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We describe a Galerkin approximation scheme for a general class 
of conservative infinite dimensional control systems with controls 
distributed on the boundary of a compact set in Rn. Each approx­
imate system is controllable, has a simple structure and is free of 
certain anomalies which are present in the original systems. 

Introduction 

There is a general class of elastic control problems which is represented by linear 
hyperbolic partial differential equations with nonhomogeneous boundary values. 
The setting is a bounded open set, D, in Rn and the control action occurs on 
the boundary, r, of n. These problems purport to model the control of struc­
tures such as strings and beams. The theory is mathematically complete in the 
context in which these problems are posed (see e.g. Lions, 1988). However vis 
a vis other control systems it has several flaws which militate against its use in 
practical design. We mention three: (i) The uncontrolled mathematical models 
generate C0-groups on the spaces of their initial conditions. However, equally, 
and in many instances more appropriate models, have uncontrolled structures 
which generate analytic semigroups on the spaces of their initial conditions (see 
e.g. Sakawa, 1984). The mathematical consequence of this is that the first class 
of control problems is completely controllable, Lions (1988), whereas the second 
class is only approximately controllable (Triggiani, 1975). (ii) There is no theory 
of complete controllability for systems with bounded control inputs. In fact such 
a theory is impossible. The best one can hope for in this direction is an approx­
imate control theory which may be inferred from the results of this paper. (iii) 
The practical goal of most elastic control problems is some form of stabilization 
(MacMartin, Hall, 1991). In the case of the systems under discussion this is 
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achieved by linear feedback controls which involve velocity components (Lions, 
1988). Unfortunately the resulting dynamical systems are unstable for any time 
delay in the feedback (Datko, 1991). It is true that these instabilities occur in 
the very high frequencies (see e.g. Datko, You, 1991) where the mathematical 
models probably do not represent physical reality. However, the mathematical 
theory depends on the infinite dimensional nature of the models and is intrin­
sic to the development of the theory (Lions, 1988) . For example, if one were 
interested only in controlling a finite number of frequencies the standard finite 
dimensional theory would suffice. 

Indeed, practical stabilization of flexible structures is described in the lan­
guage of finite dimensional linear control theory (see e.g. Balas, 1982; Mac­
Martin, Hall, 1991) . A major reason for this is that , although flexible struc­
tures are often mathematically infinite dimensional, they are nonlinear and rea­
sonable infinite dimensional models are not available. Moreover in practice it 
usually suffices to control only a finite number of frequencies, which can often 
be described by systems of the type (2.4) in this paper (see e.g. Balas, 1982) . 
Consequently the principal goal of this paper is to indicate how elastic systems 
of the type described by the system (2.13) in Section 2 may be projected onto 
finite dimensional models of the form (2.4) which are controllable. 

The resulting projected system has a relatively simple structure and we 
show in Section 4 how to exploit this to compute c-approximate controllers 
with arbitrarily small L 00 or £2 bounds . In the same section we also show the 
extent to which a commof\ feedback stabilizer for the system (2.4) is robust with 
respect to small time delays. This is an important property since in practice the 
active (as opposed to passive) stabilizers are implemented by microprocessors 
and this may result in small delays in these stabilizers. 

The paper has the following structure . Section 1 is devoted to notational 
conventions and some properties of Finite Laplace Transforms, which are needed 
in Section 4. Section 2 develops some controllability properties for second-order 
conservative control systems . We also show how a specific projected distributed 
parameter control system with distributed controls on the boundary can be 
reduced to a lumped conservative system, and that the number of controls is 
determined by the largest multiplicity of any repeated eigenvalues in the cor­
responding homogeneous system. Section 3 contains three examples of control 
systems which are amenable to the treatment in Section 2. The contents of 
Section 4 have been alluded to above. Section 5 is a brief discussion of some 
aspects of vibrational control systems governed by second- order partial or or­
dinary differential equations. 

1. Preliminaries 

1. N will denote the set of positive integers. 
2. R+ will denote the set of nonnegative real numbers, Rn the set of real 

n-vectors, en the set of complex n-vectors and C the complex numbers. 
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3. The inner product on en is given by(-,·). 
4. (a) M(n, m) will denote the set of real matrices with n rows and m 

columns. 

(b) In will denote the identity matrix in M(n, n). 

(c) diag(>qlk,, ... , Atht] will denote a diagonal matrix whose first k1 

diagonal elements are .A 1 , whose second k2 diagonal elements are .A2 , 

etc. · 

(d) If A is an n x n matrix, det A will denote its determinant and r( A) 
its spectral radius. 

(e) If B is an m x n matrix, B* will denote its conjugate transpose. If b 
and c are n-vectors we may sometimes denote the inner product by 
(b, c)= b*c. 

(f) If BE M(n, m) we denote 

l 

a partition of B where Bj E M(kj,m) and Lki = n. 
j=l 

5. (a) n will denote an open, bounded set in Rn and r its boundary. We 
assume n is a Green-type region. That is if v and w are defined 
on n u r and have second partial derivatives on n and first partial 
derivatives on r then 

l [v(x)t!..w(x)- w(x)t!..v(x)]dx = 

l[v(cr) ~:(er)- w(cr) ~~ (cr)]dcr, 

where dcr denotes the Lebesgue surface measure on r, dx the Lebesgue 
measure on n and ~~ is the outward normal derivative on r. 

(b) The sets of real L2-integrable functions on D and on f form Hilbert 
spaces. We respectively denote their inner products by 

(if;, 1/; ) = l if;(x)lj;(x)dx 

and 

(v, q) = l v(cr)q(cr)dcr. 

(Notice the same symbol for inner product is used for these spaces as 
for en. However this should cause no difficulty in the sequel, since 
the context will dictate which space is being considered). 
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6. (a) Let f: f2 U f x R+ ---+ R. Then 

](x, 5.) = 100 

e-At f(x, t) dt, X En u r, (1.1) 

provided there exists Ao in R such that (1.1) converges absolutely for 
Re A > Ao. The inverse Laplace transform of ](x, .A) is 

f(x, t) = £- 1(j(x, .A))(t). (1.2) 

(b) If 0 < T < oo then the Finite Laplace Transform (F. L. T.) of f ( x, t), 
X E n u r' t E R+' is defined by 

]T(x, .A)= {Te-At f(x, t) dt. 
· la 

(1.3) 

In the sequel we shall sometimes omit the subscript T on the left 
hand side of (1.3) if we believe the meaning is obvious. 

The following theorem may be found in Doetsch (1956). 

THEOREM 1.1 The F.L. T . JT(x, .A) is for fixed X E nu r an entire analytic 
function of .A and is L2-integrable in A over the imaginary axis. 

2. Controllability considerations 

The following is a variant of the Kalman controllability condition for linear 
autonomous control systems. The proof is omitted since it is an immediate 
consequence of the original version. 

LEMMA 2.1 Let A E M(n, n) and BE M(n, m), then the system 

x = Ax + Bu (2.1) 

is controllable if and only if for any polynomial function 

r 

f(.A) = I>jAj (2.2) 
j=O 

the condition 

f(A)B = 0 implies f(A) = 0 (2.3) 

where f(A) is the matrix polynomial associated with f(.A). 

The next lemma may be found in Zabczyk (1991), Zadanie 1.8, p. 25. 
However since no reference to its proof is given we supply one. 
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LEMMA 2.2 Let A E M(n, n) and B E M(n, m). Then the system 

x = Ax+Bu 

is controllable if and only if the system 

i: = Az + Bu 

is controllable. 

PROOF. System (2.4) has the first order representation 

Any polynomial g(>.) may be expressed in the form 

g(>.) = g1(>.2) + >.g2(>.2), 

625 

(2.4) 

(2.5) 

(2.7) 

where g1 and g2 are polynomials. A simple induction argument then shows that 
g(A), where 

A. = ( ~~ ~ ) l (2.8) 

has the structure 

then, 

g(A)B = ( g2(A)B ) . 
g1(A)B 

(2.9) 

(2 .10) 

(i) Thus, suppose (2.4) is controllable, but (2.5) is not . Then we can find an 
even polynomial 

g(>.) = g1(>.2) 
such that 

g(A) f. 0, g(A)B = 0 (2.11) 
which by (2.9) and (2.11) implies g(A) f. 0, but g(A)B = 0, a contradic­
tion. 

(ii) Assume (2 .5) is controllable, but (2.4) is not. Then there exists polyno­
mials g, g1 and g2 such that 

g(>.) = g1(>.2) + >.g2(>.2) 
and . 

g(A.) f. o, but.g(A)B = o 
This implies by (2.11) that either g1(A) f. 0 or g2(A) f. 0 and g1(A)B = 
g2 (A)B = 0 which contradicts the controllability of (2.5) . 
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We consider a control system of the form (2.4), where 

A 

B 
(2.12) 

AssUMPTION 2.3 We assume that matrices A and B in (2.12} have the follow­
ing properties 

(i) Aj =f. Ak if j =f. k and Aj =f. 0 for all j 
(ii) Each Bj can be partitioned as follows 

Bj = [Bjl, Bj2], 
where Bjl E M(kj, kj) and det(Bjt) =f. 0. 

THEOREM 2.4 Let Assumption 2.3 be satisfied, then the system (2.4) is con­
trollable. 

PROOF. By Lemma 2.2 we only need to prove the system (2 .5) is controllable . 
Thus assume (2.5) is not controllable. Then there exists a polynomial f(J..) such 
that f( -J..J) =f. 0 for at least one Aj and such that 

This implies det(Bj 1 ) = 0 which contradicts (ii) in Assumption 2.3. 

We now consider an infinite dimensional control system of the type 

(2.13) 

where J..j > 0 and the functions qi, qj+l, . .. , qi+r are linearly dependent on r if 
\2_\2- _\2 
"'j - "'j+l - · · · - "'j+r· 

REMARK 2.5 Systems of the type (2.13} arise from many standard boundary 
value problems in elastic control involving vibrating structures (see e.g. Lions, 
1988). The original system is described by partial differential equations. The 
form (2.13} is arrived at by considering Fourier expansions in appropriate So­
bolev spaces, where solutions of (2.13) are considered only in some weak sense. 
Specific examples are supplied in Section 3. In this section we are only concerned 
with a finite dimensional Galerkin approximation of (2.13 ) . Thus the underlying 
Sobolev space is irrelevant and need not be explicitly specified. 
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We consider only the first n equations in (2.13}. This reduces the system to 
one of the form 

x(t) = Ax(t) = [ B(cr)Jl(cr , t)dcr, (2.14) 

where A satisfies (i) in Assumption 2.3 and 

( 

q1(cr) ) . 
B(u) = 

qn(cr) · 

(2.15) 

Unfortunately the controls in (2.14} are distributed and hence lie in an infinite 
dimensional space, unless of course r consists of discrete points in which case 
the measure dcr in (2.14} is atomic. This last condition occurs in elastic sys­
tems such as one- dimensional strings or Euler-Bernoulli beams. In this case 
the system (2.14} can easily be shown to satisfy Assumption 2. 3 and hence by 
Theorem 2.4 is controllable. We wish to consider the more complex situation 
which is covered by the following assumption. 

AssUMPTION 2.5 (i) The measure, dcr, in (2.14} is nonatomic and if Aj = 
>.H 1 = ... >.i +r in A then qi , . .. , qi+r are linearly independent on r . 

(ii} A in (2.15} has r distinct eigenvalues - >.i, ... , ->.] with respective indices 
of multiplicity k1, .. . , k,. and k1 2: kj for j = 2, . .. , r . 

THEOREM 2.6 Let Assumption 2.5 be satisfied. There exist constants {ajt}, 
1 ~ j ~ k1, 1 ~ f.~ n, such that the system (2.14} is controllable for controls 
of the form 

k 1 n 

Jl(u, t) = L 2::>j-lflj(t)qt(u), (2.16) 
j = ll=l 

Thus (2.14}, with controls of the type {2.16} reduces to a system of the form 
(2.4} which satisfies Assumption 2.3. 

PROOF. We proceed in two steps. 
(i) ->.i has multiplicity k1 and thus q1 , . . . qk" are linearly independent on 

r. Consequently we can find functions Vl) ... ) Vk, on r of the form 
k, 

vj(u) = L Vkjqk(u), 1 ~ j :S k1, (2.17) 
k=l 

such that 

(vj,qk) = l Vj(u)qk(u)dcr = Ojk (the Kronecker delta). (2.18) 

We repeat this procedure for each repeated eigenvalue. That is, we can find 
{ Vj}, k1 + 1 :S j :S k1 + k2, which are linear combinations of qj, k1 + 1 :S 
j ~ k1 + k2 such that 

{vj,qk) = bjk,kl + 1 ~ j,k :S k1 + k2, (2.19) 
etc . 
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(ii) We choose nonzero real numbers El, ... , Er as follows. 
We consider controls J-L(u, t) of the form 

k, 

J-L(u,t) = ElLJ-Li(t}vj(u)+ ... + 
j=l 
kr-1 +kr 

Er L /-Lj -kr_ 1(t)vj(u) . 
j=kr-1+1 

(2 .20) 

Substituting (2.20) into (2.13) we obtain a control system of the form (2.4) 

whioh ~·:r ::) )n A,.umption 2.3, whm (

2

.

21

) 

and each Bj, 1 ~ j ~ r, has the form 

B2 = [c2h 1 + EB21 + . .. + Erihr, Bl2] . (
2

.
22

) 

r 

B1 = E1 h 1 + E2B12, · · · + ErBlr j 
~r = [crhr +cd3rl + ... +Er-1Br,r-l ,Br2] 

We now ch_oose { Ej}, 1 ~ j ~ r, such that the matrices in (2.22) satisfy 
(ii) in Assumption 2.3. That is 

[ 

det[c1h, + ... + ErBlr] # 0 l 
~et[crhr + .. · Er-d~r,r-1] -:f 0 . 

(2.23) 

This completes the proof of the theorem. 

Theorem 2.6 has a tedious combinatorial statement and proof. In the exam­
ple given below we shall present a specific model to illustrate its statement and 
proof. 

ExAMPLE 2.7 Consider the system 

x1 + .Aix1 = 1r ql(u)J-L(u, t)du 

x2 + .Afx2 + 1r q2(u)J-L(u, t)du 

X3 + .A~x3 + 1r q3(u)J-L(u, t)du 

X4 + .A~x4 + 1r q4(u)J-L(u, t)du 

(2.24) 

where .Ai -:f .A~ and the pairs (q1, q2) and (q3, q4) are linearly independent over 
r. We wish to constru ct functions v1, v2 which are linear combinations of q1 
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and q2 , and v3, v4 which are linear combinations of q3 and q4 such that 

(v1,q1) = (v2,q2) = (v3,q3) = (v4,q4) = 1 

(v1,q2) = (v2,q1) = (v3,q4) = (v4,q3) = 0 

For example v1 has the form 

(q2,q2)ql- (ql,q2)q2 
V1 = 

(ql,ql)(q2,q2)- (ql,q2) 2 

629 

Similar expressions hold for v2, V3 and v4 . We then look for E1 and E2 such that 

Jl-(a, t) = J11(t)[E1v1(a) + E2v3(a)] + 112(t)[ttv2(a) + E2v4(a)] 

leads to a system of the type (2.4) satisfying Assumption 2.3. This results in a 
system (2.4) where B has the form 

E2(v3,q2) , E1+E2(v4,q2) 

E2+E1(qs,v1) , E2(v2,q3) 

Clearly one may choose E1 and E2 to satisfy Assumption 2.3. 

3. Examples of projections 

EXAMPLE 3.1 Let p : n-+ R+ be continuous. We consider 

Wtt = D.w- Pw, X E n, t > 0 

w(x , 0) = <P(x), Wt(X, 0) = 7/J(x), X En 

8w ov (a, t) = J1(a , t) , a E f, t > 0. 

(3.1) 

(3.2) 

(3 .3) 

The function J1( ·, ·) in (3.3) is the control and is assumed to be Lap/ace 
transformable with respect tot. The functions <P and '1jJ in (3.2) lie, respectively, 
in HJ(O) and L2 (0). 

The Lap/ace transform of (3.1)-(3.3) transforms the system into 

,\2w(x, ,\) = D.w(x, -\)- P(x)w(x, ,\) + ,\<fi(x) + 7/J(x), (3.4) 

~~ (X ) ,\) = M (1) ,\) . (3 .5) 

Let { qi} be the orthonormal sequence of functions defined on nU r satisfying 

the conditions 

(3.6) 
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aqi (er)= 0, erE r av 

(qj ,Qk) = L Qj(x)qk(x)dx = Djk (the Kronecker delta) 

R . DATKO 

(3.7) 

(3.8) 

Notice, that since P( x) > 0 on 0 , >.J > 0 for all j. Using functions { Qj} defined 
by (3.6} - (3.8) we expand w(x, >.) , cp(x) and '1/;(x) in the Fourier series 

I 
W(x,A) = ~ii;(A)q;(x), 

'1/;(x) L '1/;jqj(x) 
j=l 

00 

(3.9) 

cp(x) = L c/>jQj (x ), 
j=l 

where the { ai ( >.)} are to be determined. Using (3. 9) and Green's Theorem we 
obtain relationships for the { aj} in the form 

f [vj(x)~w(x, >.)- w(x, >.)~vj(x)]dx (3.10) 
ln · 

= L vi(x)[>. 2 w(x, >.)- >.cp(x)- '1/;(x) + >.Jw(x, >.)]dx 

= >. 2 iij(>.)- >.cpj- '1/;j + >.Jiij(>.) = j Qj(cr)fl,(cr, >.)do-. 

That is, 

If 

(3.12) 

then (3.11) is equivalent to the infinite set of second-order ordinary differential 
equations 

(3.13) 

z.e. a system of the form (2.13). 

EXAMPLE 3.2 This is a multidimensional Euler-Bernoulli beam. Let 0 C Rn, 
n 2: 2, and consider the system 

Wtt + ~2w = 0, x E 0, t > 0, (3 .14) 
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w(x, 0) = cp(x), Wt(X, 0) = 1/J(x), X En, (3.15) 

w(O, t) = 0, 
ow 
ov(O",t)=Jl.(O",t), O"Ef, t>O. (3.16) 

The functions cp and 1/J in {3.15} are respectively assumed to lie in L 2 (0) and 
H- 2(0). The Laplace transform of (3.14} leads to the equation 

-A2 w(x, >.) + Acp(x) + 1/J(x) = 6. 2w(x, >.), x E 0 . (3.17) 

We expand w( ·, >.), cp and' 1/J in terms of the orthonormal sequence { qi} defined 
by 

(3.18) 

oq· 
qj(O') = a: (0') = o, v En (3 .19) 

(qj, qk) = l qj(O')qk(O')dO' = bjk, (3.20) 

and obtain (3.9} . We then apply Green's Formula to the integrals 

and 

and add the result to obtain the following expressions for the { aj} in (3. 9) 

The equations (3.21} are equivalent to the ordinary differential equations 

which again reduce to the type (2.13}. 

The next example is an explicit boundary control problem for the wave equa­
tion on R 2 . In this example there are an infinite number of multiple eigenvalues. 
The purpose of this example is to show that the elaborate construction used in 
proving Theorem 2.4 can in practice often be bypassed. 
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EXAMPLE 3.3 We consider the two-dimensional wave equation 

~tt(x, y, t) = Wxx(x, y, t) + Wyy(x, y, t), 0 < x < 7f, 0 < y < 1r, t > 0, (3.23) 

w(x, y, 0) = <f;(x, y), Wt(x, y, 0) = 1/J(x, y) 0 < x < 1r, 0 < y < 1r, (3.24) 

[ 
w(x,O,t) = w(O,y,t) = 0, ] 
wx(1r,y,t) = Jl.I(y,t),wy(x,1f,t)=J1.2(x,t) · 

(3.25) 

System (3.23}-(3.24} is completely controllable in the context of elastic con­
trol theory (see e.g. Lions, 1988 }. Applying the methods of the previous two ex­
amples we obtain the orthonormal sequence of functions defined on [0, 1r] X [0, 1r] 
by 

[ 
qkn(x,y)=~[sin(k+~)x][sin(n+~)y]l 
kEN, yE N. 

(3.26) 

Using (3. 26} as an orthonrYrmal set of vectors we easily reduce the system (3. 23 )­
(3. 25} to the infinite system of second-order ordinary differential equations 

Xjn(t) + [( ~ + j)2 + ( ~ + k )2]Xjn(t) 

= r qjn(1f,y,i)J1-I(1f,y,t)dy+ 
}a 1 qjn(x, 1r, i)Jl-2(x, 1r, t)dx, j EN, nE N. 

(3.27) 

Notice that the controls Ji.I and Jl-2 in (3. 27} are arbitrary functions defined on 
two edges of the boundary. We shall now specialize them to 

The system (3. 27} with the controls (3. 28) reduces to the lumped system 

r 

Xjn(t) + [(~ + j)2 + (~ + n)
2
]Xjn(t) ] 

= ~[(-l)1 v1(t) + (-ltv~(t)] · 
7f l+n .!.+J 2 . 2 . 

Notice that if j -::j= n the repeated eigenvalues 

( ~ + j) 2 + ( ~ + n) 2 = AJ n = >.;j 

lead to the pairs of equations 

( ~j~ ) = ->.]n ( Xj~ ) + ~ ( 
XnJ XnJ 7f 

(-l)i 
~+, 2 n 

(-lt 
~+"' 2 J 

(3.28) 

(3.29) 

(3.30) 

(3.31) 
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which are controllable since the control matrix has a nonzero determinant . Thus 
the projections of {3.27) with controls of the type {3.28) lead to controllable 
systems. 

4. Control and stabilization considerations 

Let A E M(n, n) and BE M(n , m) satisfy (2 .12) and assume 

x(t) = Ax(t) + B!-l(t) 

is controllable. 

THEOREM 4.1 If 

Jl = -B*x, 

then the system 

x(t) = Ax(t) - BB*x(t) 

is uniformly exponentially stable . 

PROOF . Each scalar component of (4.1) is of the form 

m 

Xj +>.] xi = L bjk/-lk· 
k=l 

Thus, because of ( 4.2) we can write each component of ( 4.3) in the form 

m n 

Xj +>.]xi =- L(bjk)
2
xj + L ajkXk 

k=l k'f'cj=l 

( 4.1) 

(4.2) 

(4 .3) 

( 4.4) 

(4.5) 

If ( 4.3) is not uniformly exponentially stable there exists Xo E en, Xo =f. 0, 
and w =f. 0 such that 

x(t) = xoeiwt 

is a solution of ( 4.3). This implies 

( w2 In - A)xo = -iwBB* xo 

But then 

((w2 In- A)xo, xo) = -iw(B*xo , Bxo) 

which implies that 

B*xo = 0. 

(4.6) 

(4.7) 
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Thus w 2 = .>.] for some j and x 0 is an eigenvector of the matrix A, which implies 
that all its components but the jlh must equal zero. But this in turn implies, 
when ( 4.6) is substituted into ( 4.5), that 

m 

~)bjk)2 = 0. 
k=l 

Hence the system cannot be controllable, which is a contradiction. 

We next look at some controllability properties for ( 4.1). Suppose 

(4.8) 

is a control which drives an initial value ( x(O), x(O)) of ( 4.1) to the origin in a 
finite time, T. Let x and fJ. respectively denote the finite Laplace transforms 
of the solution x(t) and the control p.(t). Because these are entire analytic 
functions a simple calculation shows that the components of these functions 
must satisfy the equations 

iAjXj(O) + Xj(O) + tbjkfJ.k(i>.j) = 0 I 
k=l 

m . 

- iAjXj(O) + Xj(O) + L bjkfJ.k( -i>.j) = 0 
k=l 

(4.9) 

Solving (4.9) for Xj(O) and Xj(O) we obtain 

Xj(O) = - 2·~· tbjk(fJ.k(i>.j) -fJ.k(-i>.j)) 
' J k=l 

xj(O) = -~ t bik(fJ.k(i>.j) + JJ.k( - i>.j )) 
( 4.10) 

k=l 

But the right hand sides of ( 4.10) can be rewritten in the form 

(4.11) 

Equations ( 4.11) are necessary and sufficient for the control of ( 4.1) to the origin 
in timeT when the initial conditions are (x(O), x(O)). 

Suppose we are not interested in exact control to the origin but only approxi­
mate or c-control, i.e . to an c-neighborhood of the origin . Moreover suppose the 
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time of control is less important than some uniform bound on the controllers. 
We shall indicate how to find explicit controls which perform these tasks. To 
illustrate we assume the system ( 4.1) is rank one, i.e. 

We also assume the control is of the form 

1 n 

J.I(i) = T L)ai cosAji + ,Bj sin Ajy]. 
j=l 

Substituting ( 4.13) into ( 4.11) we obtain the equations 

( 4.12) 

( 4.13) 

(4.14) 

For T sufficiently large one can solve ( 4.14) explicitly for { aj} and {,Bj} since 
in the first integral in (4.14) the term 

----+ ,Bj bj as T ----+ =] 
2.Aj 

and in the second integral in (4.14) the term 

----+ -ajbj as T----+ =] 
2 ' 

while the remaining terms in both equations tend to zero as T ----+ oo. 
Thus forT sufficiently large the solutions of (4.14) are asymptotic to 

,B
. _ 2-Ajxj(O) 

1 - , j= 1, ... ,n, 
bj 

(4.15) 

(4.16) 

( 4.17) 

which is (-controllability. Moreover, since ( 4.17) does not depend on T, J.I(i) in 
(4.13) has a bound of the form 

1 
IJ.I(i)l:::; TM, (4.18) 
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where M is independent ofT. The L2 bound is 
1 

llflll = (1T lfl(t)l 2dt) 
2 

~ ~ · (4.19) 

We now consider the robustness of the stabilized systems ( 4.3) with respect 
to time delays in the stabilizer, i.e. in place of (4 .2) we assume 

- B*x(t - h), h>O. 

The system ( 4.1) then becomes 

x(t) = Ax(t) - BB*x(t- h), h > o. (4.20) 

Since ( 4.20) is uniformly exponentially stable for h = 0, the question arises : for 
what values of h > 0 does ( 4.20) remain uniformly exponentially stable? The 
answer to this is almost trivial. This is because simple estimates are available 
to determine the range of h for which stability holds. It is well known that there 
exists a smallest h0 > 0 for which ( 4.20) has a non trivial periodic solution of 
the form x(t) = x0e-iwt, w-real, w #- 0. This leads to the eigenequation 

[-w 2 I - A- iwe- iwho BB*]xo = 0 (4 21) 

Since A and BB* are symmetric this implies that iwe- iwho is real. Hence 

Thus 
7r 

ho2 2jwj' 

On the other hand equation (4.21) implies that 

r [(w(w 2 I+ A)- 1 BB*] 2 1 

(r(A) in the spectral radius of A) 

Since 

r[w(w* I+ A)- 1 BB1]-+ 0 as jwj-+ oo 

there exists w 0 > 0 such that 

r [w(w 2 I+ A)- 1 BB1
] < 1 

for all jwj > wo . Thus if 

hE [o, 2:J 

( 4.22) 

( 4.23) 

(4.24) 

(4.25) 

(4.26) 

( 4.27) 

the system ( 4.20) is uniformly exponentially stable, which is a stability margin. 
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REMARK 4.2 Since A is (4.1) is a diagonal matrix and 

where I · I denotes any convenient matrix norm, an estimate for 
2
: is easy to 

obtain. 

5. Discussion 

REMARK 5.1 The projection scheme we have presented for infinite dimensional 
distributed parameter systems of the type (2.13) is one of many possible choices. 
These are traditionally termed Reduced-Order-Models (ROM). Other choices are 
Finite Element Methods (FEM) which are not necessarily Galerkin methods. 
However, whatever the method, the ordinary differential equation format for the 
control system most often has the structure (2. 6) and more specifically satisfies 
Assumption 2.3 (see e.g. Balas, 1982 or MacMartin, Hall, 1991). 

Controllability is sometimes determined by tests on the modal data (Balas, 
1982), but the result presented in Zabczyk ( 1991) is in our opinion more efficient 
and applies to more general systems of the same type. 

However the purpose of this paper was not to present another ROM method, 
but to show how certain distributed parameter control systems can be reduced in 
a direct manner to manageable computational systems. 

REMARK 5.2 As mentioned in the Introduction elastic models such as those 
represented by (2.13) or Examples 3.1, 3.2 or 3.3 have serious flaws when con­
sidered in toto. Moreover they are at best approximations to actual physical 
phenomena. Thus it seems to us that no merit, except mathematical complex­
ity, is attached to studying the usual controllability and stabilization properties 
for these systems since they offer no particular insights into practical design. In­
deed in the case of stabilization the results are a "reductio ad absurdum" when 
small time delays are permitted in the controls (see e.g. Botsema, de Vries, 
1988; Datko, 1991 or Datko, 1993) - a reasonable engineering assumption. 

On the other hand ROM models have practical advantages without the lia­
bilities of distributed parameter models of the type given by (2.13 ). We mention 
two: (i) There is a computational utilizable theory of c-control or complete con­
trol from uniformly bounded control sets; (ii) Feedback stabilization is simple and 
is robust with respect to uncertainties in the matrices A and B in {2.4), and this 
stabilization is also robust with respect to small time delays in the stabilizer. In 
fact, explicit estimates can be obtained for the extent of this robustness. 

REMARK 5.3 Vibrating elastic system possess some light damping. Often the 
purpose of control is to enhance this damping. Thus in place of the system (2.4), 
where , \ is negative definite, we might consider 

x(t) = Ax(t) + cDx(t) + Bp,(t), (5.1) 
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where D is a semi-negative definite matrix and f. > 0. It can easily be shown 
that Theorem 2.4 holds for {5.1) when f. is sufficiently small. This follows from 
the fact that finite dimensional controllability is robust with respect to matrix 
representation. In practice the damping term in (5.1) is slight {see e.g. Balas, 
Chu, Doyle, 1989 ). It might be viewed as the projection of an internally damped 
distributed model. For instance, in Example 3. 3 we could replace Equation {3.23) 
by 

Wtt = t!.w + ct!.Wt, 0 <X < 7r, 0 < y < 7r 1 

and Equation {3.24) by 

[ 
w(x, y, 0) = <P(x, ~), Wt(x, Yo, 0) = 1/;(x, y) l· 
D..w(x,y,O) = r(x,y) 

(3.23 ') 

(3 .24') 

The resulting projected systems would then assume the form {5.1) and conform 
to a lightly damped model. But in the context of distributed control (3.23)', 
(3.24)', (3.25) is a different animal than (3.23), (3.24), (3 .25). For one thing it 
is only f.-controllable, since the corresponding homogeneous system generates an 
analytic semigroup {see e.g. Triggiani, 1975 ). However it also lacks robustness 
with respect to small time delays in the boundary controls {3.25) (see e.g. Datko, 
1991 ). This is yet another indication that the distributed theory of boundary 
control for elastic systems requires a serious review. 
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