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We study the relation between the relaxability of optimal control
problems and the type of necessary optimality conditions. For a
given optimal control problem P we show the existence of a special

family M(P) of analogous problems with the following property:
if solutions of problems for M(P) satisfy optimality conditions of

the form of the integral maximum principle, then the problem P is
relaxable via convexificaton. After that, we describe some classes of
optimal control problems for elliptic systems or parabolic equations
w%ich are not relaxable and whose solutions do not satisfy, in general,
optimality conditions of the form of the integral maximum principle.

1. Introduction

The convexification (the passage to the convex hull of the set of admissible op-
erators and functionals) of optimal control problems was very successfully em-
ployed to derive necessary conditions for optimality, see, for instance, Gamkre-
lidze (1975) and Warga (1972) for the case of ordinary differential equations and
Raitums (1989) for the case of elliptic equation. Crucial for this approach was
the relaxability of these problems, i.e., that the price of the original problem is
equal to the price of the convexified one.

On the other hand, one can easily see that the classes of optimal control
problems for which optimality conditions of the form of the integral maximum
principle hold and the classes of relaxable problems often coincide. So, we can
suppose that there is a strong relation between the type of optimality conditions
and the relaxability of optimal control problems. Following this guideline, in
this paper, we consider a specific family M(P) of optimal control problems,
associated with the original problem P, and we show that if solutions of problems
from M(P) satisfy the integral maximum principle then the original problem
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P is relaxable. This result enables us to derive the ”inverse” statement: if a
class M of optimal control problems contains a typical problem which is not
relaxable, then the integral maximum principle is not valid as an optimality
condition for problems of this class M.

After that, on the basis of concrete examples, we describe some classes of
optimal control problems for elliptic or parabolic systems which are not, in
general, relaxable and, therefore, the integral maximum principle can not be
assumed as an optimality condition for problems of these classes.

2. An abstract case

Let W be a real Banach space with elements u,v, w and let W* be the dual
space and < -, - > be the pairing between W and W*. Let A be a set of pairs
(A,I) of operators A : W — W* and functionals I : W — R!. With A we
associate the optimal problem PA:

I(u) — min,
Au=0, (A I)eA ueW.

In typical cases of optimal control problems the set .4 is given by

A= {(A(0)(), I(0)(")) : o € 5} (1)

where § is the set of admissible controls.

Let Z be a set of functionals £ defined on .A. We do not specify here the
representation of functionals £ but for typical cases of the set A given by (1) the
functionals £ can be defined directly on the set §. We always suppose that the
trivial functional £ = 0 belongs to Z.

DEFINITION 2.1 By coA we will denote the conver hull of the set A, i.e. the
set of all convezr combinations of pairs (A, I) € A.

Analogously, as for the set A , we define for the set coA the optimal control
problem PcoA:

I(u) — min,
Au=0, (A,I)€EcoA, ueW.

DEFINITION 2.2 The price of the problem PA is the value
inf{I(u): (A, I) €A, ueW, Au=0}. (2)

Analogously is defined the price of the problem PcoA.
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DEFINITION 2.3 The convezification of the problem PA is the passage from the
problem PA to the problem PecoA. The problem PA is relazable if the price of
the problem PcoA 1s equal to the price of the problem PA.

In what follows we suppose that the following assumptions hold.
1°. Operators and functionals (A, I) € A are defined on W, continuous in W
and have Gateaux derivatives A’(u) and I'(u) respectively.
2°. For every pair (A,I) € coA the equation

Au=0 (3)
with respect to u € W is uniquely solvable. This solution will be denoted
by u = u(A).
3°. For every pair (4, I) € coA the variational equality
L Al(u(A)v,w > — < I'(u(A),v >=0 Yve W (4)
with respect to w € W is uniquely solvable. This solution will be denoted
by w = w(A4,I).

For an arbitrary fixed pair (Ao, Io) € coA, a functional £ € Z and a number
A € [0, 1] we define the auxiliary functional

J(Ao, Io, 6, 0) : A— R,
J(Ao, Io, €, \)(A, I) = Io(ua) + A[I(ua) — To(ua)] + A(A, I), (5)
uy = u(Ao + A(A — Ag)),
and the corresponding optimal problem PA(Ag, Ip, £, X)
Io(u) + AlI(u) — Io(u)] + M(A, I) — min,
Aju+ A[Au— Agu] =0, (A, 1)eA, ueW.

DEFINITION 2.4 The problem PA(Ao, Io, ¥, A) satisfies the mazimum principle
if for every solution (A, L, us) of this problem the following relationship

Lo(us)— € Axti, we > +4(As, L) <
< I(ua)— < Auy, wi > +H(A, I) V(A I) € A, (6)
we = w(Ao + MAs — Ao), I + AL, = L)),
holds.

It is easy to see that for £ = 0,A = 1 the inequality (6) coincides with the
standard integral maximum principle for the problem PA.
Now, let us introduce the following additional assumptions.
4°. For every fixed pair (Ag, ly) € coA, number A € [0,1] and number € > 0
there exists a functional £, € Z such that
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(i) [Le(A, D) <e, V(A ) €A
(ii) the problem PA(Ay, Io, £, ) has a solution.

5°. For every fixed pair (A, ly) € coA and functional £ € Z and a chosen
(A, I) € A the function
Y= w,b()\),) € ,[01 1]:
P(A) = J (Ao, Lo, £, N)(A, ) = (7)
= Io(uy) + A[I(up) — To(ur)] + M(A, I),
uy = H(Ag - A(A T A(})),
has the directional c}erivative
V() = lim <[$(A +98) —$(A)],
this derivative has the representation
‘(}’)’(A) — I(TJ);) = Iu(u;\)— & A’LE)\ = AQUA, w) > +B(A, I),
wy = w(Ag + A(A — Ag), I + A(I — Ip)), (8)
and the function 1 is continuous with respect to A € [0, 1] uniformly with
restpect to (4,1) € A.

REMARK 2.1 The assumption 3° is fulfilled if the space W is reflexive and
operators A'(u(A)) : W — W™ are invertible what often is supposed when
concrete optimal control problems are investigated.

REMARK 2.2 The existence of a set Z for which the assumption 4° is fulfilled
can be treated on the basis of results obtained by Ecland, Temam (1976) or
Raitums (1976). For the set A given by (1) it is necessary only to demand a con-
tinuous dependence of solutions u = u(A(c)) and functionals I = I(o, u(A(c)))
upon controls in suitable topologies. After that the set Z can be defined as a set
of some special functionals £ : § — R!. Some results on continuous dependence
of solutions of elliptic and parabolic equations upon coefficients of equations one
can find, for instance in Raitums (1989, 1992) and Ladyzhenskaya, Solonnikov
and Uraltseva (1967).

REMARK 2.3 The existence of the directional derivative 9’(A) and the repre-
sentation (8) demand, of course, the invertibility of operators

Ap(un) + AM[A (ur) — Ap(ur)] : W — W™,

If operators and functionals (A, I') € A have continuous Frechet derivatives then
the representation (8) can be easily obtained by means of the implicit function
theorem and standard reasoning. If operators A have only Gateaux derivative
then the results of Altman (1979) can be used.

TurorREM 2.1 Let the assumptions 1° — 5° be satisfied.

If for every fized (Ao, In) € coA, A € (0,1] and € > 0 there ezisis a £, € Z
such that |£.(A, I)| < € for all (A,I) € A and the problem PA(Aq, Io, €, A) has
a solution which satisfies the mazimum principle then the price of the problem
PeoA is equal to the price of the problem PA.
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ProoF. Let the pair (Ag, Iy) € coA be fixed. We will discuss the properties
of the function

h = h(X), A€ [0,1],

h(k)-E(Agl)fmJ(Ao,Ia,U.A)(A,I)-

By the assumptions of the theorem for fixed Ap € (0,1) and for every £ > 0
there exists a functional £. € Z such that |€.(A4,I)| < € for all (4,1I) € A
and the functional J(Aq, lo, £, Ao) attains its minimum. Let the corresponding
solution be (A, Iy, us) and

he(A) = (Af}l)fe.A J(Ap, Io, £, N)(A, I), A > Aq.
By virtue of assumption 5° we have that
he(X) = he(Ao) < J(Ao, Io, be, A)(Ax, L) —
—J (Ao, I, £e, Mo)(As, L) =
= [L(us) — To(us)— < Asun — Ao, wi > + (9)
+£. (As, L)X = Ao) + 0(A = Ao),
we = w(Ag + Ao(As — Ao), Io + Mo(Ic — In)).

Because the triple (A, I, u,) as a solution of the problem
PA(Ao, Ip, £e, Ao) satisfies the maximum principle then

La(u) = I(us) = <€ Astty — Auy, wa ><
< L(A, )L (As, L) < 2, (10)
V(4,1) € A.
From (9) and (10) it follows that
he(A) = he(Ao) < [Lo(ux)—
—Ip(us)— <K Astty — Apte, wy > +
+0e(Aw, L)X = Xo) + oA — Xg) < (11)
< (26 +€)(A — Ao) + (A — Ao) < 3€(A — Ao) + 0(A — Ao).

By construction, |he(}) — h(A)| < €, therefore, from (11) and arbitrarity of
& > 0 we have that

R(A) — h(Xo) < he(A) — he(Xo) + 26 <
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< %64 3e(h = Xo) +o(h=Xo) Sold=Xa), A

From assumption 5° it follows that the function A is continuous on [0, 1] and
the last relationship is valid for all 0 < Ag < A < 1, hence,

h(}) < h(Xo) if 0 < Ao < A< 1.

But A(1) is equal to the price of the problem PA and h(0) = Iy(u(Ao)).
Because the pair (Ag, Iy) € coA is arbitrary then we have the statement of the
theorem. |

COROLLARY 2.1 Let the assumptions 1°-5° be satisfied. If the price of the prob-
lem PcoA 1s less then the price of the problem PA then for some (Ao, Iy) €
coA, A € (0,1] there exists an £ € Z such that the problem PA(Aq, Iy, £, A) has
a solution which does not salisfy the mazimum principle.

The meaning of this statement is as follows.

Let us suppose that some class of optimal control problems contains a char-
acteristic problem P.Ag for which the price of the problem PcoA is less than the
price of the problem PAy. Then we cannot expect that the maximum principle
will be valid, in general, for this class as a necessary condition of optimality. Be-
sides, sometimes it is easier to construct an example where the convexification
is not successful than to prove that the maximum principle is not true.

On the other hand, it is easy to see that if the convexification does not change
the price of the problem then under some regularity conditions a necessary
condition of optimality will be valid in the form of the maximum principle.
Indeed, if the triple (A., I, u.) is a solution of the original problem P.A then
it will be a solution of the problem PcoA too. But for the problem PcoA it is
necessary to discuss only the directional derivatives

d
ﬁJ(AMIMDsA)(A:I)

which will be of the form (8).

3. Optimal control for elliptic and parabolic equations

In this section on the basis of concrete examples we will describe some classes of
optimal control problems with distributed parameters for which the maximum
principle is not valid, in general, as a necessary condition of optimality. More
precisely, we will mainly discuss the case of elliptic systems. Results concerning
parabolic equations will be some consequence of the elliptic case.

Let n,m,r be integers, let R*, R™, R” be Euclidean spaces and let  be a
bounded domain in R™ with Lipschitz boundary Q2 and points ¢ = (21, -, z,) €
Q.
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We introduce the spaces

LINQ) = Lo(Q) x -+ x Ly(R),1< ¢ < o0, (12)

-
T

o [+]
Wn = Wi () x -+ x Wi (Q),

m

V= La((0, ;W () () Beo((0, 13 L),

o o
where L, (), W3 () are standard Lebesgue and Sobolev spaces W1 () con-
sisting of functions which are equal to zero on the boundary 9Q in the sense of

the embedding theorem. For an element u = (u!,---,u™) € W,, we will use the
notation uy = (ul ,---,ul ;- um).
Let
o:Q—2%

be a multivalued map with a countable dense set of measurable selections (see
for instance Castaign, Valadier, 1997) such that all II(z) belong to a bounded
set of " and let

S={o= (¢, -,0") € L{(Q) : o(z) € U(z), z € Q) (13)

be the set of admissible controls.
With every ¢ € § we associate an operator A(o) : Wy, — (W,,)* and a
functional I(o) : Wy, — R,

A(o)u = —divA(z, 0, u,uy) + a(z, o, u, uz), (14)

I(o) := /n 9(z,0,u,uz)dz, (15)

with some fixed matrix-function A and vector-function a whose elements are
Caratheodory functions.
Our optimal control problem reads as follows

I(o)u — min,
cES, ue Wy, A(o)u=0, (16)

where operators A(c) and functionals /(o) are defined by (14) and (15) respec-
tively.

We propose that for m > n the maximum principle is not valid, in general, as
a necessary condition of optimality for the problem (16). Moreover, if admissible
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controls do not depend on some spatial variable, for instance &, then the result
is the same for m = n — 1 too.

To prove this it is enough, according to the corollary 2.1., to construct ex-
amples of the sets A, Z for which the convexification reduces the price of the
problem PA and the auxiliary functionals £ € Z are in the form (15) too.

To began with, we recall the following results.

LemMMA 3.1 (RArTUMS, 1976) Let Zo be a bounded closed subset of a real Hilbert
space Z, let I be a lower semiconlinuous and bounded below functional defined
on Zg. Let there exist a constant cg and a funclional p defined on some linear
manifold Zy C Z wilth Zy C Zy such that

p(z) >0, Vz € Z,

p(z) < co, Yz € Zy,

POzt + Xaza) < Malp(e1) + Palp(z2), ¥u, s € RY,
V21,22 € 4.

Then for every fized &g € 7Z and € > (0 there exists an element € € Z such that
(i) 11§ = &oll <&
(ii) the functional z — I(z) + e K€ €,2>>
attains its minimum on Zyp.
If, additionally, the value p(&y) is defined and finite then the element & can
be chosen such thal
(i) (€ — £0) <.
Here < -, - > 1s the scalar product in Z.
Particularly, if Z = L(;)(Q) and Zo = 8 then the functional p can be chosen
as

p(z) = “zl |L£,’;’(n]'

LEMMA 3.2 (Ra1TUMS, 1992) Suppose that the matriz-function A = A(z,o,
u,() and the vector-function a = a(z,0,u,() are such that
(i) A is uniformly monotone with respect to ¢ (uniformly with respect to ¢ €
Q,0€8,u€ Wn);

(ii) if a sequence {ug} converges weakly in Wy, to ug and a sequence {0y}
converges sirongly in S to og then the sequence
{A(:, 0%, Uk, Uoz)} converges strongly in (Wy,)* to A(:, 00, uo, toz);

(i1i) if sequences {or} and {uy} converge strongly in S and Wy, 1o oo and ug
respectively then the sequences {a(:, ok, ur, ukz)} and {A(:, ok, ug, tgz)}
converge strongly in W, to a(-, 00, uo, uoz) and A(:, 0o, ug, uoz) respec-
tively;
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(iv) A and a define Nemilskii operators which map bounded sets from S x W,

into bounded sets in L{"*™(Q) and L{™(Q) respectively where q is some
constant greater then 2n/(n + 2).

Then, if the sequence {0} converges strongly in § to o and the correspond-
ing sequence {ug} of solutions of equations

A(og)u=0,%k=0,1,2,---,
is bounded then the sequence {ug} converges to uy.

REMARK. In Raitums (1992) this result is proved in slightly different formula-
tion.

These results give that for wide classes of optimal control problems of the
type (16) (provided there is unique solvability of state equations) we can consider
as Z the set

Zi={t=, -, 0) e LOQ)(o) = LZ%W, 12l < 1}.
=1

All these desired conditions (including 1° — 5°) are satisfied for the optimal
control problems considered below in examples 3.1-3.4.

Now on the basis of cencrete examples of optimal control problems we will
describe some essential properties of equations and functionals which can ex-
clude the validity of the maximum principle.

In what follows we take

Q={zeR?: || <3},

Do={zeQ:|z|<1},D={z € Q:|z| <2},

S={c€Ly(Q):0(x)=+1lor —1, z € Dg;o(z) =0, ¢ € Q\Dyp}.
Let, additionally, ¢ be a function

/L |z] < 2,
('O(E)z{ (2] =2)*+1, |=|>2.

ExAMPLE 3.1. Minimize the functional

I(o,u) = /S][(Vul — Vg')? + (Vu? — Vg?)?|dz (17
subjéct to

ce8u=(ul,u?) eW,

div(2 +0)Vu! = f13 TeEQ, (18)
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div(2+0)Vu?l = f?, z € Q,

where
g'(z) = 219(2), 9°(2) = z29(z), 2 € Q, (19)
P =2Ag8t, P =2/g2

Here and what follows we denote by V f the gradient of the function f ,
by A — the Laplace operator and by < -, > the scalar product in Euclidean
spaces.

The convexification of the problem (17) and (18) is equal to the passage from
the set S to the set coS. The set coS contains the element o = 0, therefore, the
price of the convexified problem is equal to zero and the corresponding solution
of the problem is (¢ = 0,u! = ¢!, u% = g?%).

We wish to show that the price of the original problem (17) and (18) is

greater than zero. We argue by contradiction. Let there be a sequence {o}, ur =
u(or)} C S x Wy such that

I(ok,uz) — 0 as k — oo. (20)

Because u; € W; then from the convergence (20) it follows that uy — (g, g2)
in Wy as k — oo and, as a consequence,

(Vub, Vu2) — ((1,0),(0,1)) in D as k — oo.
From equations (18) with test functions
n=(n',1%) € Wa, n*(z) = n°(z) =0 for z € Q\D,

we have that

2 .
0=>_ [ [(2+0x) < Vui, V' > -2 < V¢', Vni >]dz =
=1 D

2 2
22/ gk<v9‘,vq*>dx+22] < Vui — Vg, Vi > dz +
i=1 /D i=1 4D

3 - . .
+E/ o < Vup, —Vg¢',Vn' >dz =

i=1 VD

= 2/ ordiv n dz + ex||n||lw,, (21)
D

where ¢ — 0 as £ — oo.
From Temam (1979) there follows the existence of elements n, € Wy and
constants ey, ¢; such that

divm:ak-—ck, C;,-:/ O'kdx,
D
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[Inkllw, < eullok — ckllz.(py,
ne(e) =0, 2€eO\D, k=1,2,:-.

Hence,

0= lim eg||nk|]| = lim 2/ ordiv mpdz =
k—oo k—o0 D

= lim 2/ (o0 — ck)div qpdz = lim 2/ (o — ck)?dz >,
k—oa D k—o00 D
because og(z) = +1 or —1 in Dy and ox(z) = 0 in Q\Dy.
This contradiction shows that the price of the original problem (17) and (18)
is greater than zero. Thus, according to corollary 2.1., there exist a g € coS,
a A€ (0,1] and a £ € Lo(2) such that the problem

/ [(Vu! = Vg')? + (Vu? — Vg?)? dz + A] fo dz — min,
D Q

(o,u) € S x Wy,
div (2 + 0o + A(o — 09))Vu! = ! in Q,
div (2 + 0o + A(o — 09))Vu? = f? in Q,

has a solution (¢, u.) and for this solution the maximum principle does not
hold.
Characteristic properties of this example are

(1) m=n;

(2) the principal part of the differential operator depends on controls;

(3) the cost functional is not weakly continuous;

(4) the set S of admissible controls is not convex.
ExAaMPLE 3.2. Minimize the functional

i) = f [(u! — g')2 + (u? — g2)%]dz (22)
R
over (o,u) € S x Wy subject to
Au1+a—a—a+adivu—2u1:ﬁ,x€§2, (23)
T

Au2+a—i—a+adz’vu—2u2:fz, z €9,
2

where

g'(z) = —z10(z), ¢*(z) = —z20(z),z € Q,
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f=A0g" -2, 2= Ag® - 2¢%

The convexification of the problem (22) and (23) is equal to the passage to
the set coS as a set of admissible controls. Hence, the price of the convexified
problem is equal to zero and the corresponding solution is (¢ = 0, u! = g!,u? =

9%

Let us denote by u = u(¢) the solution of the equation (23) with o € 8.
The set {(o,u) € L2(2) X Wy : u = u(o),0 € ¢S} is bounded, hence, weakly
sequentially compact. Let sequences {0} C § and {ux = u(ox)} C Wa converge
weakly to g and ug respectively. We intend to derive an equation which will
be satisfied by the element ug.

It is obvious that properties of the weak convergence of the sequence {u;}
are fully determined by terms 3‘2—10' and aizzcr. Hence

Uk:u0+vk+wksk=l:2:"'l (24)

where v — 0 strongly in Wy as k — oo and elements wy € W» are solutions of
equations

P o
Aw} + Tﬁn(gk —0p) = 0in £,

a .
Awi + ﬁ(ok —0g) =0in Q, (25)

Wg = (wllwg)i k= 132!' "
respectively.
If we substitute expressions (25) in equations (23) with ¢ = o} and pass to

the limit & — co then we will obtain

Auf + iag + oodivug — 2ud + w J‘lim [ordivwg] = f! € Q,

AuZ 4 32200 + oodivug — 2uZ + w klim [ordivwg] = f2 € Q.
2 —+00

Here by wlim we denote the limit in the sense of weak convergence,
By means of the Green’s function of the Poisson’s equation we easily obtain
that

divwg = —(o) — 00), k=1,2,---.

(If functions ok, 0q are smooth then this result can be obtained from (25)
by simple calculations).
Therefore,

wklirn [ordivwg] = —w kiim [ox(or —00)] =
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=w lim oxoo — w lim (0})? = (00)? = x,
k—co . k—o0

where x is the characteristic function of the set Dy (in this set |ox(z)| = 1).
Thus, we have that the limit element ug is a solution of the system

i) ‘ 2
Aud + 6‘+$100 + ogdivug — 2uf + (00)2 — x = f* in Q,

Aud + %cf@ + codivug — 2ul + (00)? — x = fZ in Q.

We point out that the set G.Ag of all operators B(ayp) : Wa — (Ws)* corre-
sponding to the equation (27) with oo € 23S is in fact the G-closure of the set
Ay of all operators A(c) : Wy — (W>,)* corresponding to the equation (23) with
o € 8. More details of G-convergence (or SG-convergence) of elliptic operators
of the type (14) can be obtained in Raitums (1985, 1989).

It is obvious that the set G.Aq is not convex.

Now we are able to discuss the question of the price of the original prob-
lem (22) and (23).

Let us suppose that this price is equal to zero and that the {oj,u; =
u(ok)} C 8 x Wy is the corresponding minimizing sequence.

We can assume that this sequence converges weakly to an element (og, ug).
Then from the weak continuity of the functional in (22) it follows that uy =
(9%, 9%)-

On the other hand the element ug has to satisfy the equation (27) with oyg.
Easy calculations show that this leads to the relationship

(27)

f{—aode‘vn + [(00) — x — 200)(n" +7°)}dz = 0, ¥y € W,
o
or

o .
5—3‘:100 + (09)3 —x—200=01inQ, (28)

;TEO'U+(O'Q}2—X—200 =01in Q,

in the sense of distributions.

o

From (28) it follows that g €W, () and as a consequence — oy € C(Q2).

Because ag(z) = 0 in Q\ Dy, standard calculations for equations (28) show
that max{|og(z)| : © € Do} > 1 what contradicts the definition of the set & and
elementary properties of the set ¢oS.

This contradiction ensures that the price of the original problem (22) and
(23) is greater than zero. The construction of a concrete example where the
maximum principle is not valid is similar to the case of example 3.1.

Characteristic properties of the example 3.2. are

(1) m=n;
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(2) the principial part of the differential operator depends on controls;
(3) the set of admissible controls is not convex;
(4) the G-closure of the set of admissible operators is not convex (that allowing
consideration weakly continuous cost functionals).
ExampLE 3.3. Let m=1,Q = (0,1) x Q. We have to minimize the functional

I(o,u) = /Q(Vu — Vg)*dtdz (29)

over (o,u) € § x V subject to

u, = div(2+0)Vu+ f,(t,z) € Q, (30)
uli=0 =0,
where
g(t, z) =tzip(z) + t.2:02(p(:c), (t,z) € Q,
f=g—240y.

The corresponding convexified problem is defined by the set coS and has a
solution (¢ = 0,u = g) for which the cost functional I(0, g) = 0.

If the price of the original problem (29) and (30) is equal to zero and
{ok, ur = u(o)} C & x V is the corresponding minimizing sequence then argu-
ing analogously as in the example 3.1. we get that

[ o1 < V4,99 > dtde = enlvll, W e} (@), (31)
Q

er — 0as k — oo.

Let us choose
¥ = (t)n' (z) + Aa(O)n*(z)
with arbitrary n = (11, 72) € Wa and functions A;, A2 such that

1 1
/ tAr(t)dt = 1,] t2Xq(t)dt = 1,
0

0

1 3
/ tAo(t)dt =0, f t2X1(t)dt = 0.
0

0

Then from (31) it follows immediately that (controls o} not depending on
time variable t),

/ ordiv ndz = &||n||,¥n € Wy,
a
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6 — 0 as k — oo.

This is the same situation as in the example 3.1. Hence, the price of the
original problem (29) and (30) is greater than zero.

The continuous dependence of solution of linear parabolic equations on co-
efficients is discussed, for instance, in Ladyzhenskaya, Solonnikov and Uralt-
seva (1967). These results suffice for the existence of an example of optimal
control problems

I(o,u) = L(VU - Vg)2dtdz + A j;? {odtdz — min,

(o,u) €S x V,
up = div(2 + o9 + A(c — 09))Vu+ f in Q
ull.—_ﬂ ={ 3

with some g € coS, A € (0,1], £ € Loo(@Q) for which there exists a solution but
this solution does not satisfy the maximum principle.

The same reasoning is valid for cases of elliptic equations where controls do
not depend upon one or more spatial variables.
EXAMPLE 3.4. Let m =1 and Sy = {¢ € § : o does not depend on z3 in Dy}

We have to minimize
I(o,u) = f(u —9)%dz (32)
n
over (o, u) € Sy x Wi subject to

Au+ ior+:;"m,_.l—211::_,*', z € Q, (33)
61:1

where
g(z) = —z19(x), z € Q,
f=0g—2g.
The convexified problem has a solution (¢ = 0, = g) and the price is equal
to zero.
If {ok,ur = u(og)} C So x Wi is the minimizing sequence for the problem

(32), (33) and o — 0q, up — ug = g weakly in Ly(2) and W respectively as
k — oo then analogously as in example 3.2 we get that ug satisfies the equation

B(oo)u = Au+ -5'2—00 + ooz, + (00)° —x —2u= fin Q.
1-
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Because the function oy does not depend on 5 in Dy then almost the same
reasoning as in example 3.2 gives that there is no element o € coSy for which

B(o)g = f in Q.

Hence, the price of the original problem (32) and (33) is greater than zero.
For these two examples characteristic properties are
(1) the set of admissible controls is not convex;
(2) the principal part of the differential operator depends upon controls;
(3) admissible controls do not depend upon one or more variables;
(4) either the cost functional is not weakly continuous or the G-closure of the
set of admissible operators is not convex.

We point out that a very special form of equations and functionals in these
examples is not essential. It is obvious that for small enough perturbations of
equations (or functionals) which maintain the continuity of inverse operators
and do not lead out of the class given by (15) and (16) the fact of nonequality
of prices remains.
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