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This paper concerns an optimal control problem for a parabolic
variational inequality with controls appearing in coefficients, right
hand sides and convex sets of states. l\foreover, the paper deals with
an optimal control problem of parabolic sinﬁular perturbations in
variational inequality. Existence of an optimal control is verified.

Introduction

This paper is concerned with an optimal control problem for parabolic varia-
tional inequalities, where the linear symmetri¢c operators as well as the convex
sets of possible states depend on the control parameter. Moreover, we shall deal
with singular perturbation of an optimal control problem for a parabolic vari-
ational inequality appearing in coefficients, right hand sides and convex sets
of states. We introduce an abstract framework for the theoretical study design
problem in the parabolic variational inequality context for singular perturbation
of an optimal control problem. We give the first properties of the solutions of the
distributed control problems governed by parabolic variational inequalities. The
existence theorem of this problem will be applied to the singular perturbed op-
timal control. Singular perturbations in variational inequalities were considered
by Huet (1960, 1973), Lions (1973), Greenlee (1969, 1970) and Eckhaus, Moet
(1966, 1978), while the respective optimal control problems were considered by
Lions (1973). The main concern is the existence of solutions with some weak
convergence theorems, but the above authors obtained the weak convergence
theorems for the singular perturbations of variational inequalities.
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1. Existence and uniqueness theorem for a parabolic variational
inequality

1.1. Basic assumptions

We describe some function spaces. More details can be found in the books by
Barbu (1978, 1984) and Brezis (1972, 1973). If E(Q) is a Banach space, then we
shall denote by L, (0, T, E(€2)) the space of all p-integrable F-valued functions on
[0, 7], and by C([0, T, E(2)) the usual Banach space of all continuous functions
from [0,7] to E(2). Further, C*([0,T], E(R)) denotes the space of all k-times
continuously differentiable functions (: [0,7] — E()). We shall denote by
W (0,T, V(Q)) the space {v € Ly(0,T, E(Q)); dv/dt € Ly(0,T, E(Q))..
d”“v/dt”‘ € Ly(0,T, E(Q))}, where the derivatives dv/dt, d*v/dt?,... of v are
taken in the sense of vectorial distributions on (0,7'). Equivalently,
v € Wy (0,7, E(Q)) means that v : [0,7] — E(Q) is absolutely continuous,
a.e. differentiable on (0,T) and

v(t) = v(0) + fu du(s)/ds for t € [0,T], dv/ds € L, (0, T, E()) (1.1)

The spaces L,(0,T,E(R2)), 1 < p < oo, are reflexive and the dual spaces
[Lp(0, T, E(R))]* can be identified with the space L,(0, T, E*(Q)), 1/p+1/¢ = 1.
The space L&(0,7,E*(2)) can be identified with the dual space
[L1(0, T, E(Q))]*, i.e. for every F € [L1(0,T, E(2))]* there exists a unique
function 8 € Lo (0, T, E*(2)) satisfying the relations:

1F ez, o,r, B = 18l Lo, 7,B4(02))
and

fﬂ £),v(t)) L, 0,7, B0t for every v € Ly(0, T, E(2))

On the other hand, if £(Q) is a Hilbert space with the inner product (.,.)g(q),
then Ly(0,7T, E(Q)) is a Hilbert space with the inner product

(U: z)L-g(ﬂ,T,E(ﬂ)) = fuT(”(t): z(t))E(ﬂ)dt v,z € LZ(G:T! E(‘Q))
Moreover, Wi*(0,T, E(Q2)) is a Hilbert space with the inner product

(v, 2)wy 0,7,B()) = (v, 2)La0,7,B(0)) + (dv/dt, dz/dt) L. (0,7, E(q))
+ (d?v/di?, dzz/dtz)Lg(niT'E(n)) coo(d™o/dt™, dmzfdtm)L;,(o,T,E(ﬂ})

Given a lower semicontinuous convex functional F: E(Q) — R = (—o0, +o0]
we shall denote by dF(v) € E*(Q) (the dual space of E(Q)) the set of all
subgradients of F' at v, i.e.

OF(v) = {v* € E*(Q): F(v) < F(2) + (v*,v — 2)p(q)  forall z € E(Q)}

If F is Gateaux differentiable at v, then dF(v) consists a single element, namely
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the gradient (grad F'(v)) of F' at v. The mapping OF : E(Q) — E*(Q) is
called the subdifferential of F'. We shall denote by D(F) = {v : F(v) < +o0}
the effective domain of F' and by D(9F) the domain of 0F; i.e., D(OF) =
={v e E(Q):0F(v) # 0}.

Let V() be a Hilbert space with an inner product (., ')V(ﬂ) and a norm
II-llv ¢ays [I-ll+(qy its dual space with the duality pairing (., .)y q) and the norm
[]] ve(q)- Moreover, L(V(R2),V*(Q)) is the space of all linear bounded opera-
tors from V() into V*(Q2) with the norm “'”L(V[n),'/'(ﬂ))' We suppose that
V(Q) C H(Q) where H(Q) is a Hilbert space, V(Q) is dense in H(Q). If we
identify H(Q) with its dual we have V(Q) C H(Q) C V*(£2) and the notation
(-, -)rr(a) to denote the scalar product in H(Q). As a consequence of the pre-
vious identifications, the scalar product in H(Q) of F € H(Q) and v € V(Q)
is the same as the scalar product of F and v in the duality between V() and
V*(2). And, we put

(Fivdyiay = (F,v)u@y  forany F € H(Q), for any v € V(Q) (1.2)

Let constants o, M, (0 < ae < M,) be given. We denote by Ey (q)(a«, M,) the
class of the linear operators A(t) : V() — V*(Q) (for any t € [0,T]) such that

Laulloll¥qy < (AW, v)y(q) < Mallolls g

for all w € V()
2. A()) € CY([0,T], L(V (), V*())) (M1)
3. (A()v, 2}y (q) = (A()2,v)y(q)

for all v,z € V(Q) and t € [0,T]

We consider the initial value problem

u(t) € K(Q2), (¢ traversing the interval [0, T]), such that
(du(t)/dt, v — u(t))yq) + (A@)u(t), v — u(t))y(q)
+®(v) — @(u(t) 2 (L(t),v — u(t))y(q) (1.3)
for all v € K(Q), for a.e. t € [0,
u(0) = ug € £(2) N D(®)
where K(Q) is a closed convex subset of V(2), du/dl is the strong derivative of
u;[0,T] — V*(2) and
A(t) € Evay(a, M), t€[0,T], L € Wi(0,T, H(R)),
{A(O)uo + Dy (o) + 9%(uo) — L(0)} N H(®) # 0, -
the functional v — ®(v) is convex, lower semi-continuous

for the weak topology of V(£), with values in (—oco, +00]
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(I(qy is the indicator function of some closed convex subset K(Q) of V(Q), i.e.
I;c(ﬂ](v) =0ifve fC(Q), Ix(n)('u) =+4ooifv ¢ K:(Q)

1.2. The approximation result for the solutions to (1.3)

Consider the approximating equations (a penalized parabolic initial value prob-
lem) corresponding to (1.3):

du(t)/dt + A(t)ue(t) + (Olxey) , (ue(t))
+ grad ®(u(t)) = L(t), e>0 (1.4)
ue(0) == up
We approximate
du(t)/dt + A(t)u(t) + Oy (u(t)) + 0@(u(t)) 3 L(t)  ae. t€[0,7] (1.5)
by replacing OIxq) by its Lipschitz-continuous Yoshida approximation
(af,cm))e, € > 0 where
(Iq@)e(®) = @)~ o = Pe@y®)|[yay  €>0, v € V(Q)
(0Ix(qy) (v)(the Fréchet derivative) = e~!(v — Px(q)(v))
where Py(q) is the orthogonal projection onto K(£2), monotone and Lipschitz

continuous. The projection operator is defined by: (Px(q) : V() — K£(92))

[|lv— Px(n)(”)uy(m - zglrci(?z) llo = 2llyqy, v € V()

and P(q) has the following properties arising directly from its definition (see
Barbu, 1984, Lions, 1969)

1° PKZ(R)(U) =v<vE K;(Q)

2° (Preay(v) — v, 2 — Pxa)(v))via) = 0
for all v € V(Q), z € K(Q) (1.6)

3° || Pr(ay(v) = Preqay(2) NV(n) < v =2llyqy
for all v,z € V()
On the other hand, the operator (81’((9))6 fulfils then the conditions
o (afpc(n))é(v) =0&ve K(Q)
2 ((51,((9))5(1!) — (31}5(9)) E(z), v — Z>V(ﬂ) >0
3 [ (0Tkq@) (v) — (9Ik(@) (2)]
for all v,z € V(Q)

(1.7)

Ve(£) S 26”‘U TR z”V(ﬂ)

This means, that (afx(g))e is monotone and Lipschitz continuous. Moreover, let




Optimal control in coefficients for parabolic variational inequalities 695

{®.} be a family of Fréchet differentiable convex functionals on V() satisfying
the following conditions:

hm fu @ (v(t))dt = fu ®(v(t))dt  for any v € Lo(0, T, V(Q))

There exists a real positive constant with

llerad @ (w(t))|ly+(q) < constant, t € [0,T7] for any w(t) € V()

 If ve — v, dve/dt — dv/dt (weakly) in Ly(0, T, V(2)) and (M3)
fo ¢(ve)dt < constant, then hmmfﬁJ e(ve)dt > fg ®(v)dt

llgrad @(v(?)) — grad ®c(2(1))lly«(q) < cellv(®) — 2()lly(q)

| for all v(2), 2(t) € V(RQ), cc > 0,1 €[0,T]

THEOREM 1 Let T > 0,¢ > 0. Then there exists a unique solution u, €
C'([0, T, V(X)) of the initialvalue problem (1.4) and the sequences {u.}, {du./dt}

are contained in a bounded subset of L,(0,T,V(Q)) N Lo (0, T, H(S2)).
Proor. The initial problem can be rewritten in the form

{d‘us(i)/ dt + Z.(t)ue(t) = L(?)

‘H-E(G) = Up

(1.8)

with
Z (1) : V(Q) = V*(Q)
Z. (i) = A(t) e (af;c(n)) P grad @,
Thus the operators Z.(t) are uniformly Lipschitz continuous and then due to

Gajewski, Groger, Zacharias (1974) the initial value problem (1.8) has a unique
solution which is also a unique solution of the problem (1.4).

Let us denote
Ze = U — Uy (1.9)
The function u, € C1([0,T], V(Q)) is a solution of the initial value problem
dz(t)/dt + A(t)ze(t) + (0Ix(a) (w0 + (1))

+ grad @ (up + 2z(t)) = L(t) — A(t)ug (1.10)
z(0)=0

For any function v in L4(0,T, V(€)) which satisfies dv/dt € L4(0,T, V*(Q)),
the equation below holds:

34{“”(‘5)1&{(9] = 2(dv(t)/dt, v(t)) y(q) (1.11)

(see Lions and Magenes, 1968 or Brezis, 1972)
This result will be used in the following step.
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After duality pairing in (1.10) we obtain

d({ze(1), (1)) may)/ At + 2(A()2e(1), 2(1)) v )
+2(grad @, (uo + (1)), 2e(t)) v ()
+2((0Ix(@) (w0 + 2e(1), 2e(8))y, (1.12)
= 2(L(t) = A(t)uo, z())v (o)

By (1.3) one has uo € K(R) and hence (8Ix(a)) (o) = 0. This means that

((Olc@) (w0 + 2()), 2(2)y g 2 0 (1.13)
due to the monotonicity of (3Ix(n])€- Moreover, we have (due to (M3))

(grad (o + 24(8) — grad Be(un), 2Dy > 0 (1.14)
(the operator grad ®(.) : V() — V*(Q) is monotone), |lgrad®.(uo)lly.(q) <
Mg. Thus, by virtue of (1.13), (1.14) and (1.11) we get the inequality

Ellee®liyay + 2allze®llb oy <

< 2(L(t) — A(t)uo, 2e(t)) v (q) — 2(grad Rc(uo), 2e(t))y (a)

The r.h.s. of (1.15) is majorized by
2[|L(t) — A@®)uolly+@yllze(®)lly (ay + 2llgrad @e(uo)lly- (o)llze Dy (qy
< af|z(®)|[5(qy + 27 (1L() = A@)uolly+ () + M3)
Therefore
34;”26(1)”%;(9) o “”-"e(f)“%(n) < 2a71(|L(2) - A(t}uﬂllit(n} +M3) (1.16)

Integrating (1.16) from 0 to 5, 0 < s < T', we obtain in particular

(1.15)

llze()l|r(qy < lluollyay
+2a7! [T(IL() = A@)uolly- () + M3)dt (1.17)
< ||HGH%'(n) +2a7 [ (1L() = A()uol fh(n) + M3)dt

Hence:

2
sup ||ze(s <
O]

T
< lluoll? gy + 20~ / (1) — A@yuoll% iy + ME)dt

The r.h.s. of (1.18) is finite and independent of ¢, therefore

(1.18)

The sequence z, remains in a bounded set of L, (0,7, H(2)) (1.18)1
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We then integrate (1.16) from 0 to T and get

T
ey + o [ e ot -
. 1.18),

T
< luolfy oy + 207 [ (12E) = Al oy + M)

This shows that the sequence {2} remains in a bounded set of Ly(0, T, V()).
This means that the sequence {u.} is bounded in

Ly(0,T,V(2)) N Lo (0, T, H(Q)) ase—0 (1.18)s

On the other hand, in order to obtain the estimate for the sequence
{du(t)/dt} we formally differentiate the equation (1.10) and arrive at

dldz.(t)/dt]/dt + d[A(t)z(t)]/dt + d[(af;c(g))g{ug + z(t))]/dt

+d[grad @, (uo + z.(1))]/dt = d[L(t)]/dt — (dA(t)/dt)uo (1.19)

Next, we observe that the functions, (9lxq) (1o +2(.)))e, grad @e(uo +2(.)) :
[0,T] — V*(Q) are Lipschitz continuous (by virtue of (1.7,3°), (M3)). As the
space V*(Q) is reflexive the functions (8Ix(q)) [(uotze(.)), grad @.(ug+2(.)) be-
longs to the space WL (0, T, V*(R)), (see Brezis, 1973). Moreover, the functions
Z()ue(.), L(.) from the equation (1.8) belong to the spaces WL (0,7, V(Q)) and
W3 (0,T,V(R)), respectively. This means that u, € W2(0,T,V(Q)) and by
virtue of (1.9), (1.19) we can write

(d?u.(t)/dt?, duc(t)/dt>v(n) + (A(t)duc(t)/dt, duc(t)/dt)y gy
+H(d[(0Tx@) (ue(®)]/dt, duc(t)/dt),, o

1.20
+(d[grad @ (uc(t))]/dt, duc(t)/dt)y (q) LR
= (dL(t)/dt — (dA®)/dt)uclt), dud(t)/dt)y(qy for ae. t € [0,T]
Further, due to (1.11) we have
L4ty + AW (2)t, du(8) ey
+ 2(d[grad Dc(uc(t))]/dt, duc(t)/dt)y (o) (1.21)

+2(d[(01kc(ay) (uc(t)))/dt, du(t)/dt),, @)
= 2dL(t)/dt — (dA(t)/dt)uc(t), duc(t)/dt)y q
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But (due to the monotonicity of (8Ix(q)) . and grad ®;), we can write

{ <d{(afpc(n))c(u.g(t))]/dt,dﬂe(f)fdi>v(n) >0 forae. te(0,7)
(dlgrad @c(uc(t))]/dt, duc(t)/dt)yqy > 0

On the basis of (M1), (M2) and (1.18)3, (1.21), (1.22) we obtain the inequality

(1.22)

L due(t) /gy + i)/t
< 20~ (IL(0)/dtlly - oy + (AW d)ueDlly- oy)?

Putting ¢ = 0 in the equality (1.4) we get (due to the previous estimates:
(01x()) (o) = 0)

(du(0)/dt, ”)V(n) = (L(O}:”)V(n) = (A(0)uo, ‘”)V(n) — (grad ®.(uo), ‘”)V(n)

and this gives

(1.23)

du(0)/dt = L(0) — A(0)uo — grad ®.(ug) € H() (by (M2)) (1.24)
which implies (due to (M2), (1.23) and (1.24), (1.18)3)
duc(t)/dt € Ly(0,T,V(Q)) N Leo(0,T, H()) (1.25)

1.3. Solution of a parabolic variational inequality

Due to the a priori estimates obtained above, we obtain existence, uniqueness
for a solution of the unilateral problem (1.3). We have:

THEOREM 2 There ezists a unique solution u € WZL(0,T, H(Q))
NW3(0,T,V(R)) of the initial value problem (1.3)

Proor. Let € — 0, € > 0. Then, due to the a priori estimates (1.18)5 and
(1.23) the sequence {uc}. is bounded in all spaces W, (0,7, V(Q)), 1 < p < 0.
Hence there exists a sequence {¢,}, €, > 0 and a function u, € W3 (0,7, V(Q))
such that

lim e, =0 (1.26)
U, — Us (weakly) in W2 (0,T,V(Q)) (1.27)

Further, due to (1.4) we have the relation
t
(a0 vy = (Ji e (0)/00,0) |+ (w0

for each n € N and v € V(Q). The expression (f;(dz(ﬂ)/dﬁ)dfi, v) e
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z € W30, T,V(Q)) represents (for each fixed ¢ € [0,7], and v € V(Q)) a
linear continuous functional over W2 (0, T, V(Q)). This shows that the sequence
{(ue, (t), v)v(a)}n is (due to (1.27)) convergent for every ¢ € [0,T] and v € V(Q).
Consequently, there exists a function u : [0, 7] — V() such that

e, (t) = u(t)  (weakly) in V() for each ¢ € [0, 7] (1.28)

According to the Fatou lemma and the Lebesgue theorem (Brezis, 1973, App.
1) we see that

{ u € Ly(0,T, V(Q))

u,, —u  (weakly) in Li(0,T,V(9)) (1.29)

By comparison of (1.27) with (1.29) we conclude that u(f) = wu.(t) for a.e.
t €[0,7] and

U, — U (weakly) in W(0,T,V(Q)) (1.30)

On the other hand, the a priori estimates (1.18);, (1.25) imply that the
sequences {uc, }n, {du.,/dt}, are bounded in the space Lo (0,7, H(Q)) which
is the adjoint space to L1(0,7, H(Q)). Hence, by virtue of (1.30) and due to the
theorem of Banach-Alaoglu-Bourbaki (Brezis, 1982, Th.III 15) we have

{ u,, —u  (weakly star) in Lo, (0,7, H(Q))

1.31
du, /dt — du/dt (weakly star) in L, (0,7, H(Q)) (1.31)

Then by virtue of Proposition I11.12 from Brezis (1982) and using (1.31) we
get the inequalities

llw = wollr. . o,7,(qy) < ]}‘To{gf|iue, = wollL (0,7, 5
and
lldu/dtl|; .o,y < liminf || duc, /di|; o 7,50
which imply the estimates
llu—wollpoz,may S & lldu/dtllporm@ay < € (1.32)
In virtue of the equality (1.4) we can write

en(0lx()), (ue, (1)) = enlL(t) — due, (t)/dt — A(t)uc, (t)
—grad @ (u,, (t))]for every t € [0,T]

Moreover, the sequences {uc,(t)}n, {du.,(t)/dt}, and {grad @, (u,(t))}n are
(due to (1.18)s, (1.25), (M3)) bounded for every ¢ € [0,T]. Then one has

lim en(0Ix(a)), (ue,(t)) =0 (strongly) in V*(Q) for every t € [0,T]
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Using then the monotonocity of (8Ix(q)), and the relation (1.28) we obtain
((0Ix(qy) (v), u(t) — v)v(m <0 foreveryte[0,T],veE V(Q) (1.33)
Then, inserting v = u(t) + 0z, 6 > 0, z € V(Q2), into (1.33) we obtain

((Bf,cm))cn (u(t) + 02), z> 20 forallze V(@)

whence (due to the Lipschitz continuity of dIx(q))e) the limiting process § — 0
yields

((3Ixm))en(u(1)),z>vmj >0 forallze V(Q)
This means that
(0Ix) (u(t)) =0 forallt € [0,T] (1.34)

which due to ((1.7),1°) gives the relation: u(t) € K£(£2). We have (after changing
u on the set of zero measure)

ue WL (0,T,H(Q))nC([0,T], H(Q)) (1.35)
and thus
u(t) = u(0) + f;(du(ﬁ)/df)dﬁ for every t € [0,7] (1.36)

Simultaneously, we have the relation

e, (1) = ug + f;(dufn(f)/dﬁ)dﬁ for every t € [0,T],n € N (1.37)

Using then the convergences (1.28) and (1.30) we obtain the initial condition:
u(0) = ug. Let us suppose again that z is given in L;(0,T, V(Q)) (be an
arbitrary function) where

z(t) e K(Q)) forae t€[0,T] (1.38)
We then have the inequalities
((0rc@)., (wen ), 2() = s (1)), <O .
for a.e. t € [0,T], and every n € N
We then come back to the equalities
due, (t)/dt+A(t)ue, (1) + (k@) , (te, (1)) +grad @c, (uc, (1)) =L(t)  (1.40)

and forming the V*(Q) — V(Q) scalar product betwen (1.40) and [2(2) — uc, (¢)]
and integrating from 0 to T' we arrive at the inequalities
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‘ 1
e Oy +2 | (A ), s Oyt
T
< tes OVl +2 | (@1 0,20y eyt

T
+2]ﬂ (due, (t)/dt, z(t)}y (q)dt (1.41)

T g
2 j{; (grad B, (e, (1)), e (1) — 2(8)) y

T
+2 / (L(2), e (8) — 20y gyt
forallne N

But, using then the assumptions (M2) we easily see that the functionals on
the left-hand side of (1.41) are weakly semicontinuous on the spaces V() and
Ly(0,T,V(R2)), respectively. The passage to the limit for n — oo in the integrals
of the inequalities (1.41) is easy, using the relations (1.28), (1.30), (M3) and the
initial conditions in (1.3) and in (1.4). Hence we find in the limit

T
(T yy +2 ] (A@)U), 1(0)) y (y
< liminf l”“en (D)zzay + 2£ (A()uc, (1), ve, (i»vm)d‘fl

T T
< [[u(0) gy + 2 f (du(t)dt, 2())y (e + 2 f (A@(), 2(0))y oyt

+2fn @(z(t))dt—?ﬂ fb(u(t))dt+2/(L(t),u(t)—z(t))vm)dt

and this gives

T
_/0 (du(t)/dt + A(t)u(t) — L(t), 2(t) — u(t))y(q)dt

T T (1.42)
+[J @(z(t))dt—-/ﬂ B (u(t))dt > 0

for all z € L1(0,T, V(£2)) such that z(¢) € K(Q2) for a.e. t € [0, T

Consequently, it follows from Proposition 3 (Brezis, 1972), that

(du(t)/dt,v— u(t))y () + (Alt)u(t), v — u(t)) y(q)
+@(v) — &(u(t)) = (L(2),v — u(t))y(q)
for a.e. 1 € [0,7] and for all v € K£(Q)
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This inequality implies that u is a solution of the problem (1.3). On the other
hand, let u, and u.. be twosolutions of the problem (1.3). We take successively:

u(t) = ue(€), v = uax(€)
) = Yy )

in (1.3). Then adding these inequalities, we get (integrating from 0 to £)

/B ((dua (€)/dE — duuna(€)/dE) + AE)(tta (€) — uan (),

1.43
u(§) — “**(5))\/(0) <0 (1.43)
for every t € [0, T
Let us denote #z = u, — u4y. The function z fulfils the initial condition
z(0) =0 (1.44)

The inequality (1.43) then implies (by the relation (1.11))

12@) Iy + 2 Jo (AE)2(€), () y(yd€ <0 forallt €[0,7]  (1.45)
This estimation, together with (M2) gives

2(t) = ua(t) — uw(t) = 0
and

we(t) = wuu(t) for all t €[0,T)

which proves uniqueness of the solution of the initial value problem (1.3)

REMARK 1 The a priori estimate (1.18); shows the existence of an elemnt u in
Lo (0,T, H(2)) and a subsequence ¢, — 0 (or n — +o0) such that

u,, converges to u, for the weak-star topology of L (0,T, H(Q)) (1.46)
Then (1.46) means that for each v € L,(0,T, H(R))

I (ue, (t) = u(t), v(t))meaydt =0 €; — 0 (1.47)

By (1.18) the subsequence u., belongs to a bounded set of L3(0,T,V (%)),
therefore another passage to a subsequence shows the existence of some u, €
L3(0,T,V(Q)) and some subsequence {ug, }i such that

e, converges to u., for the weak topology of Ly(0, T, V(2)) (1.48)
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The convergence (1.48) means

Jo (e () = wa(®), () y(qy — 0 for any v € L3(0, T, V*(Q)), ex — 0

In particular by (1.2) one has

ff(uq(t),v(t))ﬁ(g)dt — f:(ﬂ-;(t),v(t))ff(ﬂ)dt (1.49)

for each v in Ly(0,T, H(R)), €z — 0. Thus, comparing (1.49) with (1.47) we see
that

JoF () = wa(2), v(t)) gyt = 0
for each v in L(0,T, H(?)), hence

u = u, € Ly(0, T, V(Q)) N L (0, T, H()).

2. Optimal control problem
2.1. Formulation of the problem

We assume that the data in the problem (1.3) depend on a control parameter
e. Control problems for parabolic (pseudoparabolic) equations were studied in
Barbu (1984), Lions (1973) and Bock, Lovisek (1986, 1992). We assume that
the convex set of admissible states depends also on a control parameter e. Such
problem in the pseudoparabolic case was investigated in Bock, Lovisek (1992).

We consider the following state problem:
( u(t,e) € K(e, Q) for a.e. t € [0,T]
and for a.e. t € [0, 7]
(du(t, e)/dt, v — u(t, €))y oy + (A(t, e)u(t, €), v — u(t, &) yqy @.1)

(e, v)— (e, u(t, €)) = (L(t, e), v—u(t, e))y(qy for all v € K(e, Q)

\ u(0,e) = uo(e) € K(e, Q)

where K(e, Q) is a closed convex subset of a Hilbert space V().
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The optimal control problem we consider here is: (according to the state
problem (2.1))

Minimize
L(e,u(e)) inue W3 (0,T,V(R)) and e € Uaa(£2) (P)
subject to state inequality in (2.1)

where U,4(Q) is a compact subset of a Banach space U({2) and the cost func-
tional £ : U(Q) x W, (0, T, V(2)) — R is lower bounded and fulfils the assump-
tion:

If v, — v (weakly) in W2(0,T, V()
and e, — e (strongly) in U(2), then one has (EO)
L(e,v) £ liminf, o L(en,vn)

In order to characterize the dependence e — K(e, Q) we recall a special type of
convergence of set sequences introduced in Mosco (1969)

DEFINITION 1. A sequence {K,(£2)} of subset of a normed space V(Q2) convergs
to a set K(Q) C V(Q) if

1° K(€) contains all weak limits of sequences {vn, }&, vn, € Kn,(Q),
where {K,, ()}, is an arbitrary subsequence of {K,(Q)},

2° Every element v € K(Q) is the strong limit of a sequence

{vn}, vn € Kn(R),nEN

NOTATION: K(Q) = Limy oo Kn(Q)
A sequence {W,} of functionals from V(£2) into (—o0, +oc] converges to a func-
tional W if

( 1° For every v € V(Q2) there exists a sequence {v,} C V() such that
lim v, = v (strongly) in V(Q) and limsup Wy (v,) £ W(v)

2° For every subsequences {Wh, }& of {W,}» and every sequence
{vi}r C V(Q) weakly convergent to v € V(§2) holds

W(v) < lLrgirngn,, (vz)

NOTATION: W = Lim W,

“ ni—00

We introduce the systems {K(e, )}, {A(t, €)} of convex closed subset K(e, Q) C
V(Q) and linear bounded operators A(.,e) € C([0,7], L(V(R),V*(R))),
e € Uaa(R), t € [0, T, satisfying the following assumptions:
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(10 N K(eQ)#£0
e€Uqa(0)
2°e, — e (strongly) in U(Q) = K(e,Q) = Lim K(en, )
3° (A(t, ), z)V(n) = (A(t, 5)2:”>V(ﬂ)
for all v,z € V(Q), t € [0,T1, e € Uaa(Q)
4 |ACt e)lleviayvey <M forall e € Use(Q) and £ € [0,7]
5° [|dA(t, 3)/““{,0’({1),»’-(9}) < M, for all e € Uag(Q) and £ € [0, 7]
6° (A(t,e)v,v)y () 2 ellollv@y  @>0
forallv e V(Q),t €[0,T], e € Uga(2)

(a real number o not depending on [e, ] and v,

A(t,.) is said to be uniformly coercive with respect to U(£2))
7° e, — e (strongly) in V(Q) = A(.,,en) — A(.,€)
in C1([0, 7], L(V(Q), V*(92)))
8° up(en) — ug(e) (strongly) in V() for e, — e (strongly) in U(Q)

Thus, by virtue of ((H0),3°,4°,6°), A(.,en), n=1,2,... and A(e) are elements
of the class E(a, M) for each sequence {ey}n, where e, — ¢ (strongly) in U(Q).
Moreover we suppose

1° There is a system of functionals {®(en, .(t))}» on V(Q)

with values in (—o0, +0c0] (not identically equal to +o0)

semicontinuous and convex on V(Q), ¢ € [0,T]

{v(t) € V() : ®(en, v(t)) < o0} C K(en, ), tel0,1]

®(e,.(1)) = r}_l*rg ®(en, .(t)) as e, — e (strongly) in U(Q), (H1)

e,en € Uaa(R), 1 € [0,T]

2° L. )llwz o, viayy < ML

3° {L(.,en)}n is a sequence in V*(Q) such that
\ L(.,en) — L(.,e) in C'([0,T],V*(R2)) as e, — e (strongly) in U().

Further we assume that for each sequence {e, }n, en — € (strongly) in U()
there is a bounded sequence {an(t)}n with a,(t) € K(en, Q) and ®(en, an(t)) <
oo for all n,e, e, € Uaa(2) such that

lim sup ®(e,, a,,(f)) <oo forallte[0,T] (2.2)
Nn—oco

Moreover, there exist two constants ¢y, cz such that for each sequence {e,},
en — € (strongly) in U(R2) one has:

B(en, vn(t)) > —c1|lva(t)llyqy —c2 forn=1,2,...,t€[0,T] (2.3)
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(see Mosco, 1971)

Then, since A(t,e,) € E(a, M) (for t € [0,T]) for any sequence of pairs
{[en; vn]}n, € en € Uaa(R) n = 1,2,... with ”'Un”v{n) — oo and e, — e
(strongly) in U(£2) we have

[(A(t, en)on(8), 2n(8) — an (v y + @len, va(®)] /o @lly () > 00 (24)

Moreover, for each n € N (¢ € [0,T])

(At c0)o(2), v(2) = an(®)y () + Blen, val®)] MoDllyey =00 (25)

as [lv(t)|ly(q) — oo, v(t) € K(en, ) where eqg € U,q(f2) is arbitrary but fixed in
Uad(2), en € Uaa(2), n =1,2,... AL, e0) € E(a, M)
REMARK 2 By virtue of ((H0),4°,6°) and (2.2) we can write

(A, n)on(2), 2n(®) = an () ) + Blen, 1a(0)]
> alfon(t) = an(®) o) — callvn(t) = an(@lly oy — e

where a,,(t) is bounded in K(en, Q) (n = 1,2,...) t € [0,T] and when [Jvn ()[|y(q)
— 0o then also [|va(t) — an(t)|ly gy — oo. In a similar way (for each n € N and
t € [0,T]) we obtain relation (2.5).

Let {®.(e,.(t))} : V() — R, t € [0,T] be a family of Fréchet differentiable
convex functionals on V() with the following properties:

((1° ®c(e, v(t) > —c(llv(@)llyay+1)

forall e > 0,t €[0,7], e € Uaa(2), v(t) € V()

o 11_1}'(1} ®(e,v(t)) = ®(e,v(t))

for all e € Uaa(R2), v(t) € V(Q), t € [0,T

3° If e, — e (strongly) in U(£),

then ®.(e,.(t)) = Lim ®.(en,.(1),t€[0,T]

{ 4°If e, — e (strongly) in U(92), (H1),
en = 0=> ®(e, (1)) = Lim & (en, (1)), t € [0,T]

5° ||lgrad ®(e, v(t)) — grad ®.(e, z(t))|
< M(e)llv(®) — 2@)lly(a)

for all € > 0, e € U,a(R), v(2), 2(t) € V(R2), t € [0,T]

6° [lgrad ®c(e, w(t))[lv(ay < Mas

for any w(t) € V(Q) and all e € Uga(2), € > 0, ¢ € [0,T]

V()
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We shall formulate the optimal control problem in the following way:

PrROBLEM(Py): Find a control e, € Uga(Y) such that

(u(t, es) € K(exQ) for a.e. 1 € [0,7]

(du(t,e.)/dt,v — u(t, ex))y(q) + (At ex)ult, ex), v — u(t, €x)) y(q)
+®(ex, v) — B(ex, u(t, ex)) > (L(Z, €x), v — u(t, ﬁ-))V(n)

\ for all v € K(ex, Q)

u(0, ex) = ug(es) € K(e«, Q)

| £lewsu(e)) = min £(e,u(e))

(2.6)

Concerning the existence of solution of these problems, we will prove the fol-
lowing result.

THEOREM 3 Let the assumptions (H0), (E0), (H1) and (2.2), (2.3) be satisfied.
Then there exisls at least one solution e, of the optimal control problem (Ps).

ProoFr. As the solution (the state function) u(e) of the variational inequal-
ity in (2.1) is uniquely determined for every e € Uya(f2), we can introduce the
functional J(e) as

J(e) = L(e,u(e)), e € Uaa(R) (2.7)

(By virtue of Theorem 2 for any e € U,4(2) there exists a unique solution u(e) €
Wi(0,T, H()) N W3(0,T,V(Q)) of the state initial value problem (2.6))
Let {en}n C Uaq(€2) be a minimizing sequence for J(e):

ﬂango J(en) = eet.ifnf(n) J(e) (2.8)

On the other hand, the set U,4(2) is compact in U(£2), so that there exists an
element e, € Uya(Q) and a subsequence of {e, }n, {€n, } such that:

lim e,, = e. in U(Q) (2.9)

k—o0

Denoting u(t, en) := un(t) € K(en, Q) we rewrite the state problem (2.1) in the
form
( un(t) € K(en, Q) for ae. t € [0,T]
and for a.e. t €[0,7],n=1,2,3,...
(dun(t)/dt,v — ua(t))y () + (At €n)un(t), v — un(t))y(q)
+®(en,v) — @(en, un(t)) > (L(t, n),v — un(t))v(ﬂ)
for all v € K(en, Q)
\ un(0) = ug(en) € K(en, )

(2.10)
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We apply Theorem 2 (to take account of (H0), (H1), and (2.2), (2.4)), and we
obtain the estimates:

{ lunllws o,z viay < o

2.11
“un”W;a(U,T,H(ﬂ)) _<__ Cy for all n (S N ( )

where the constant c, involves only the constants [M, M., @, M}] and the upper
bound for the sequence ug(ey,). On the other hand if we compare the estimates
(1.18)2, (1.23) and (1.32) we can see that c, does not depend on the sequence
{K(en, Q)}n.

It follows by estimate (2.11) that there exist a function u. € WL (0,T, H(Q))
NW3(0,T, V(Q)) and a subsequence of {uy, }r such that:

Upy, — U (weakly) in W1(0,T, V(Q)) (2.12)
Up, (1) — us(t)  (weakly) in V() for ae. t € [0,7] (2.13)
Up, — Uy (weakly star) in Lo (0, T, H(Q2))

duy, Jdt = du./dt  (weakly star) in Leo (0, T, H(Q))
Then we also have (by the relations (2.10), (2.13) and the assumption (H0,2°))

(2.14)

uL(t) € K(es, Q) for a.e. t € [0,7] (2.15)
We infer from (2.1), (2.2), (H1,1°) and Definition 1, that
D(es, ua(t)) < li}{gir;f@(enk s Ui (1))
< limsup{®(en,, an, (1))
k—o00

- (A(t= eﬂk)uﬂk(t) - L(t: eme)s uﬂk(t) T ﬂm(*))vm)} < oo
for a.e. t € [0,7]

(2.16)

since by virtue of the monotonicity of A(t,en, ) one has

[(ACt e )t (8), @ () = s )y )|
S (A(t! Eng )a‘ﬂk(t): ank(t))‘l/(ﬂ) + |(A{eﬂk)a“k(t)1 Uny (t))vm) S 2M02
where

(lenk v ays llans Olly(q)) < ¢ for t €0, 7]

Next according to the relations:

s (8) = unlem) + [ (dun(€)/de)ae
. (2.17)

wa(t) = 1. (0) + ] (duu(€)/dE)dE 1€ [0,T]
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we obtain, due to (2.12), (2.13) and (H0,7°), the initial condition

u.(0) = up(es) € K(ex, Q) (2.18)
Let z (arbitrary function) be given in L,(0, T, V(£2)) such that

z(t) € K(e., Q)  forae. t€0,T] (2.19)

Now, since the set K(e,, ) is closed in the space V(§2), we can use (Brezis,
1973, Lemma A.0, App.) according to which for every ¢ > 0 there exists a
measurable function z : [0, 7] — K(e., Q) with only a finite number of values
and such that: :

S N2(8) = vy ()l gyt < €

On the other hand, by Definition 1 and assumption (H0,2°) there are a subse-
quence {en, }+ (C {en}n) and a sequence {v,, }x C L1(0,T, V(Q)) such that

Un, €K(en,,Q) forallt€[0,T],k€eN

and

h : T
Jm [fon, = 2l 07, v0) = Hm [y o () = 2@y qydt = 0 (220)
klim P(enys Uni (1)) = P(ex, 2(1))
On the other hand, we can easily show that
A, en, )on, (1) — A(L, ex)v(t) (weak]y) in V() (2.21)
(A(tr Cs )ﬂ(i): ”(t)) V() S linligf (A(i, €ny )vﬂk (t)! 1"l"u;('t))‘if{f;-_): (2'22)

if wn, (1) — v(t) (weakly) in V() and A(t, en, )vn, (t) — A(2, ex)v(t) (weakly)
in V*(Q) for e, — e (strongly) in U(2), for ¢ € [0, T.
Indeed, for any w(t) € V(2) we can write

Jim (A, eny Jons (1), w())y () = Jim (AL, eny ) (1), vy () v (a)
= (At ex)w(t), v(t))v () = (A, e2)o(t), w()) v ()
Moreover one has
(At ens ) (vn, () — v(1)), vns (2) — ()} y () 2 0
Hence we may write
Jim 2(A(E, en, )0 (1), vni (1)) v ()
> liminf (A(t, eny )vny (2), vns (8)) vy + Jim (A(t, eny)o(2), 0(1)) y(q)

This yields (2.22).
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According to inequality in (2.10) we have

/T (dum(t)/cllt + A(t, en, )un, (1)
_L(tseﬂk)s vﬂk(t) = "ﬂk(t»V(n) (2.23)

2 fT B(eny, un, (1))dt — /T ®(eny, vn,(t))dt

Then we write the last inequality in the form

T
iy (T 2y + 2 / (A(t, ny Yt (), U () oy

f i

+/ P(en,, un, (t))dl
D T

< s Oy +2 [ (ACs enaJina (), s (Dbt (2.24)

T

+ [ty 0/, 00y D)y oy

T T ;
+2_/ﬂ (L(tleﬂk)ruﬂk(t)_vﬂk(t))V(ﬂ)dt+A ®(en,,, vn, (t))dt

Thus, by passing to the limit in (2.24) we have

T
likminf”un,‘ (T)||§{(n} + 21ikrninff (At eny )y (1), uny () y (qy dt
— 00 —+ 00 0
T
vh . 2
+hk“—1|-}:-13f 4 D(en,, Un,(1))dt < klﬂllun(e"")“ff(ﬂ}

T
+2 klim (A(t, eny )un, (t), vny, (t))V(n.)dt
=00 Jo
T
+ lim (duﬂk(t)/dtlvﬂk(t))V(ﬂ)dt
k—oo 0
T
+2 lim [ (L(t,en, ), tn, (t) = vni (t))y(qyt
k—os Jg
T
“f- ﬁm f (B(Eﬂkl Un; {t))dt
k—oo Jg

and hence (using Definition 1, (HO0,8°) and the relations, (2.12), (2.13), (2.14),
(2.15) and (2.16), (2.20), (2.21), (2.22))
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T
s (T +2 [ (A e2)uslt) Oy

T
+ [ 8o, )t < lua(en ey
T T (2.25)

+ [ A e ) vt + [ (a0, 20y

T T

42 [ (Dt e, w0~ 2Oyt + [ 0, 20)at
0 0
for all z € Li(0, T, V(Q))

such that z(t) € K(e.,Q) for a.e. ¢ € [0,7]. On the other hand, we infer

from (2.25) that (using the initial condition in (2.6), the differentiability and
symmetry of the operator function A(., e4))

T
/ (dua (£)/dt + A(t, ex)ua (£) — L, e2), 2(t) — ue (&) o
0 (2.26)

T T
2‘[9 @(e,,u*(t))dt-—/u D(ey, z(t))dl

for all z € L1(0,T, V(R)) such that z(t) € K(e., Q) for ae. t € [0,T].
Then by the Proposition 3 (Brezis, 1972) we deduce from (2.26) that

(dus(t)/dt, v — us(t))y () + (A, ex)ua(t), v — ua(t))y )+
+ ®(ex, v) — @ew, ua(t)) > (L(H, €4), v — w(t))y (0 (2.27)
for a.e. t € [0,T], for all v € K(es, )

This inequality (together with (2.12), (2.15) and (2.18)) implies that (by the
uniqueness of a solution of (2.1))

U, = u(ey) (2.28)
u(en, ) — u(es) (weakly) in W(0,T, V(Q)) (2.29)
Finally we come back to (E0) and (2.8). We write the inequalities
Les, u(es)) < likrn inf L(en,,u(en,)) =
= klim J(en,) = inf )J(c) = inf L(e,u(e))

e€Usa() e€Uaa(f)

and hence (P.) follows. This means that the proof of the theorem is finished.
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3. Singular perturbations in optimal control problem
with parabolic variational inequality.

Let V(Q2) and W(Q) be two real Hilbert spaces. Assume that

V(Q) c W(Q) C H(Q),
V(Q) dense in W(§2) and W(12) dense in H(Q) (3.1)

where H () is a Hilbert space (in (3.1) each space is dense in the following one).
Moreover, if we identify H () with its dual, we have:

V() CcW(Q) C H(Q) Cc W*(Q) Cc V*(Q)
Next we assume that Uq(Q) C U(R2) is compact in U(2).

A
We introduce the systems {K(e, Q2)}eev, i), {K(e,2)}eev,a(n) of convex

A
closed subset K(e, Q) C V(Q2), K(e,Q2) C W(Q), e € Upa(£2) and a system oper-
ators {A(t, ) }eevaa(a), {B(¢)€)}eev.a(n) and

A(t,e) : V(Q) — V*(Q), B(t,e) : W(Q) — W*(Q)
for any t € [0,T], e € Uaq(§) satisfying the following assumptions:

( 10 n ]C(g, Q) £ /] (0 € n K(&, Q))

eel,q(01) eelqq(0)
2° e, — €g (strongly) in U(Q) = K(eo,Q2) = nL_’lglo K(en, )
3° A(.,e) € CI([0,T], L(V(Q), V*(Q)))
4° {A(t, e)v}eevaa() C Ev(a)(0,ca)
 5° (A(t, €)v, 2)y (q) = (A(t, €)2, v}y (q) (HO) 4
for any v,z € V(Q), for any t € [0, 7
6°e, — ey (strongly) in U(Q) = A(.,en) — A(., e0)
in C*([0, 77, L(V(9), V*(Q)))
7° There exists a4 > 0 such that for all e € Us4(£2) and v € V(Q)
[ (At €)v,0) yqy + ||“”||f=V(n} = aA”””fx(n) for any ¢ € [0, 7]

and
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s

N Ke,Q) #0

GEUad(ﬂ)
2°e, —ep  (strongly) in U(Q) = I%(eg,.Q) = Lim ;%(en,Q)
3° B(.,e) € C1([0, T], L(W(Q), W*()))
{ ¥ {B(, e)v}ecv.e(n) C Ewa)(as, cs) (HO)s
with e > 0, for any ¢ € [0, 7]
5° (B(f'! E)T}, Z)W(ﬂ) = (B(ta E)Z, v)W(ﬂ)
for any v,z € W(Q), for any t € [0, T
6° e, — € (strongly) in U(Q) = B(.,en) — B(., e0)
L in CY([0, 7], L(W (), W*(Q)))

Let us consider a continuous functional v — ®(v),
on W(Q) which is convex and nonnegative, (M4)
with ®(0) = 0, and with the properties (M3).

Note that W*(Q) O V*(£2) continuously, and one has the transposition formula

(F),v)y () = (F(), v)wa) (M5)
for any v € V(Q), t € [0, T] and for any F(t) € W*(Q).

REMARK 3 Instead of ((HO)4),4°,7°) and ((HO)35),4°) we may assume that
A(t,e), B(t,e) be two operators (i.e. there are constants M4, Mg > 0) such
that

I, e)v — A(t, e)2lly+(ay < Mallv = z|ly ()
IB(¢, e)v — B(2, E)ZIIW*(Q) < Msllv - z”W(ﬂ)
for any v,z € V(Q), for any £ € [0, T
and assume B(1, e) is strongly coercive in the usual sense:
there is (as > 0) such that
(B(t, e)v — B(t, e)z,v — 2)yy(qy = asllv — 3“%11(9.)
v,z € W(RQ), for each t € [0,T], e € Uqd(R)

and A(t, e) is such that for some constants o’ > 0, A5 > 0:

(A(t,e)v — A(t, e)z,v — Z)V(n) > ayllv - z“?/(n) = Bsllv - z||$v(n}
for any v,z € V(Q), t € [0,T], e € Usa(Q)
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We consider now inequalities of evolution. Let t denote the time variable
t€[0,7], T < co. Let f = f(t) be given such that

f +Be € WH(0,T, H(@)), £(0) € H(Q), B : U(Q) — H(Q) (Ms)

be a linear continuous operator. Then for every € > 0 and for every e € U,4(f2)
there exists a unique function u.(e) = u.(t, €) such that

( u.(e) = WL(0,T, H(Q)) nW1(0,T, V()
ue(t,e) € K(e,2), uc(0,e) =0 (€ K(e,Q))
(due(t, e)/dt, v — ue(t, €))y q)
$ H(eA(t e)uc(t, e) + B(t, e)ue(t, e), v — ue(t, €))y () (3.3)
+®(v) — B(uc(t,e)) = (f(t) + Be,v — uelt, €))wq)
for any v € K(e, Q) and e € U,a(Q)
\ u.(0,e) =0 € K(e,Q2) for any e € Uaq()

Indeed, thanks to Theorem 2 it is enough to prove that there is ¢, > 0 such
that

(eA(t, ﬁ)"-’:‘”)v(n) + (B(t, e)v, ”)W(n) 2 cc“‘””%’{ﬂ)
for v € V(Q) and for each ¢ € [0, T]
and this immediately follows from ((H0)4),4°,7°), ((H0)s,4°).

Similarly there exists a unique function (thanks to ((H0)g,4°) for any
e € Uaa(Q)) uo(eo) = uo(t, eg) such that

 uoeo) € WL (0, T, H(Q)) N W0, T, W(Q))
uo(t, e0) € K(ea, 9), uo(0,e0) =0 (€ K(eo,0))
! <dug(t, EQ)/dt, ) Uu{t, 60))‘;{“)
+(B(t, eo)uo(t, €0), v — uo(t, eU))W{ﬂ)
+®(v) — ®(uo(t, e0)) > (f(t) + Beo, v — uo(t, €0)) w(a)

(3.4)

A
\ for any v € K(eg, Q)

Let us consider a functional £ : U(Q) x W}(0,T,W(Q2)) — Rt =
{a € R,a > 0} for which the following condition holds:
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[ 1%ty € Wzl (O,T, V(Q)), v E W-}(O,T, wW(Q)), v, — v
(strongly) in W3 (0, T, W()) = L(e,v) = Jim. L(e,vy)
§ 2° {vn}n C W3(0,T,V(Q)), v € W3(0,T, W(Q)), {en}n C Uaa(Q) (E1)
e € Uga(Q), e, — e (strongly) in U(Q2), vn, — v (weakly) in
W30, T, W(Q)) = L(e,v) < li;nlio%fﬁ(e“’v")

M
Let us set now K(e,Q) = clK(e,Q) in W(Q) for all e € Uzq(2) where ¢l
denotes closure.
We shall solve the following optimization problem (P):

{ Find a control e, € Uzq(2) such that

J(e)= inf J, (Pe)
(4= il

where J.(e) = L(e, uc(e)), e € Uaa(2)

u.(e) is the uniquely determined solution of (3.3), e € Uaa().
We say that e, is an optimal control of the problem (P).

THEOREM 4 There exists at least one solution to (P).

ProoF. Due to the compactness of Uzq(2) in U(Q2), there exists a sequence
{e?} C Uaa(£2) such that

lim e? = ¢  in U(Q), €2 € Uaa(R) (3.5)
n—0oo
and

lim J(e?)= inf J.(e 3.6
g, Te0) = ol oy L) (36)

Denoting u.(t,e?) := u?(t) we rewrite the state problem (3.3) in the form

u?(t) € K(e?,Q)  forae. t€[0,T]

(du?(t)/dt, v — ug (1)) vyt

+HeA(L, €2 )uf (1) + B(t, 2 )u (1), v — u¢ ())y () + B(v) — B(ug(t)) (3.7)
> (f(t) + Be, v — vt (t))w(a) for all v € K(e?, )

u?(0) =0 € K(ef, Q)

Applying Theorem 2 and the assumptions ((H0)a,(H0)s) we obtain the
estimates

{ IIH?HWJ‘.(U.T.H(R)) < e(e), n=1,2,... for fixed e > 0

(3.8)
[ R R )
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Comparing the estimates (1.18)3, (1.23) and (1.32), we can see that c(¢) does
not depend on the sequence {/C(e?,Q)}. It results from (3.8) that there exists
a function

ug € We, (0,T, H(Q)) n W3 (0,T,V(Q))
and a subsequence of {u?*} such that

{ ul* — 0 (weakly) in W3 (0, T, V(R2)) (3.9)
up(t) —u(t)  (weakly) in V(@) for ac. ¢t € [0,T] |
{ Ue,, Sl (weakly star) in Lo (0, T, H(R))

3.10
du,, [dt = dul/di  (weakly star) in Lo (0,T, H(R)) 1)

Moreover, the relations (3.5), (3.7) and the assumption ((H0)4,2°) imply
u(t) e K(e2,Q2) forae. t€[0,7] (3.11)
Next by virtue of the relations
t
wr(t) = u2(0)+ [ (du2(s)/ds)ds
0
i
() = w20)+ [ @d(s)/ds)ds, e [0,1]
0
we obtain, due to (3.9), the initial condition
ul(0) =0 € K(e2,Q) (3.12)
We observe that (H0)4, (H0)s and (3.9) imply
A(et)ur — A(e)u?  (weakly) in Lo(0, T, V*(2))
and (3.13)
B(ep)u? — B(ug)u¢  (weakly) in Ly(0,T, W*(Q))
We can write (by the inequality in (3.3))
T
] (dug(t)/dt + eA(t, e¢)ue (1) + B, e )ug (1), va(t) — we 1))y (q)dt
0

T T T
+ [ @a)at - ] S(ur (1)) dt > ] (F(t) = Bel, vat) — w2 ()t

The last inequality can be rewritten in the form
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3
I )y + 26 | (G 2)u20), 02 (0) it

T ’ T

+2 [ (B0 Oyt + [ Sar)i
T T

% 26/0 (A(f=8?)“?(f):‘f-'n(f))vm)dt+2][; (B(t, €€ )ue (), v (1)) (qydt

T

+ [ Oty oa by i

T

T
+2 [J () + Bel, un(2) = vn ()t + ]ﬂ B (v (£)) dt
where
{va} C L1(0,T,V(Q)), v, 2 [0,T] — K(e?, Q)

and

Jim ] lon(t) = 2@l oyt = 0,
z(t) € K(€2,9), if €7 — €2, (strongly) in U(R)

(3.14)

The functionals on the l.h.s. of this inequality are weakly lower semicontinuous
on the spaces V() and Ly(0,T, V(Q)), respectively, which follows from the
assumptions (H0)4, (H0)s and (M3). Letting n — oo, we obtain (using (H0)4,
(M5), (HO)5) and relations (3.5), (3.9) and (3.10), (3.14)) the inequality

2Ty +2 [ (At eEud(t)+ Bt e)u2), 20))y it
-|—f d(ul(t)) < 2/ ([eA(t, e)ul(t) + B(t, e2)ul(?)], z >V(n)
+./u. (du?(i)/dﬁ,z(t}}v(mdt

T T
-;-zfU (f(t)+Bef,u2(t)mz(t)>wm)dt+fﬂ D(2())dt

(3.15)

for all z € L1(0,7, V(2)) such that z(t) € K(e?,Q) for a.e. t € [0, T].

Using the initial condition (3.12) we deduce from (3.15) that
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T
fn (duf{t)/dt + cA(t, e2)ul(t) + B(t, e?)ul(t), 2(t) — uE(t))V(mdt
T
—j; (F(t) + Bel, 2(t) — u(t)) yy () It (3.16)

T T
;£¢wﬁ»ﬂ5£¢umm

for all z € L1(0,T, V(Q)) such that z(1) € K(e?, ) for a.e. t € [0, T].
Again, using Proposition 3 from Brezis (1972) (App.I) we arrive at
(dug(t)/dt, z — ug(t))y o
+ (eA(t, e2)ud(t) + B(t, ed)ul(t), z — uE(t))Vm) (3.17)
£ 8(2) - B(ul(1)) > (F(t) + Be, 2 — () )y
for a.e. t € [0,77], for all z € K(e?, Q).

The last inequality, together with (3.9), (3.11), (3.12) and the uniqueness of a
solution of (3.3), imply the relations

{ ug = u(e?)
u(e?) — ue(e?) (weakly) in W3 (0, T, V(Q))
Then (E1) and (3.6) yield

(3.18)

Bl vale)) < Brn tnf £(el ualel)) =

= lim Ju(e2) = eet}?f(ﬂ) Jle) = eeé?f(n)ﬁ(e, ue(e))

Hence L(e?,u.(e?)) = inf{L(e,u.(€)),e € Uaq(22)} which completes the proof.
51

Limit state function and limit cost function

We define the limit state function for any e € Uzq(2), by the following varia-
tional inequality
A
Find ug(e) = ug(t, e) € K(e,2) such that
(duo(t, e)/dt,v — uo(t, €))yw(qy + (B, e)uo(t, e), v — uo(2, )win)
+@(v) — ®(uo(t, €)) > (f(t) + Be,v — uo(, €))yy(q)

A
for any v € K(e, Q)

(3.19)

and the limit cost function:

Jo(e) = L(ep, ug(e))
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In this case one has the limit control problem (Py) defined as follows:

Find: eg € Arginf{Jo(e),e € Uaa(2)} (Po)
THEOREM 5 There exists at least one solution to (Pyp).

Proor. Analogous to that of Theorem 4.

There arises a natural question concerning the type of relation between solu-
tion to (Pg) and (P.) if € — 0. We prove the following theorem:

THEOREM 6 Let the assumptions ((H0)4), ((HO)5) and (E1), (M5) be satis-
fied. Lete,,, eq be the solutions of the problems (P., ), (Po), respectively. Then
there exisis a subsequence {en, } of {€n} such that

'3

€en, — €0 (strongly) in U(Q)

due,, (e, )/dt — dug(eo)/dt  (weakly star) in Lo (0,7, H(R))

{ ey, (€cn,) = uo(eo)  (weakly) in W3(0,7, W(Q)) (3.20)
Ue,, (€c,, ) — uo(eo) (strongly) in Ly(0, T, W(Q2))

| Tems (6ens) = sctnkeii Toms () = Jo(eo) = P Jo(e)

Proor. Due to the compactness of U,4(f2) there exists a sequence {e. } C
U,a(2) such that

en — e} (strongly) in U(Q) (8.21)

Then the state function u.(t,e.,) € K(ee,, ) for a.e. ¢ € [0,T] of the state
variational inequality
(due, (t,ec,)/dt, v — ue, (t,ec,))v(q)
+ {en AL, e, Jue, (1, ec,) + B(E, ec, e, (1, €e, ), v — ue, (L, "36..))'5/(9}
+ @(v) — (uc, (1 c,)) 2 (F(E) + Been, v — te, (L, e w (e
for any v € K(ee,,Q)

(3.22)

for a.e. ¢ € [0, 7] and for given e, € Uaa(2), o >0, n=1,2,...
Takingv =0(€ [ K(e, 2)) we obtain
e€U,a(f1)
(duc,(t, ec,)/dt, uc, (2, eﬂn))V{ﬂ)
(Cn-A(t: €epn )ufn(if eEn) ny B(ti €en )ufn(t: eﬁn): Uy, (t? eEu))V[ﬂ)
< {f(t) + Bee,, e, (t €c,))wiay

It follows that
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d({|uten (1, en)zra)/dt + en((A(, €c, e (1 €e, ), tten (L 20y (o
+ [[uen (1 €ca)lliv(y) + (@5 = en)lluca (4 eca)lliw(ay (3.23)
< (f(2) + Bee,, uc,(t €c.))wa)

Then by setting ¢, < ap/2 and applying ((H0)4, (H0)s) (integrating (3.23)
from 0 to s) we obtain

”“en(‘ssﬁsn)||§r(n)+2€n/u ”ucn(tvﬂeﬂ}ni(n)dt
+2 ja ten b e ) gyt < ] 1£(2) + Becy e eyt (3.29)

+ /ﬂ e 8 e )y gy
Hence

sup_||te, (5, e )iy < Jo IF(8) + Becullipe aydt (3.25)
s€[0,7] @)

which implies that:
the sequence {u,, (e, )} remains in a bounded set of Lo (0,7, H(2)). We then
integrate (3.24) from 0 to T and get

%
|2 (Trﬂs,.)“i:(n) + 2€n H“cn(taecu)”%r(n)dt

0
o 2 ¥ 2
+/o ||‘“‘=.‘(t:'9c,.)||w(n)"ﬁfS/G 1£(t) + Bee, [lw-(q)dt

From this we conclude that

[leen (ee)ll pago,m,winy) < €
Venllten(een )l L 0m,via)) S €
(The sequence {u,(e.,)}n remains in a bounded set of L(0,T, W(£2))Nn
Loo(0,T, H(2)) and the sequence {,/&,uc,(€c,)}n remains in a bounded set
of Ly(0,T,V(Q2)))
We can therefore extract a subsequence '{uen,, (EE"k )}& such that

(3.26)

e, (€, ) —w
(weakly) in Ly(0,T, W(Q)) for €n, — 0 (k — +00)

\/E'ﬂ_kuﬁnk (efu;,) ==}
(weakly) in L5(0,T, V()) for €n, — 0 (k — +o0)

(3.27)

On the other hand, in order to obtain the estimate for sequence {du,, (e, )/dt}n
we formally differentiate the equation:
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due, (t, e, )/dt + en A(L, €c, Jue, (, c,) + B2, e, )ue, (1, €c,.)

4 (Olk(enn,), (et €00)) + grad By, (e (1 00)) = F(8) + Beg, &%)

and arrive at

dlduc,(t, ec,)/dt]/di + end[A(t, ec, Jue, (1, e, )] /dt
o+ d[B(L e e, (b e, ))/dt +d | (Ol e,, )., (en s ec,)| /it

En

+ d[grad @, (uc,_ (t,ec,))]/dt = d[f(t) + Be.,]/dt

We recall that u.,(e.,) € W£(0,T,V(2)) (see the proof of Theorem1). This
means that we can write

{dﬁuen(t,een)/dsz,duﬁﬁ(t,een)/dt)wm
+ en (A(t, e, )due, (t, e, ) /dt, du. (2, eén)/dt)v(m
+ (B(¢, ec, )due, (2, ec,) /dt, due,, (2, ec,. )/ dt)
(4 [(Olictenn )., (wertrec,))] /dt, ducy (2, e,) dt)
+ (d[grad @, (u.,(t, €., ))]/dt, du,, (2, ﬂe.,)/df)v(g)
= (d[f(t) + Bec,]/dt, duc, (1, ec, ) /dE)y qy
— €En ((d(-A(t! eé“)/dt)uen(t, eeu)l dufn(ti eeu)/dt>V(ﬂ)

— ((d(B(t, ec,.)) /di)uc, (t, ec, ), duc, (1, ec, )/ dt)w q)
forae. t€[0,T]and ¢, >0, n=1,2,...

V(Q)

But, then we have

d(||due, (t, ec, )/t )/t
+ 2en (A(E, €e,, )due, (B, €c, ) /dt, due, (¢, ee, ) /dt)y q)
+ 2(B(t, ec, )due, (t,ec,)/dt,du,(t, 3en)/dt)wm)
+ 2<d [(ar,c(eeﬂ ), (e, ecn)}] [dt, due, (,ec,)/dt) .
+ 2(d[grad @, (ue, (1, ec, )] /dt, due, (4, ec, ) [ty (3.29)
= 2(d[f(t) + Bec,1/dt, due, (1, ec,)/dt)yyay
— 26, ((dA(L, e, ) /dt)ue, (L, ec,), due, (L, esﬂ)/dt)v(m—

= ((d‘B(t? eﬁn)/dt)uin (t! 65“), duEﬂ (t’ een)/dt>wtn)
forae t€[0,T]and e, >0, n=1,2,...

From the monotonicity of (0lx(.,, a))e, (or grad ®.) we obtain inequality
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(d [(31;;(,,“ _n))c., (ufn.(tl een))] /dt: du!n(t! 8%)/{“)1/(0) 2 0

or
(dlgrad @, (uc, (1, ec,))l/dt, du,(t, ec, ) /di)y gy > 0
for a.e. t € [0,7]

Then by virtue of (H0)4, (H0)s, together with (3.29), (3.30), we verify that
d((|due, (2, e, )/ At 7))/ dt + cacnllduc, (2, e, ) /dt q
+ cl|duc, (t, ec,) /Aty /dt < cas (3.31)

(ca, eB, cap are positive constants, independent on €,)

(3.30)

Integrating (3.31) from 0 to s, 0 < s < T, we obtain in particular

(| due, (5, een)/dtllizay < cas
Hence

sup ”dufn(si efﬂ)/dﬂﬁf(ﬂ} S cAB (3'32)
s€[0,T]

The constant ¢4z in (3.32) is finite and independent of ¢,,, therefore:
The sequence {du,,(ec,)/dt}, remains in a bounded set of L (0, T, H()).
We then integrate (3.31) from 0 to 7" and we get

T
lldue, (T, ec, )/ dtzqy + CAfn/ lldue, (2, e, ) /dely (qydt
0

T
em [ (e, (4 0,y oyt < canT
0

This shows that the sequence {du._(e,)/dt}, remains in a bounded set of
Ly(0, T, W())NLeo(0, T, H(Q)) and the sequence {\/e,duc,(ec,)/dt}, remains
in a bounded set of L,(0,T, V(Q)).

Then, one has (for a subsequences {duc,, (e, )/dt}x, {\/en,duc,, (ec,, )/dt}x)

duc,,, (ec,, )/dt — dw/dt
(weakly) in Ls(0, T, W(2)) for €,, — 0 (k — 4o0)

Ve (due, (e, )/dt) —0 (335)
(weakly) in Ly(0, T, V() for €,, — 0 (k — 400)
Moreover, by virtue of (3.27) and (3.33) we conclude that
Ue,, (e, ) —w  (weakly) in W3 (0,7, W(Q)) (3.34)
U, (t,ec, ) —w(t)  (weakly)in W(Q) for a.e. t € [0, 7] (3.35)
t, (e, ) —w  (weakly star) in Lo (0, T, H()) (3.36)
due,, (ee,, )/dt — dw/di (weakly star) in Lo (0,7, H()) (3.37)
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ey Uey, (€e,, ) =0 (weakly) in W3(0,T,V(Q)) (3.38)
Ve te,, (tee,, ) =0 (weakly) in V() for a.e. t € [0,T] (3-39)

Since ue, (1€, ) € K(ee,, ) by assumption ((H0)4,2°), (3.35) we have
w(t) € K(ej, ) as well. From this one has

A

w(t) € K(ef, Q)  forae. t€[0,T] (al)

From the relations

tte, (1, €c,, ) = Ue,, (0,€c, )+ j.; (due,, (s, €en, )/ds)ds
w(t) = w(0) + fn (dw(s)/ds)ds t € [0,T],

we obtain due to (3.34), (3.35) the initial condition
w(0) =0 € K(ef, Q) (a2)

For any z € Ly(0,T,V(Q2)) we have by assumption ((H0)4,5°,6°) (and by
virtue of (3.39))

S

[ (A )0
E,.k—rﬂ

vin)

T

g gglo% [ (A e )20, Vs, (ee,))
E"k —

T T
s /ﬂ (A, €3)2(2), 0)y gyt = /0 (AL, €8)0, 2(8))y

v(a)

and therefore

'A(eéﬂok ) ' Eﬂkucnk (efnk ) =X A(ea)o =0

(weakly) in Ly(0,T, V* (), (3.40)

note that

(A€, 4@ 0.7, | = 0V

On the other hand by the analogy with (3.40) we obtain
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T

i i,e. en, (Lr€ep, ) 2(2 di
L (Bt Ceny ey (10, o200,
an—"‘o

= g T<B(t,etnk)z(t),ucnk(i,eg,,k»

k—4+o0 JO
(€ny—+0)

T
= [ Bt ea)zte) wltw et

w(Q)

This means that

B(ﬁeuk )”en,, (een;,) — B(ep)w

(weakly) in Ly(0,T, W*(Q)) for k — +00 and €n, — 0 (3.41)

Furthermore, in virtue of the monotonicity of B(Z, e.,, ) (due to the assumption
((H0)5,4°)) we know that

/: (B(t, eny Wew, (6 €any )y Uen, (b €en, ) — w(t))

w(Q)

2fT<B(t,eenk)w(f),uenk(t,efnk)—w(t]> dt, k=12,...
0

wi(Q)
Passing to the limit we have

T
2 lim (Blt, e Y0(t), tr, (1 o, )>
0

k—+oo
(cnk—pﬂ)

w(a)

T

< lim <B(t,efnk Ve, (¢, e, ), e, (s €cq, )>
k—+oa J0
({Hk—’ﬂ)

w(Q)

T

+ lim [ (Bt e, ult), u(t))
e
Eng =

w(n)

This yields (together with (3.35), ((H0)g,6°) and (3.21))

T

limint [ (Bt ceu, Y, (s 00n, ), (i) o

(eny=0) (3.42)
i
> [ (Bt eq)u(®), w)wiaydt

Let a(t) € K(eg, Q) (for any t € [0,T7]) be an arbitrary element and {ae, (¢)}x
such a sequence (t € [0,77) that
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ae,, (t) — a(t) (strongly) in V() for any ¢ € [0,77], where (3.43)
@e,, (1) € K(ec,, ), E=1,2,...

(The existence of {ac, (t)}x is ensured by ((H0)4,2°)). Then we have (by
(3.22))

i
fo <dﬂm (t,ec,, )/dt, ac,, (t)>vm)dt
T
_|_/ <sm«4(i,€sn,‘)”Enk(t’ef"k)
0

T
- Bty €cu Yheny (F €cny )s Qe (8)) i+ fﬂ (a,,, (1))dt

V()

- ]: <f(t) + Bee,, , @, (1) — ue,, (1, ecuk}> dt (3.44)

w(Q)

T
> / due, (,ec, )/dt,ue, (T e,
[ (v, (e, )t e (1 000,)

V()

T
[ (B e Y, (et )

W)
T
+ / ®(ue,, (t,ec,, ))dt
0

From this inequality (using (3.35), (3.42) and (3.43) too) we get (the function-
als on the r.h.s. of (3.44) are lower semicontinuous on the spaces V(Q2) and
L2(0,T, V(R)), respectively, which follows from (H0)s, (M4), (1.11))

T 5 |
/D (dw(f)/df:a(f)-w(f))vm)dfﬂL_/u (B(t, eg)w(t), a(t) — w(t))y(q)dt

T T T
-i-/a ®(a(t))dt —/ﬂ D(w(t))dt 2/0 (f(t) + Bep, a(t) — w(t))w(mdt

for a.e. t € [0,7T], for all a € L1(0,T, V(Q)) such that a(t) € K(ef, Q).
But from Proposition 3 (Brezis, 1972, App.I) we arrive at
(dw(t)/dt, a —w(t))y(qy + (B(t, €g)w(t), @ — w(t)) w(q)
+ ®@(a) — 2(w(t)) > (f(t) + Beg,a— w(t))w(n) (3.45)
for a.e. t € 0,7, for all a(t) € K(ef, Q)

A
and therefore we have also (3.45) for all a(t) € K(ej, 2) (by density). The last
inequality together with (3.34), (al), (a2) and the uniqueness of a solution of
(3.4) imply the relations:

w= uu(ea} (346)
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uﬁﬂ (85n ) - uﬂ(ea)

(weakly) in W3(0,T, W(R)) for n — 40 (¢, — 0) (3.47)

Next, in order to provestrong convergence u, (e, ) — uo(e}) in Ly(0, T, W(£2))
and in C([0XI], H(S2)) we consider (regarding to (3.22) and (M5))

T
|| et ec) /et eyt

T

+ / (E?I-A[t: ean)ue,. (is 8,5“) ik B(i: e“:n)ucn (t,ee_‘), “En(t; een))V(ﬂ)dt
UT T

+/n q>(uf,,(¢,efu))dngo (dten (& €0 )/, ven (D) (3.48)
T

+-/0 (an(trﬂe,L)“En(taeen)+B(tvﬁsn)ucn(trecn)rvc“(t»‘i’(n)dt
T T

+f0 tP(vf“(t))dt—L (F(2) + Beaw, veult) = e, €0yt

where u,, (t, e, ), Ve, (t) € K(ec,,R) for ae. ¢ € [0,T], ec, € Usa(Q).
We deduce from (3.48) that

lim inf(1/2)Jue, (T, e )llfray

1 —+ 400
E€n_"a)

T
Hlimoup [ (Bt ee, e (1 6,), e (b 0wyt
n—+oo 40
(E“-—oﬂ)
T
< lim (due, (t, ec,)/dt, ve, (1)) y (q)dt
n—+4o0 J
(e,.-.o)
T (3.49)
+ lim (B(t:etn)ufn(t:ein)iUEn("‘))W{ﬂ)dt
ek

T T
+ lim [ ®(ve, (t)dt —liminf | ®(uc,(te,))dt

n—+o0oc Jo n—+4oo Jp
(en—0) (ea—0)
T
- lim (f(t) + Bec,, ve, (1) — e, (¢ €c,)w (o)t
et

Hence by (3.41), (3.43), (M4) and (3.47) one has (we set ac,(t) = v, (t) and
v(t) = a(t))
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&
limsupf (B(t, ec, Yue, () €e, ), ten (L € ) wiaydt
0

=00
(en—0)

< ] (duot, €3)/dt, () — wo(t, €8)) y
i T (3.50)
+ f (Bt e5)uolt, ) vt + [ (Ot

T T
_f B(uo(t, ef))dt -f (1) + Beb, u(t) = wolt, €8)) oy &t
a 0
for a.e. ¢ € [0, 7] and for all v(t) € K(e3,)

’\ .
(by density one concludes (3.50) also all v € K(eg, 2) and therefore (by taking
A
v(t) = uo(t, ep) € K(eg, Q) in (3.50)) the inequality

T
lim sup / (B(t, e, )uen (b €en )y Uen (2 €6, )y dt
0

n—4-oco

(en—+0) (351)
T
S/ (B(t, e5)uo(t, €5), vo(t, €5)) w(qydt
0

is verified. Using it we get via (3.42), (3.47) and (3.51)

T
lim (B(t:eﬁn)ufn(tiezn):uﬁn(t:‘gﬁn))W(n)dt

n—+4oco Jg

(ens0) (3.52)
= f: (B, e8)uo(t, e5), vo(t, 5weydt  for ae. t € [0,7]
Next we set
Vi = [ (Bt el ) = ot )]
te, () ee,) — uo(t, )b (qy 4t (3.53)
+ /0 (i, (1, )/t — duo(t, e5)/dt, e (1 ec.) = wolt, €8)) vt
One has
Ve, > (1/2)lte, (5, ee,) — uo(s, 5)lray

; . (3.54)
s / ltea (£ e0) — w0ty €8) 2yt
]

so that it is enough to prove that V! — 0 (for n — +oco) uniformly in 5. But
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thanks to (3.19) where v = u., (%, e, ), one has

Ve, < [ Gt e}/l v et
2 GO IR S
+ [ s iea)tt= [ (@t el wott @yt (59)
— [ (B0 e ) unlt Doyt
— [ ottt = [ (50) + B et ) = ot )iy

Let us consider a function v € La(0,T,V(Q)), v(t) € K(ec,,Q) (for ae. t €
[0,77). Taking v = v() in (3.3) we obtain

/0, (dte, (2, €c,) /b, e, (1, €6)) vyt + /0 ®(ue, (4, e, ))dt
4 [ B e ), e e Do
< [ (et )t e e vy
4 [ At s (), ea vt
+ /ﬂ (Bt e iten (b 00, e (b €y ey i+ /u Bue, (t e )it (3.56)
< [ ents6c0) it o0yt
+ [ enlAt ccen (), vyt
+ ]ﬁ 8 (B(t, ec, Yue, (1 e, ), v(t)) w(a)dt /0 3<I>(v(t))dt

_ /ﬂ (F(t) + Beew, 0(t) — ten (t €0yt

But, by virtue of (3.55), (M4) and (3.56) we can write
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V2 S [ e tee)aot) = walt ey oyt
+ [ et cc ey (1, 0), o) v
[ B e et 00, (0 = wlts eyt (3.57)
+ /n ®(v(t))dt — /0 B(uo(t, ef))dt
= [0 + Beaw, 0) = verts eyt
Hence by (3.47), (3.40) and (3.41) we get |

limsup V; < / (duo(t, e5)/dt, v(t) — uo(eq))y (qydt
n—+400 0
(en—0)

+ [ B0 e5yualt, ), o(0) = wlt, Dot
+ jg (v(t))dt — /U ®(uo(t, ef))dt

= [ 4@+ Bes, o) = walt, )
for a.e. t € [0,T], for any v(t) € K(eg, Q), ef € Uaa(£2)

(3.58)

A
Note that (3.58) is true for any v € K(ef, 2), hence also for v(t) = uo(t,ef)
and therefore lim V! <0, whence the strong convergence in Ly (0, T, W (Q))

n—+4o0
(en—0)
follows.
Now as ue, (e) — ug(e) (strongly) in Ly(0,T, W(RQ)) for all e € Ugg(Q), we
obtain Je, (e, ) < Je, () for all e € Uga(£2) and from this and ((E1),1°) we get

limsup J,, (ee,) < Jo(e) foranye € Uypg(Q) =

(easd)

En—+0

limsup J¢, (e.,) < inf  Jo(e) (4:59)
r(1—v+00 eEUGd(ﬂ)
en—0)

Furthermore, we observe that ((E1),2°) and (3.47) imply

liminf J._(e.,) > L(ef, uo(ef)) = Jo(eh)

Comparing this result with (3.59) we see that necessarily
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2t = 25, thus:  wuo(t,ef) = uo(t,e0)  forae. t €[0,T] (3.60)
This means that (3.47) and (3.60) give (3.20).
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