the first is due to Gunzburger et al. (1991) and the
second is used in Abergel and Casas (1993). See also Casas (1993A).

There are some other, papers dealing with the optimal control of Navier-

Stokes equations, see, for instance, Fattorini and Sritharan (1993A), (1993B),
Sritharan (1991), (1992).

2. Analysis of the state equation

In order to prove the existence of a solution of (1.1) in some suitable space, the
following weak formulation for the velocity and temperature is usually suggested

Find g€ L2([0,T),Ys) and 7 € L2([0,7],7Tp) such that
4 @00, Drrcay +valile), §) + b(6), 50),9)

= (f(t) + B(t)T(t), ¥) 2y ¥P €Yo, t €(0,T), i
('r() ¢)r2y + Kao(Vr, VC) + bo(§(t), 7(t), C) '

(Q(t) Qrz@) + (u(t), Qramyy Y€€ To, 1 €(0,T),
[ 7(0) = o, T(0) = o,
where Yy and a are given by (1.2) and (1.3), respectively;

To = (¢ € HY() :Clr, = 0); (22)
Ft 72 73 7N e 1;2223z ;
b(£t,72,7%) = /ﬂ( d ,.,21/ g, 2323d (2.3)

HY(Q) x HY(Q) — R, ao(¢1,() = /ﬂVCl - Vadz; (2.4)

bo : HY(Q)? x HY(Q) x HY(Q) — R, bo(Z,¢1,C2) = /{;(E‘chl)g'gdm‘(zf))

The integral in (2.3) is well defined lf 71,73 € LY(Q)? and 7?2 € HY(Q)® or
if 21 € LY(Q)3, 7% € W'4(Q)® and 73 € Lz(Q)3. Furthermore, by using the
Holder’s inequality, we get

A

/|213z,zfzf|d$ < N2 llpsy 118227 1 Lagay 1271 Lagay (2.6)

/ |210,,2223|da

IA

2t lzage) 1102:27 lLacoy 112 |22 (2.7)
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These relations prove that b can be considered as a continuous trilinear form in
the spaces where the previous norms are finite, Another fundamental property
of b is the following: for every § € L?(Q2)® satisfying divy = 0 in €, we have
that

b(y, 21, 2%) = —-b(g, 2%, 21) V#',2% € H}(Q)%. (2.8)
In particular we deduce that
b(7,%,2) =0 V7€ H{(Q)>. (2.9)

On the other hand, it is clear that ag and by are continuous bilinear and
trilinear forms, respectively, in the spaces where they are defined. Moreover,
analogously to (2.8) and (2.9), we have that

bo(F, ¢1,€2) = —bo(¥,(2,¢1) V1,¢2 € HY(Q) and Vi€ Yo (2.10)

and
bo(7,¢,¢) =0 V¢ € H'(Q) and V§ € Yo. (2.11)

We will say that (¢, 7) is a weak solution of (2.1) if ¥ € L2([0,T],Yo) N
Cw([0,T], L3(Q)3); 7 € L2([0,T],70) N Cu([0,T], L*(Q)); they satisfy the dif-
ferential equations of (2.1) in the distribution sense and the initial conditions
weakly in L2(Q)3 and L?(Q), respectively; and the following energy inequalities
hold

1
1T aye +2v [ a@(e) 7)ds < dollay

+2 ] (F(5) + () (5), 7(5))zagays ds ¥t € [0,T] (2.12)
and

170y + 2 ] ao(r(s) 7(s)ds < [lfolaca

+2/ [(g(s), 7(8)) 2y + (u(s), 7(8))12(my)lds VL€ [0,T]. (2.13)

The existence of a weak solution can be proved by using the methods of La-
dyzhenskaya (1969), Lions (1969) or Temam (1979); see also Foias et al. (1987).
Once a solution of (2.1) has been found, the existence of the pressure p € D'(Qr)
can be proved, in such a way that (7, 7,p) is a solution of (1.1), satisfying the
partial differential equations in the distribution sense, the boundary condition
in the trace sense and theé initial condition in the way above mentioned. The
uniqueness of a weak solution is an open question so far. This leads us to in-
troduce a new class of solutions. We say that (¢, 7) is a strong solution of (2.1)
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if it is a weak solution and § € L3([0,7], L%()3). We say that (§,7,p) is a
strong solution of (1.1) if it is a solution in the above sense and (#, 7) is a strong
solution of (2.1). It is well known that (2.1) does not have more than one strong
solution. Strong solutions satisfly the energy equalities instead of the inequali-
ties (2.12) and (2.13). So they seem to be physically more significant than weak
solutions. Unfortunately there is no existence result of strong solutions.

Now we state some regularity properties of strong solutions. First we intro-
duce some notation

) = {"’ e1x(or): 2 L W pagn 1<ii< 3}
33; ZTi J 3t
and
dy P
||3;'|[H=»:(nr) = {f (Iyi2 + ’E‘ ) dzdt
Qr
1/2
3 ay y 2
+§fn S| dH,,Zlf e R B

In Lions and Magenes (1968), Vol. 1, it is proved that every element of H?!(Q7),
after a modification over a zero measure set, is a continuous function from [0, 7]
to H'(Q), so we can consider H?!(Qr) C C([0,T], H'(£)), moreover the inclu-
sion is continuous.

THEOREM 1 Let us assume that (if,7,p) is a strong solution of system (1.1),
then § € H>Y(Qr)3 N C([0,T),Yo); T € L3([0,T], H(Q)) n C([0,T7, L3(R));
p can be taken in L*([0,T], H'()) and il is unique up to the addition of a
distribution in (0,7). Moreover

17 22 @urys + 1Tl L2qo, 2,21 0)) + ITlleo,m1,L2(0))
<7 (”50”}’:: s l[ﬂ]ﬂ’([U,Tl,L?(ﬂ)S) + 19| oo, 11,25 (%) (2.14)

100l 2y + llgllz2(ar) + llullagsyy + ||ﬁHLm{nr))

where 1 : [0, 4+00) — [0, +00) is an increasing funclion depending only on Q,
Kk and v.

The previous theorem is an immediate consequence of Theorem 2.1 and
Corollary 2.1 of Casas (1993B). We have also the following result about diffe-
rentiability of mapping u — ¥y

THEOREM 2 If system (1.1) has a strong solution (o, 70, po) for some element
ug of L2(XL) and some ¢o € Yo and 6y € L*(Q), then there exists an open
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neighbourhood U of ug in L*(XL) such that system (1.1) has a sirong solution
(G, Tuy Pu) for every u € U. Moreover the mapping G : U — H>1(Qr)® N
C([0,T],Y0), defined by G(u) = Hu, is of class C*. Finally, if 7 = DG(u) - v,
for some u € U and some v € L%(X}), then Z is the unique strong solution of
the problem

( 87
3? VA7 4 (fu * Vi)Z+ (F- Ve )u+ Vor = ¢ in Qr,
d
4 33 kA +Z-Veru+ 0w - Ve =0 in Qp, (2.15)

divzZ=0 in Qp, Z(0)=0 i Q, 2=0 on Xp,

LC(0)=0 in Q, (=0 on I}, 8,C=v on Ti.

for some (r,7) € L2([0,T], H(Q))NC([0,T] Lz(Q)) x L2([0, 7], HY(R)), which
is unique up to the addition of a dzsinbutwn in (0, 7).

Proor. Let us denote by
F: [H*Y(Qr)’ nC([0,T],Yo)] x L*(2F) — L3([0,T1], L*(Q)?) x Yo
the mapping given by

F(y, )—( +vAj+ Bj— f- ﬁfyu;y()_q_;ﬁ)s

where A : Yy — Y] and B : Yy — Y{ are defined as follows

(Aﬁ", E) = (3}‘! Z)y, and (B!;",E) = b(gr ?;"sz-')s (2'16)
and 1y, € L*([0,7], To)NC([0, T], L*(2)) is the unique solution of the equation
or

&T = Qr,
e — kA, T+ Y- Ver=g in Qp (2.17)
7(0) =0y in Q, -r—O on £%, Oyt =u on Xp.

It is obvious that A and B are continuous. Moreover, for every § € H2(Q2)3N
Yy we have

3
(A7, 2) =—f Ay zdz = --Zf ijzjda: VZe Y,
a2 : o
j=1

and, with (2.7),
[(B7, 2)| < Cillgllza@ IFllwzays 1Al z2(0)s

< Cal|llys 191l 2y 12| L2(eys- (2.18)
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Thus we have that Ay, By € L*([0,T], L*(Q)?) for every § € H>(Q)® NY,.
Also it is immediate to check that F is of class C'* and

OF . . (07 . ... =
‘—'6“5:(3,1,1&) &= (§{+V‘A‘Z+B (gjz ﬁc:é‘(o)) 1

where

(B @2 5) = 45,59 +456.9) Vi, (2.19)
and ¢ € L*([0,T7, 7o) N C([0,T], L%(£2)) is the unique solution of the equation

¢
N — kA + T Ve(+ 72 -Ver=0 in Op, (2.20)
7(0)=0 in @, 7=0 on £%, 8,7=0 on Z}.

By using Lemma 2 proved below we deduce that ;(yn,ug) is an isomor-
phism from H21(Qz)3 n'C([0,T], o) onto L2([0,T) Lz( 33) x Yo. Moreover
we have that F(fo, ug) = (0,0). Therefore we can make use of the implicit
function theorem and obtain the existence of an open neighbourhood U of
ug in L?(X}) and a mapping G : U — H*(Q7)® N C([0,T],Ys) such that
F(G(u),u) = (0,0) for every u € Y. This means that y, = G(u), together
with some 7, € L2([0, 7], To) N C([0,T], L*(R)) and p, € L2([0,T], H'(R)), is a
strong solution of (1.1) corresponding to the data u and ¢¢. Moreover G is also
of class C'*° and

‘Z‘T( u) o DG(u) v+ gF
Then, setting # = DG(u) + v, we deduce that Z satisfies together with some
¢ € L*([0,71, 7o) N C([0, T), L?(£2)) the system

r

(Fu,u) - v = (0,0) Yve L3(ZL).

% +vAZ+ B'(§.)7= ¢ in Qr,

a¢
ot
( div,Z2=0 in Qp, 2(0) =0, ((0) =0, { =0o0n X}, 8, =v on If,
or equivalently

7e H>H(Q)® nC([0, T, Yo), ¢ € L3([0,T],To) N C([0, T, LY Q)

— kA + Ty - VC+Z V1 =0 in Op

L (0), Byuaqay + (0, Do + b0, 70), )
H(E0),5ult), ) = (BOCO, Dz Y €Yo, 1€ 0,T),

a¢
at
Z(0)=0, ¢(0)=0,¢(=0o0n 2%, 6. =von X},

— kAL 4 Yy VC+Z- V=0 in Qp
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which implies that (Z, () satisfies (2.15); see Temam (1979), pp. 267-269 for the
existence of the pressure p € L%([0, 7], H'(R2)) allowing to pass from the above
system to (2.15). |

LemMma 1 Given § € C([0,7],Ys), the problem

ks ;
e — KAGT+ T Ver = Qr,
5 kAT +§-Ver=g in Qr (2.21)

r(0) =0y inQ, 7=0 on %, ,7=u on Xk,
has a unique solution € C([0,T], L*(Q)) N L%([0,T], Zo) N L8([0, T], L4(R)).

ProoF. The existence and uniqueness of a solution in C([0, T, L%(R)) N
L%([0,T), To) is standard. Let us prove the L8([0,T], L(R2))-regularity. First
note that the trace mapping v : W43/2(Q) — L*(T') is continuous, Necas
(1967). Then

¢ e WHA3(Q) — d u(z, t)¢(z)do(z)

is a continuous mapping for almost all ¢ € (0,7"). Then we can take functions
fi € L([0,T], L3(R)), 0 < i < 3, such that for every ¢ € W13/3(Q)

‘/Pu[m,t}(,'(x)da(m):/ﬂfu(m,t)l;'(a:)+Z/ﬂf,—(m,t)3z,{(z)dm,

and

3

S lfilleaqom sy < 4lullzagsy y;

i=0

see, for instance, Adams (1975). Therefore the following identity holds

4 (7003, €Yy + rao(r(2),€) + bo({2), (2),)

= ]ﬂ (o(2) +fo(t))Cd«“r+; /ﬂ [(8)0s,Cdz

for every ¢ € Tp.

Now we can apply the method of Ladyzenskaya, Solonnikov and Ural’ceva
(1968), pp. 194-201, with 8 = 2/3, r3 =4/3, 95 =2, r4=1,94 =3/2, r =8
and g = 4 to deduce the desired regularity. |
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LEMMA 2 For every Zo € Yo and f € L2(Qr)? there ezisls a unique solution
7e H2Y(Q)3nC([0,T),Yo) and ¢ € L%([0,T), To)NC([0,T], LA(Y)) of the system

¢ 97 W ==

(—3?+I/AZ+B( Yu)Z=f+ B¢ in Qr,

9 — kA4 G VC+Z-Vry =0 tn Q

ot A B d (2.22)

div,Z=0 in Qp, Z(0) = 7,

L ¢(0)=0,¢(=00n %, 8,.(=0 on Zj.
Moreover the solution depends continuously on (f,Z) € L2([0,T], L*(Q)3) x Yo.

Proor. We are going to obtain some a priori estimates, which is the diffi-
cult part of the proof. To conclude the proof it is enough to make the usual
discretization of the space and to pass to the limit with the help of the a pri-
ori estimates; see Casas (1993B) for a detailed exposition corresponding to the
time-dependent Navier—Stokes equations.

Let us begin by multiplying the first partial differential equation of (2.22)
by Z

%Ilf(f)]liz(ma + |2, + (B’ (% (1) 2(1), 2(t))

= (1) + B¢ (@), (1)) z2(aye- (2:23)
From (2.19), (2.9), (2.6) and the inequality

B2 =

[Pllzsay < V2 11wni£‘:m 191 says » (2.24)
see Temam (1979), we deduce
I(B'(u(0)2(1), Z1))] < [b(Fu(?), 2(2), Z())] + 1b(2(2), Fu(2), (1))

e -, = 2
< CillG @) I |22y < CollZO ety IZONIT,

= B
< GallZ®)1Zaays + 7 I1FE) 1T,

Using this inequality in (2.23), we obtain

5 dtll“(t)llz,z(ma +7 L’H‘Z_‘(i)llvn

<(Cs+ )H |72y + Hf(f)”iz(n)a + ||51|?:oo(ny}s||C(3)||iz(n)» (2.25)




614

E. CASAS

On the other hand, multiplying the second equation of (2.22) by ¢ and taking
into account (2.11) and (2.10) we get

1d
55[1(;(*)"12(;1) + &I

e / ) Vara(0)C(t)dz = / Vo C()r(t)dz. (2.26)
o £1

Now, using Holder’s inequality and (2.24), we have

‘ fn Z(t) Vo (t)u(t)dz

< 1) @l @@l Ol oy
< CallZ0)Zagayllru@lFagay + SO 0
< GsllZO | oy I EOIS, I gy + 1<y

< CollZO) gyl + SIZOE, + SISO -

Combining this inequality with (2.26) we obtain
1d 2 K 3
§a“((¢)”m(m) + 5“‘:@)"35(11)

— v
< GollZONZ2ylIm Dl Z gy + 71D, (2.27)
Adding (2.25) and (2.27) we get

2 {IEON oy + ISy } + SN, + SOy < IFDIZacay

+Cr (1 + HTu(t)Hiﬂ(ﬂ)) 12012y + ||ﬁ||im(ﬂ-;-)3”C(t)“%ﬂ(n)' (2.28)

By reference to m, € L8([0,7], L*(£2)), see Lemma 1, and Gronwall’s lemma,
(2.28) leads to

121 o= (0,71, 20)2) + €] oo (0,71, 22(0)%)
< Os (I fllzaomzxcar) + lzollzxay ) - (2.29)
Integrating (2.28) in [0, 7] and using (2.29), it comes
121l z2qt0.71,¥0) + €1l £2(t0,71,70) < Co (Hﬂlm([a.:ﬂ],m(nm + |IfuIIL2(n)=) (2.30)

Finally, the H%1(Q)-regularity of 7 is a consequence of Theorem 2.1 of Casas
(1993B). The uniqueness is proved as usual. 7
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3. Study of the control problem

As mentioned in §1, our aim is to control the turbulence within the flow by acting
on the body forces. Now the question is how to formulate mathematically this
control problem. Are we going to consider strong or weak solutions of (1.1)7.
Though we can formulate a control problem in the same way as in Abergel and
Temam (1990) and we can prove the existence of a solution for this problem, we
do not know how to derive the optimality conditions satisfied by this optimal
control. In Abergel and Temam (1990) the authors considered two-dimensional
flows, therefore every weak solution was also a strong solution. By using the
results stated in the previous section, we can obtain the conditions for optimality
for a reasonable control problem assuming that the optimal state is a strong
solution of (1.1). Thus we need to formulate a problem such that every optimal
control has associated a strong solution of (1.1). This is achieved by modifying
slightly the functional used in Abergel and Temam (1990) : we consider the cost
functional

T 3 T
J(u,9) = f_lj_/g. (fn |Va % E'zd"") dt + %./g . |u|?dodt,
1

where V; x 7 is the vorticity within the flow given by (1.4).
Then the optimal control problem is formulated in the following way

(P) Minimize J(u, 7),
(u,7) € K x H*1(Qr)3 satisfying (1.1) together with some (7, p),

with (r,p) € C([0,T], L3(R)) n L2([0, T], H(Q)) x L%([0,T], HY(R)), and K C
L?(£}) being nonempty, convex and closed.

The first term of the cost functional gives a measure of the turbulence in
the flow through the norm of the vorticity in the space L([0,77], L%(Q2)3). The
reason of this choice is that any weak solution of (1.1) verifying J(u,7) < +oco is
a strong solution, which reduces the admissible states of (P) to strong solutions
of (1.1). The following proposition proves this claim.

PROPOSITION 1 Let (¢, 7, p) be a weak solution of (1.1) verifying J(u, ) < +o0,
then it is a strong solution. Moreover

171 zecro, 1, L0003y < M, (3.1)
for some constant M depending on J(u,y) and ||u||r2(sy)-
ProOF. We first note that

I21lve = [IV2 X Z||L2(a)s VZ € Yo; (3.2)

it is enough to make an integration by parts, using that # = 0 on X7 and
div # = 0. Then the inequality J(u, ¥) < +oo implies that § € L8([0,T],¥p). On
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the other hand, since (¢, 7, p) is a weak solution, we have § € L*([0, 7], L%(Q)3).
Therefore, from (2.24) we obtain that

= 1/2 — 3/4 =
1) |zacays < V2NN 0,01, L2y IO = CLllF@IF*,

which implies that

171280, L9y < CllTLeqro,my,v0) < +00-

Finally, (3.1) follows from this inequality and (3.2). |

Now we study the existence of a solution of (P). The convexity of J is
essential in the proof of existence. For other optimal control problems of Navier-
Stokes equations with nonconvex cost functionals, some relaxation is necessary
to state existence of solutions; see Fattorini and Sritharan (1993B).

THEOREM 3 Lel us assume that the following two hypotheses hold:
1. There exisls a feasible pair (u,§) € K x H:1(Qr)3 satisfying (1.1) together
with some (1,p) € L2([0,T], HY(Q))NC([0,T], L3(Q)) x L2([0, T, H*(2)).
2. Either N > 0 or K is bounded in L*(X}).
Then there ezists at least one optimal solution (ug, yo) of (P).

Proor. Let {(us,9%)}52, C K x H2(Qr)? be a minimizing sequence of (P).
The existence of such a sequence is a consequence of the first hypothesis. The
second one implies that {u;}$2, is a bounded sequence in L*(X}). Then we
can take a subsequence, denoted in the same way, such that uy — ug weakly in
L?(Z}). Moreover, noting that K is closed and convex, we deduce that uy € K.

On the other hand, due to Proposition 1, we know that {7 }32, is bounded
in L3([0, 77, L*(2)®). Then Theorem 1 states that {i}}72, is bounded in the
space H21(Q7)3 N C([0,T)],Yo). Therefore we can assume, by taking a sub-
sequence if necessary, that 7, — go weakly in H>'(Qr)3, with g also be-
longing to C([0,7],Yo). Using the compactness of the inclusion H?1(Qp)? C
L*([0, T, L*(Q)3) and noting that H2(Qr) C C([0,T], H'(2)), the inclusion
being continuous, it is easy to pass to the limit in the system of equations sa-
tisfied by (ur, ) and some (7x,px) and to conclude that (ug, 7o) also satisfies
(1.1) for some (7, p). Hence (uo,%o) is a feasible pair for Problem (P).

Finally, the convexity of J allows to deduce that (ug, o) is a solution of (P)
arguing as follows

I (uo, %) < lim inf J(ug, gi) = inf (P). -

Our last theorem states the optimality conditions satisfied by the solutions
(o, Fo) of (P).
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THEOREM 4 Let us assume that (uo, %) is a solution of (P) and m and pg
are the temperature and the pressure, respectively, corresponding to the velocity
Jo- Then there exist two unique elements o € H*(Qr)? N C([0,T),Yo) and
Po € C([0, T], LA(Q)) N L*([0, T], H(Q)) and a function mo € L2([0,T], HL(RQ)),
unique up to the addition of a distribution in (0,T), such that the following
system 1s satisfied

¢ O 4 % = - .
—Ei—“ —vQz¥o + (Yo - Vz)o + Vapo = f+ Bro in Qrp,
o ” ;
»gtg—n/_\.xm + %0 Vzmo=g in Qp, (3.3)
divegio =0 in Qr, 7%(0) = do in Q, §o=0 on Tp,
70(0) =00 in Q, =0 on I, o =up on Ti;
¢ 9P 2 . - T =
- % —v2sGo — (Jo - Ve)@o + (Vo) Go + Ve
= 19Vatho + ”V:t X fﬂ”%z(n)s[vx X (Vg x ﬁo)] m Qp,
d - S
< _% — kDgtho — o - Vetho = fGo in Qr, (3-4)
divego =0 in Qr, Go(T)=0 in Q, go=0 on T,
(Yo(T) =0 in Q, Yo=0 on B3, G, =0 on Tk;
T
/ / (%o + Nuo)(u — uo)dodt >0 VueK, (3.5)
0 . Pl

PROOF. From Theorem 2 we deduce the existence of an open neighbourhood %
of ug in L?(¥}) such that (1.1) has a unique strong solution for every u € .
Moreover, the mapping G : U — H?(Qp)*NC([0,T], Yo), given by G(u) = #.,
is of class C'°.

Let us define I : if — R by I(u) = J(u, G(u)). It is immediate that ug is a
solution of the optimization problem

Minimize I(u),
uelUUNK.

Since K is convex and ¥ is a neighbourhood of ug, for every u € K we can find
a number €, > 0, depending on u, such that u. = ug+ e(u —up) EYU N K for
all € € [0, ey]. Therefore, noting that I is of class C'°°, which follows easily from
the chain rule, we obtain that

I(uo + €(u —up)) — I(ug)

T'(uo) - (v — o) = lim (3.6)
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>0 VueKk.
eND €

Let us compute the derivate I'(up) - v for any element v € U. Putting
7 = DG(up) - v, then, from Theorem 2, we have that Z satisfies:

O VA4 (V)T (Vi + Ver = in O,
o¢
) E‘_KArC'Fyu Vol +7-Vory =0 in Qp, 3.7)

divzZ=0 in Qp, 2(0)=0 in Q, Z=0 on Xr,

[ ¢(0)=0 in Q, (=0 on £f, d.(=v on EIj.

for some p, € L2([0,T], H(Q)) and ¢ € L*([0,T], H(R)) n C([0,T7], L*(Q)) .
By using the chain rule we deduce that

arJ
I'(uo) v = ou —+—(uo0, %0) - ”+a*(“0=yﬂ © DG(uo) - v
—(uo, %) - v+ aqfun,yo

/ uo(z, t)v(z,t)dodt (3.8)
B

& /: Unwx X fg]zdx)z (/ﬂ(v, % §6) (Vs X :?}dz) dt

:N] uo(z,1)v(z,t)dodt
B}

_aJ
"~ Ou
=N

T
-+ f (/ ||Vz X golliz{n)a[vm X (Vr X g"(})] L Z) daxdt.
0 it}

Since §o € H>'(Q)3, it follows easily that the right hand side of evolu-
tion equation (3.4) belongs to L?([0,T7], L%2)?). Then we deduce from Casas
(1993B), Theorem 2.1, with & = & = g, the existence of a unique go €
H2Y(Qr)? n C([0,T),Yo) satisfying (3.4) for some 7o € L*([0,T], H'(R)) N
C([0,T), L*)) and some my € L*([0,T], H'(Q)), unique up to the addition
of a distribution in (0, 7). Using now (3.4) and (3.7) and integrating by parts,
we obtain from (3.8) that

T
I'(ug) - v=N ugv do dt — / -/ 1oVt - Zdz dt
=5 o Ja

T 3
a G 4 -
+/ / [-ﬂ — v B0 — (o - Ve)@o + (Vaiio)' Go| - Zdz dt
0o Ja
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T
=N ugvdcrdt-]-/ /E-szg%d:cdt
> 8 o Ja
T rr1ez I o Y
+ E—quz+(yg-Vx)z+(z-V,;)yg - @o da dt
0o Ja

T
=N ugv do di +/ / [E ol + 7+ Vrrm,bg] dz dt
ot 0 Ja

T
=N Upv dadi-i—/ / Z - Verotho do dt
=1, o Ja

T
.|./ / [—%ﬂ—EArﬁbo—fﬂ'vx"ﬁo]cdxdt
o Ja t

T
=N ugv do dt +f / 7+ Vyrotg de dt + Yov do di
oL 0 Ja

I

T .
+£ L[g—g_ﬂAzC“{“gOVzC} ¢Odzdt:fl(Nuu+¢»u)vdgdt_

Ip

Finally, the expression obtained for I'(ug) - v, combined with (3.6), implies
(3.5).
|
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