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This paper deals with the general problem of estimating a sig
nal from a finite number of independent blurred observations. The 
method consists of obtaining unbiased estimators for a family of 
smoothed versions determined by approximations to the identity 
(or, delta sequences), and using a regularization of the inverse of 
the blurring operator. This results in the problem of determining 
two regularizing parameters . Both apriori and data-driven methods 
are presented for choosing them. Numerical examples are presented 
which demonstrate satisfactory estimation even for small data sets. 

1. Introduction 

The problem of estimating an unknown signal from incomplete noisy observa
tions plays a significant role in many applications of mathematics. This pa
per investigates the general problem of estimating an unknown element f of a 
Hilbert space from a finite number of independent blurred observations. Thus 
is applicable to the deconvolution problem, non- parametric density estimation, 
non- parametric regression, and random design models for general inverse prob
lems. The blurring is represented by a bounded, selfadjoint, linear operator 
J{ on the Hilbert space, whose spectral decomposition is known. Here, J{ is 
not necessarily compact .. For non-Hermitian K, the method applies to the 
equivalent problem involving !{* J{, so the Hermitian assumption is only for 
convenience. The method of estimation consists of first obtaining an estimate 
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for a" smoothed" version of the blurred signal K f. This is achieved by a method 
which generalizes the method of delta sequences in Walter, Blum (1979), and 
is realizable in the Hilbert space L2 (1R) as convolution with an approximate 
identity. The second part of the method is to regularize the (unbounded) in
verse of/{ by using some family of spectral functions, such as a smoo'thing or 
a spectral cut-off family (cf. Carroll, Rooij, Ruymgaart, 1991). Thus, two pa
rameters need to be determined, one for the delta sequence, and the other for 
the regularization of K. 

This method introduces an additional degree of freedom to the method pro
posed in Carroll, Rooij, Ruymgaart (1991). This freedom can be used advan
tageously to determine a suitable family of delta sequences by applying wavelet 
theory. This introduces the problem of obtaining a "best basis" as in the recently 
introduced wavelet methods (cf. Donoho, Johnstone, 1993). This generalization 
of the methods presented in this paper will be the subject of further research. 

Both apriori and data-driven methods are presented for the choice of these 
parameters. The data-d~iven method is the usual cross-validation one, (cf. 
Bowman, 1984,i Dey, Mair, Ruymgaart, 1994; Rudemo, 1982; Silverman, 1986; 
Thompson, Tapia, 1990; Wahba, 1977; Wahba, Wold, 1975) which results here 
in a cross- validation score of two variables, rather than the usual single variable 
encountered in traditional applications. 

The general method developed in Section 2 is illustrated in Section 3 with 
a deconvolution problem. Numerical examples for estimating normal and log
normal distributions from samples of size 100 corrupted by the double exponen
tial density are presented. 

2. A general method 

Let ~ be a separable Hilbert space and !{ be an injective, positive, selfadjoint, 
bounded linear mapping from~ into~. Consider the general problem of deter
mining an element f E ~ based on some statistical knowledge of 

p = Kf (2.1) 

To quantify this information, introduce a family of bounded, positive, selfadjoint 
operators {Aa : u > 0} on~ with the property that, for all g E ~ 

Aag---> g, as 0'---> 0 + 

The data is assumed to consist of unbiased estimators rla,l, ria,2, 
AaP· That is, if lE is the expectation operator, for all j 

0 • • , 

(2.2) 

rla,n of 

(2.3) 

To clarify the meaning of lE, let q be a random element of~. That is, there is an 
underlying probability space (0, :F, P) and w ~--+ q(w) is a measurable function 
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on !.1 with values in H. Then lE [q] is the unique element of H which satisfies, 
for all g EH 

<lE [q],g > = j < q(w),g > dP(w) = lE[< q,g >] 

Hence, for any bounded linear A : H ---> H, lE [Aq] = A lE [q]. These properties 
will be used freely throughout this paper. 

From (2.3) it is natural to consider the following unbiased estimator of AaP· 

" 1 ~" 
Pa = - L..J qa,j 

n i = l 
(2.4) 

Since in many applications, the operator I< does not have a bounded inverse, an 
estimator off will be obtained by using a regularization approach (cf. Carroll, 
Rooij, Ruymgaart, 1991; Rooij, Ruymgaart, 1992; Ruymgaart, 1994). Although 
there are many such methods, by virtue of the spectral theory of operators, many 
of these are simply various forms of approximating spectra. Thus, they can be 
covered by introducing spectral functions p01 satisfying the following properties. 

DEFINITION 2.1 For each a> 0, p01 : [0, oo)---> [0, oo) is a measurable function 
such that 
(i) supt:?:O P01(t) < oo, for·all a> 0 

(ii) SUp01 >0,t:?:O tpOI(t) < 00 

(iii) p01 (t)---> t - 1 , as a---> 0. 

The choice p01 (t) = 1/( a+t) corresponds to the classical method of Tikhonov 
regularization. For applications to infinite dimensional problems however, it 
seems more appropriate to employ the spectral cut- off function 

(2 .5) 

which usually renders the regularized approximation more amenable to nume
rical computation . 

To employ this spectral method of regularization it seems reasonable that 
the approximations to the identity Aa be chosen in a manner consistent with 
I< . This can be described as follows. 

By the spectral theorem there exists a 0'- finite Bore! measure Jl. on a space 
S, a unitary operator U : HI ---> L2 (S, JJ.) and a positive function h E L 00 (S, JJ.) 
such that 

(2.6) 

The needed commutativity assumption on A.,. takes the form of the existence of 
a positive function '1/Ja E L00 (S,JJ.) such that 

A.,.= U*M,p,.U. (2.7) 
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Now, as is well-known, a family of regularizing operators for]{ is given by 

(2.8) 

That is, lima--+0+ RaK f = f. 
However, since the assumed estimator Pu is for AuP rather than p, these 

regularizers are not immediately applicable. From (2 .2) and the regularizing 
property of (2.8) it is easy to see that the family {RaAu: a,u > 0} is also a 
regularizing family for ]{. 

THEOREM 2.1 lim RaAuP =f. 
(or,u)--+(0,0) 

DEFINITION 2.2 Ja,u = RaPu 

Since Pu is an unbiased estimator for Aup, it seems natural to estimate RaAuP 
by la,u · The usual integrated mean square error (IMSE) will be used to measure 
the quality of the estimator la,u· 

THEOREM 2.2 For all j, 

E [IIJor,u- /11 2] ::; /(p~(h)(2h2 11-1/Jul 2 + ~E [1Utiu,jl 2]) 

+211- hpa(hWIU !l 2)dJ.L 

PROOF. Since Pu is an unbiased estimator of Aup, 

Now 

IIRaAuP- /11 2 < 2(IIRaAuP- RaPII 2 + IIRaP- /11 2) 

2 j(h2p~(h)l1-1/lul 2 + 11- hpa(hW)IUfl 2 dfL 

Since §u, 1, §u,2, ... , §u,n are independent, unbiased estimators of Aup, the 
stochastic term can be estimated as follows 

E [IIMPa(hJU(fiu- AuP)II 2] 

E [~11 tMPa(hJU(§u,i- AuP)II
2
] 

n j=l 

1 n J 
n 2 ?= p~(h)E [IU(tiu,i- AuPW]dfL 

J=l 
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Now, observe that [lE [IU(tiu,j- Aup)i2] =lE [1Utiu,ji 2]-IU AuPI 2
] hence, 

lE [IIRa(Pu- AuP) II 2
] ~ ~ j p;(h)IE [IUtiu,il 2]dJ.L. 

As demonstrated in the next section, this result can be used to obtain asymp
totic choices for the parameters a and (J' based on regularity assumptions on the 
true solution f. 

However, the main aim of this paper is to obtain a completely data-driven 
method for choosing a and (J' independent of apriori assumptions. As usual the 
method of cross-validation will be employed . 

For each k, let 

THEOREM 2.3 

PROOF. 

The result follows easily. 

(2 .9) 

lE [IIAuKfa,ull 2
- ~ :t(AuKRaPu,k,tJu,k)] 

k=l 

n ~ 
1 
LIE [(AuKRatZu,j,tJu,k )] 
Nk 

n ~ 
1 
L j '1f!uhPa(h)IE [U tlu,j · U tlu,k] dj.t 
j# 

j '1f!;hp,(h)IUpl2 dJ.L 

lE [(A;KR,pu,P)] 

lE [(AuK Ja,u, Aup)] 

lE [(AuKf,,u,AuKf)] 

By the law of large numbers and Theorem 2.3, a purely data- driven method 
consists of determining a and (J' to minimize the cross-validation score 

M(a,(J') = IIAuKJa,ull 2
- ~ :t(AuKRaPu,k,tJu,k) (2.10) 

k=l 
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which can be rewritten in terms of the spectral information as 

(2 .11) 

3. Application to deconvolution 

This section demonstrates the applicability of the method developed in Section 2 
to obtain both apriori asymptotic, and data-driven choices of the regularizing 
parameters. Numerical examples demonstrate good estimates even for samples 
of size 100. 

Consider the problem of determining a density f based on independent sam
ples X 1 , X 2 , .. . , Xn from a random variable 

X = F + E (3 .1) 

where F and E are stochastically independent variables with densities f and w 
respectively. Hence X has density p where p = w *f. 

Assume that w E £1 (IR) and that the characteristic function 

w(s) = 1: eistw(t)dt 

is strictly positive and even on IR. 
Then, the operator K, defined on the Hilbert space H = L2 (1R) to be convo

lution with w, is bounded, injective and does not have a bounded inverse. 
Let :F denote the unitary Fourier transform on L2 (1R). Then J{ = :F* M,;,:F. 
To illustrate the results in Section 2, consider the approximate identity de

termined by the normal distribution. That is 

where 

1 
<p0 ( x) = m= exp( -x 2 /2(]' 2 ) 

y27l'(J' 

(3.2) 

(3.3) 

Other possibilities for Ao include those generated by sine functions (cf. 
lkebe, Kowalski, Stenger, preprint). Other wavelet-based methods could be ob
tained by choosing a family of approximate identities based on cardinal spline or 
Daubechies scaling functicms (cf. Daubechies, 1992). Thus, treating these pos
sibilities as a template, this data-driven method could be expanded to include 
searching for the "best approximate identity" corresponding to a given signal. 
This is similar to the "best basis approach" in Donoho, Johnstone (1993) and 
will be developed in forthcoming articles. 
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With the choice of 'Pa ·in (3.3), the function 

(3.4) 

For each j, choose the following unbiased estimator for 'Pa * p. 

(3.5) 

Regularization will be achieved by using the spectral cut-off function in 
(2.5) which eliminates the need for evaluation of infinite integrals. The range of 
integration will be determined by 

10' = {s: w(s) ~ o:} (3.6) 

The estimator in Definition 2.1 becomes 

jO' a(t) = _1 ], 1/J:(s) (t e- is(t - X;)) ds 
' 27rn I w(s) . 

" J = l 

(3 .7) 

Now, consider the theoretical problem of asymptotic choices based on apriori 
assumptions on the regularity of f. 

As indicated by Theorem 2.2, it is necessary to estimate lE [I U cla,j 1
2], which, 

in this case becomes 

(3.8) 

Using the classical Sobolev space characterization for regularity, consider the 
condition 

ll f llv :S E (3.9) 

for some E,v > 0, where 1 1! 11 ~ = J(1 + s2)"1Ff(s) l2 ds. 
To perform the error estimates, information on the degree of ill- posedness 

of the operator J{ is necessary. As in many cases, J{ is finitely smoothing, the 
following condition is considered, where a, m, M > 0, a ~ 0 are constants . 

(3.10) 

If the errors E are Gaussian, then (3.10) is not satisfied. However this case can 
be handled by a more general treatment which would be similar to that in Mair, 
Ruymgaart (1994). 

THEOREM 3.1 Under conditions (3.9} and (3.10}, if o: = n- 2a/(4a+ 2v+l) and 
u = n-Cv+ 2)/2(4 a+ 2v+l), then the estimator Ja,a in (3. 7) satisfies 
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PROOF. From Theorem 2.2 and (3.8) 

By using (3.6) and (3:10), s E lex => lsl :::; (M/o:)112a and s E Ig => lsl > 
(m/o:)l/2a. 

Hence, by using the inequality 1 - e-x :::; x for x 2: 0, and the assumption 
(3.9), it follows that 

lE [IIJcx,a- /112]:::; C(n-lo:-(4a+l)/2a + 0'40:-2/a + o:vfa) 

for some constant C. The result follows by balancing the orders of convergence 
determined by these three terms. 

Easy calculations and (2.11) show that the data-driven method in this case 
reduces to the problem of minimizing the score 

1 2n 1 ~ . 2 
Mo(o:, u) = V>;(s)((V>a(s)- --

1 
)I- L... e"xi 12 + --)ds 

I n- n n-1 
a j=l 

(3.11) 

Although there is, as yet no mathematical proof that this has a unique mini
mum, numerical simulations indicate this to be true. In the numerical examples 
presented below, it is assumed that the errors have a double exponential distri
bution, so that w(s) = 1/(1 + s 2 ) and the score can be written as an integral 
over the interval (0, L], where L = v'o:-1- 1. 

The numerical results presented below demonstrate this method for recov
ering normal and log- normal densities from a random sample of size 100. 

The first set of results is for the normal distribution with mean 0 and variance 
4. The surface in Figure 1 represents the score M1 , which achieves its minimum 
when 0' = 0.355 and L = 1.0. Figure 2 compares the true density and the 
estimate determined by using these values in (3 .7). 

The next experiment is to recover the log-normal density 

f(x)=~ exp(-
2
\(log.:y), x>O 

21l'O'X 0' f..1 

with f..1 = 50 and 0' = 0.3, as considered in Rudemo (1982). The score M1 (see 
Figure 3), achieves its minimum when u = 3.4 and L = 0.2. Figure 4 compares 
the true density and the estimate. 
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