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This article gives a survey of the recent mathematical develop­
ments in the stuay of the Penrose-Fife model for phase transitions. 
It summarizes the analytical aspects of the resulting evolution equa­
tions1 optimal control problems as well as the numerical treatment 
of th1s model. 

1. Physical background and derivation of the model 

. When studying the kinetics of phase transitions one usually ends up analyzing a 
free boundary problem. In recent years an alternate approach has been pursued 
by several authors. In this approach a phase-function (or order parameter) 
if; is introduced, which is assumed to describe the state of the system at all 
times . The free phase boundary is approximately given by level curves of this 
phase function. Often there is a natural choice for such an order parameter, 
for example the magnetization per lattice site in a ferromagnet, but the models 
can be extended to situations where no such choice exists. Several authors have 
derived state equations for such systems . The most studied case is the system of 
equations derived by Caginalp (1986), but recently there were other approaches 
by Alt and Pawlow (1992), Kenmochi and Niezg6dka (1992) and many others. 
Our concern is the approach of Penrose and Fife (1990). In this article we will 
give a survey of the mathematical developments in the study of the evolution 
equations. In particular we will outline existence and uniqueness results, results 
concerning related optimal control problems and a numerical method suitable 
for problems of this kind . These results have been obtained quite recently and 
can be found in a number of papers (cf. Horn, Sprekels and Zheng, 1993, 
Sprekels and Zheng, 1993, Zheng, 1992). We will also include some extensions 
and generalizations of the known results . 

In this first section we will briefly describe the approach of Penrose and 
Fife, and give the main steps of the derivation of the evolution equations. For 
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a more thorough description of the model we refer the reader to Penrose and 
Fife (1990). 

We will assume that the system occupies a bounded domain D C R3 . Fur­
thermore, we will assume that the order parameter </J is a non-conserved quan­
tity, although the derivation can be carried out for conserved order parameters 
as well (cf. Penrose and Fife (1990)). The authors of Penrose and Fife (1990) 
assumed that the free energy density f and the entropy density s depend on 
</J, but still show the same qualitative behaviour with respect to the absolute 
temperature T and the energy density e as in the absence of an order parame­
ter, i. e. the..-.e fuctions are concave with respect to e and T. Furthermore, it is 
assumed that f and s are connected via the Legendre transform 

f(T, </J) inf[e- Ts(e, </J)] 
e 

s(e, </J) inf[ .:._ - f(T, <P) ]. 
T T T 

The total free energy of the system is then given by the functional 

F(T, </J) In (t(T, </J(x)) + ~K I'V</J(x)l
2

) dx 

inf (E(e) - TS(e, <P )) . 
e 

Using this equation one defines the total energy E and the entropy functional 
S. The latter is given by 

S(e, </J) =In (s(e(x), </J(x))- 2~ I'V</J(x)l 2
) dx. 

Observe that the temperature Twill generally also depend on the space variable 
x. To obtain the kinetic behaviour of this system one assumes that the increase 
of the entropy is maximal along solution paths. It is this entropy approach 
which distinguishes the model described here from others. The equations for 
the kinetics of the system are obtained by taking the functional derivatives of S 

a<jJ 
at 
ae 
at 

T."T6S(e, </J) 
1\. 6</J ' 

d. (M . d (6S(e, </J))) 
- IV gra De . 

The second of these equations is a well-known expression from thermodynamics. 
We continue by illuminating this derivation of the phase-field equations using a 
specific example. We use the energy density 

e(T, <P) =coT+ w(</J), 

where 

w(<P) = -a</J2 + b</J + c, 
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and the first term describes the kinetic energy of the system. From this we 
obtain the free energy density 

f(T, <P) TJ,l/T (cor+ w(cp)) d(ljr) 
l/T0 

TJ,l/T cord(l/r) + w(cp)- Tso(ifJ). 
l/To 

Using the Legendre transform we get 

s(e, <P) =-eo logT + so(<P) + c1 . 

To continue we have to describe the function s0 (cp). In this article we will limit 
ourselves to two specific choices of this function. In the first case we assume 
that s0 is a smooth (C3 (R)) double well potential with 

s~(<P) 2: - k, \:fcp ER, 

for a suitable constant k 2: 0. In the second case we use 

so(<P) = - kcplogcp- k(l- ifJ)log(l- ifJ), 

which is the configurational entropy per lattice site in the mean-field theory for 
Ising ferromagnets, when cp is given as the fraction of lattice sites at which the 
spins are pointing up, i.e. the magnetization per lattice site is proportional to 
2cp- 1. 

Using these specific choices, and following the general outline we arrive at 
the following system of non-linear parabolic equations 

(1) 

(2) 

where g represents an (optional) heat source. These equations are complemented 
with initial and boundary conditions. The natural boundary conditions for cp 
are Neumann boundary conditions. In this article we will use the following 
boundary conditions for T 

fJT' 
-
8 

= -a(T- Tr)l80 . 
V &0 

(3) 

One should note that these boundary conditions are not the natural ones. They 
were obtained by linearizing the natural boundary conditions about an average 
temperature T0 . The natural boundary conditions have not been treated so far 
and are the subject of a forthcoming article. 
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For the mathematical treatment of these equations it is often more conveni­
ant to use the inverse temperature 

1 
u= T' 

which satisfies the following system of equations 

Kti:J.<P - s~(<P)- w'(<P)u 

M1!:J.u + w'(<P)<Pt- g, 

with the boundary conditions for u 

(4) 

(5) 

(6) 

In the following section we will outline the existence and uniqueness results 
for these equations . These results are found in Zheng (1992) for the one-dimen­
sional case. In three space dimensions the results are given in Sprekels and 
Zheng (1993) for smooth functions so and in Horn, Sprekels and Zheng (1993) 
for the logarithmic potential. A non-smooth potential was also treated in Lau­
ren<;ot (1992) . We will follow the approach of Sprekels and Zheng (1993), but 
will allow for some generalizations. 

Section 3 will be devoted to an optimal control problem connected with these 
equations. In this section we will generally follow Sprekels and Zheng (1992). 
Finally, in section 4 we will describe a suitable numerical method for these 
equations, which is also described in Horn (1993), Horn and Sprekels (1994). 

2. Existence and uniqueness of solutions 

In this section we will state the main existence and uniqueness results and 
outline their proofs. We will assume, that r = 80. is sufficiently smooth to 
apply the results of elliptic and parabolic regularity theory. Furthermore, we 
make the following assumptions 

• The functions g and Tr are assumed to be smooth. 
• For the function so we assume: 

A so E C3 ( R) and there exists a constant C > 0 such that s~ ( <P) > -C 
for all <P E R. 
or 
B so ( <P) = <P log <P + ( 1 - <P) log( 1 - <P) . 

• w'(<P) = a</J +band b = 0. This assumption does not have any effect on 
the proof of the existence theorem except that it simplifies the notation. 

• To further simplify notations we assume that all constants in the equations 
are eg.ual to one. 

We can now state the main existence and uniqueness result. 
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PROPOSITION 1 Let p > 3 and suppose cPo E w; (rl) and To E W; (rl) satisfy 

compatibility conditions. Furthermore, suppose that To( X) ~ f3 > 0 for all X E n, 
and Tr is smooth on r x R+. Then there exists a unique global smooth solution 
to the equations (1}-(2) with the boundary conditions (3). 

REMARKS: 

• This result is slightly stronger than the results given in Horn, Sprekels 
and Zheng (1993), Sprekels and Zheng (1993), Zheng (1992). Namely, the 
statements there require </; 0 E H 4 (rl) and To E H 3 (r2) to satisfy stronger 
compatibility conditions. 

• A much stronger local existence result appeared in Theorem 17.3 of Am ann 
(1993) . The author allowed for more general non-linearities and potenials. 
A criterion for global existence is given in the same article. However, at 
this time we need the specific forms of the potentials in order to prove a 
global result. 

For the proof of Proposition 1 we first observe that we can apply Theorem 
17.3 of Amann (1993) to obtain a local existence and uniqueness result. The 
crucial step of the proof is to obtain uniform a priori estimates from above 
and below for <f; and T, i . e. we have to show that the solutions satisfy the 
criterion for global existence of Amann (1993). To do this it is more convenient 
to use the equations ( 4)-(5) for the inverse temperature u. The uniform a priori 
estimates are obtained in the same way as in Horn, Sprekels and Zheng (1993), 
Sprekels and Zheng (1993), Zheng (1992) . As in these articles one can get some 
initial estimates for u and <f; using standard techniques. In particular one gets 
that II<P(t)IIH<o)• II<Pt(t)11£2(0) and llu(t)IIH'(O) are all uniformly bounded. In 
the smooth case one also has a uniform bound for II.P(t)IIH'(O) · With these 
initial properties one can apply the following technical lemma to get a uniform 
estimate on llu(t)il£oo(o) · 

LEMMA 1 Let w be a positive smooth function which satisfies 

w~ = D.w + J, V(x, t) En X (0, t*), 
w 

with boundary conditions 

and f E L 00 (0, t*; L2 (rl)) . Furthermore , let w(x, 0) = wo(x) E L 00 (rl) and 
Tr ~ f3 > 0. Then there exists a constant C > 0 depending only on t*, 

IIJIIL""(O,t•;£2(0))' llwoiiL""(O) and {3, such that 

max llw(t)ll£oo(O) ~ C. 
O~t~t• 
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The proof of this Lemma is given in Horn, Sprekels and Zheng (1993) and 
generally follows a method already found in Alikakos (1979). Multiplying the 
equation for w by w>.n+l, where An is a sequence given by 

An = 2An-1 - 2, Ao = 6, 

one obtains consecutive estimates on 

llw(t)lbn(n) · 

Taking the limit as n --+ oo one gets the desired result. We remark here that a 
generalization of this Lemma can be found in Laurencot (1993). 

Using almost the same technique as in this Lemma one also obtains a uniform 
bound on T. In the case of the logarithmic potential one still has to obtain 
constants 0 < at• < bt• < 1 such that 

at• ~ if!(x,t) ~ bt•, 'v'(x,t) E !:2 x (O,t*) . (7) 

This was done in Horn, Sprekels and Zheng (1993) by obtaining consecutive 
bounds on the LP-norms of v1 = i and v2 = 1 ~4>. 

Having obtained these uniform bounds one can apply Theorem of Amann 
(1993) to finish the proof. 

3. A related optimal control problem 

The equations (1)-(2) yield an interesting optimal control problem. The object 
is to control the behaviour of if! and T using the source term g and the boundary 
term Tr as controls. The results of this section were obtained in Sprekels and 
Zheng (1992). The authors treated the specific case when s~ = ifl-ifl3 . However, 
their arguments can quite easily be extended to the case A. Furthermore, one 
can easily show that the solutions if! and T depend continuously on the controls 
g and Tr, as do the constants at• and bt• of (7) . Therefore one can conclude 
that for a compact admissible set of controls, there exist constants iit• and bt• 
such that 0 < at• ~ if! ~ bt• < 1 for all solutions if! corresponding to controls 
in the admissible set. But s~(ifl) is smooth on [a1.,b1.], and therefore the same 
arguments hold. Since all the arguments are straightforward we will omit the 
details. 

We will generally assume that (iflo, To) E H 4 (!J) x H 3 (!:2) satisfy the same 
compatibility conditions as in Sprekels and Zheng (1992,1993). To state the 
result we introduce the following spaces 

X1 = C([O, t*]; H 4 (!:2)) n C1 ([0, t*]; H 2(!:2)) n C2([0, t*]; L2(!J)), 

X2 = C([O, t*]; H 3 (!:2)) n C 1([0, t*]; H 1(!:2)) n H 2
•
4 (!:2t• ), 

V= H 2 (0,t*;L2 (!J))nH1(0,t*;H2(!:2)), 

W = H2 (0 , t *; H~(8!:2)) , 
J{ =V x {wE W: w(x,t) 2: f3 > O,on8!:2t•,w(x,O) = To( x ),on8!:2t•}. 
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The control problem described in this section is to minimize the cost functional 

J(cf;,T;g,Tr) = ~l ll t/;(t*)-J(t*)ll:2(n) + ~2 11 r-t !1 :2(n,.) (8) 
t• 

aa 2 a4 { 2 
+2 llgll£0(n,.) + 2 la 11Tr(t) 11 £2(on) dt , 

where cf; and T satisfy (1)-(2) and (g, Tr) E Uad a closed, convex and bounded 
subset of ]{. 

Let B c xl X x2 be defined as follows. 

B = ( C([O, t*]; H1(f2))nH1
•
2 (f2t• )) x (C([O, t* ]; L2(f2))nL2 (0, t*; H 1(r2))). 

In Sprekels and Zheng (1992) the authors showed for s0( cf;) = cf; - t/;3 that the 
map 

S: K -+ B, 

S: (g,Tr) ...... (cf;,T), 

is differentiable. It is easy to see that this result also holds for the more general 
situation considered here . 

One can now formulat.e the adjoint equations and the necessary conditions 
of optimality. The adjoint state variables p* and q* satisfy the following system 
of linear partial differential equations 

- p* (s~(t/;*) + ;. ) + cf;*q;, 

q;• • (r* t) T•2P + a2 - , 

together with the boundary and final conditions 

ap* 
an 

p*(x, t*) 

o, ~~ + q· CJ! -1) o, 

-a1 (q;*(x,t*) - J(x)), q*(x,t*) 

These equations admit a unique solution (p*, q*) such that 

(9) 

(10) 

0, on IT. (12) 

p*, q* E C([O, t*]; H 1(f2)) n £ 2(0, t*; H2(r2)) n H 1(0, t*; L2(f2)). (13) 

We conclude this section by stating the main result of Sprekels and Zheng (1992). 

PROPOSITION 2 Under the conditions described above the control problem (8) 
has at least one solution. Moreover, for any optimal ( t/;*, T*; g*, T[.) there exists 
an adjoint state (p*, q*) satisfying (9}-(13} and the variational inequality 

lt•l (aag* - q*) li dxdt + lt•lan ( a4Tr - ;:2) k dxdt 2: 0, 
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for all ( h, k) in the set 

I<+(g*, Tr) = {(h, k) E Vx W: 3..\ > 0 such that (g* + ..\h, Tr + ..\k) E Uad} 

REMARKS: 

• The potential of case B gives an implicit state constraint on the order 
parameter cp. 

• This is only one of many possible control problems which arise from the 
phase-field equations studied here. Other interesting problems include 
state constraints on the temperature T and shape optimization problems. 

4. A numerical method 

The object of this section is to describe a suitable numerical method for the 
equations (1)-(2). We will give a time discrete version of these equations and 
state the major results regarding this scheme. The numerical treatment was 
initiated for the one-dimensional case in Horn (1993). The mathematical treat­
ment for the one-dimensional case is complete, the higher dimensional analog is 
currently under preparation (cf. Horn and Sprekels, 1994). We start by giving 
the time-discrete equations . For a time step h we define 

h(x) = f(x, to+ kh), 

as a time discretization of a function f. Using this notation we introduce the 
following discrete version of ( 4)-(5) 

(14) 

(15) 

The boundary conditions for Uk+l become 

(16) 

REMARKS: 

• This scheme is somewhat different from the one introduced in Horn (1993). 
Namely, we use the difference quotient of so instead of the analytic deriva­
tives~. In Horn (1993) a very specific case s~(cp) = cp- cp3 was treated. 
For more general potentials the difference quotient yields more stability. 

• The system (14)-(16) constitutes a highly non-linear system of elliptic 
PDE. Existence and uniqueness of solutions to that system cannot be 
taken for granted, and has to be shown separately. However, this can be 
done by applying a standard contraction argument. 

For this scheme one proves the following stability and convergence result. 
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PROPOSITION 3 With the hypothesis as in Proposition 1 there exists an h0 > 0 
such that the system (14)-(16} has a unique solution 

(4>k+l> Uk+l) E H 2 (fl) X H 2 (fl), 

for all 0 < h :S ha and all integers 0 :S k :S [f]. Moreover, the sequence 
( 4>k+l, Uk+d is uniformly bounded in H 2 (fl) x H 2 (fl) and the sequence of discrete 

derivatives ( c/>k±~- </lk, uk±~-uk) is uniformly bounded in H 1 (fl) x L 2 (0.). 

REMARKS: 

• The uniform boundedness of the derivatives immediately yields an error 
estimate for the scheme. One can actually show that 

\\4>k- 4>(t)\\~1(0) + \\uk- u(t)\\~1(0) :S Ch 
for all t E [kh, (k + 1)h). Here (4>(t), u(t)) denotes a solution to the system 
(1)-(3). 

• To prove this proposition one basically carries out the same apriori esti­
mates for the discrete scheme as in the continuous system. This is rather 
technical and has been done for one space dimension in Horn (1993) and 
for two dimensions in Horn and Sprekels (1994). The result should also 
hold in three space dimensions, but has not been proven so far. 

In order to implement this scheme one solves the non-linear elliptic system 
by iterating a linearized system in each time step. To solve the resulting linear 
elliptic equations, one uses a standard solver for elliptic equations. We conclude 
this section by giving the results of some preliminary computations. More ac­
curate numerical simulations have yet to be done. In Figs. 1- 4 we show the 
results of a two-dimensional experiment. The constant K1 of (1) was chosen to 
be equal to 0.1. The function 

f(4>, u) = s~(4>) + w(cjJ)u =-log (
1 
~ 4>) + 24>- 3 +(50+ 604>) u, (17) 

was used in this experiment. A simple calculation reveals that for u = io one 
has 

1 1 
f(4>, 40) = -f(1 - 4>, 40), 

so both phases behave the "same way" at this temperature, i. e. one could call 
T = 40 the "melting point" in this simulation. We used a square domain 0.. 
As initial value for the temperature we used uo = 0.015, i. e. T0 = 66~. The 
experiment is therefore a "melting experiment". Figure 1 shows the graph of the 
function f( cf;, u 0 ). Figure ~ gives a contour plot of the initial phase distribution. 
To the left of the contours in Figure 2, we have 4>o = 0.9, to the right we have 
<Po = 0.1. The function 4> 0 is changing smoothly in the regions indicated by 
the contours, which constitutes the so called "mushy region" near the phase 
boundary. 
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Figure 1. Graph of the function f(<P, u 0 ) 
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Figure 2. Contour plot of the phase distribution at t = 0 
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Figure 3. Contour plot of the phase distribution at t = 200 
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Figure 4. Contour plot of the temperature distribution at t = 200 
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The elliptic equations (14)-(15) were solved using finite differences on a uniform 
201 x 201 grid with a mesh width of 0.01. The time step was 0.000001. The 
contour plot of the phase distribution <P is shown in Figure 3. One sees that the 
mushy region got wider and that the curvature of the contoures decreased. The 
contour plot of the temperature shown in Figure 4 gives some more information. 
One can see distinctive peaks resp. wells in areas where <P has maximal resp. 
minimal curvature. This behaviour is expected from a model, which in the limit 
as K 1 ~ oo is supposed to model the motion of a phase boundary by mean 
curvature. 

5. Concluding remarks 

We conclude this article by mentioning some more recent developments and 
some interesting problems connected with the model presented in this paper. 

• Even though the analysis of the evolution equations seems to be relatively 
advanced, most existence and uniqueness results cover only the simplest 
cases of the evolution equations. Aside from the remark on the natural 
boundary conditions (see section 1) we would like to point out a recent 
preprint by Ph. Laurenc;ot which treats weak solutions for a some what 
more complicated set up, Laurenc;ot (1993). 

• The analysis of the evolution equations for a conserved order parameter 
was not covered in this paper. In this case, the equation for the order pa­
rameter is a fourth order parabolic equation, similar to the Cahn-Hilliard 
equation. 

• Several interesting optimal control problems are open. These include state 
constraint optimal control as well as optimal shape design problems. 

• The numerical methods for the evolution equations are not very well stu­
died so far. The major problem is, that there is no good discrete equivalent 
of the powerful theorems of Amann (1993). 
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