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In this paper we prove, using the Carleson-Hunt theorem on the 
pointwise convergence of Fourier series, that the wavelet inversion 
formula is valid pointwise for all L2-functions, and also without re­
strictions on wavelets. Moreover, we formulate and prove the same 
result for all LP-functions, 1 < p < +oo . 

Introduction 

Wavelets developed from interdisciplinary origins in the last twenty years and 
the literature on wavelets is growing rapidly (for detailed bibliography we re­
fer to Daubechies, 1992 and the references therein) . Their importance comes 
from wide applicability of the subject (data analysis, image compression and 
enhancement, computer vision, subband filtering scheme, characterizing func­
tion spaces, like BMO, Sobolev, and Besov spaces). One of the most important 
features of the continuous wavelet transform is the inversion formula . The main 
idea is to recover a function f from its wavelet transform, just as in Fourier 
inversion formula . The inversion formula is achieved in the L2 sense, via, so 
called, the resolution of the identity formula, for all L2-functions and without re­
strictions on wavelets (see, for example, Daubechies, 1992 p. 24) . The problem 
of point wise convergence in the inversion formula was not so successfully treated 
so far. The results in Daubechies (1992) and Holschneider, Tchamitchian (1990) 
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give the pointwise inversion formula only for bounded L2-functions and only at 
continuity points, and under numerous restrictions on wavelets. 

In this article we extend this pointwise inversion result in several directions. 
First, we remove all restrictions on wavelets. Secondly, we prove that the in­
version formula is valid for all L 2-functions almost everywhere. Thirdly, we 
formulate and prove a pointwise inversion formula in LP, with the sole restric­
tion that 1 < p < +oo. In proving our result we will use the celebrated result of 
L.Carleson about the almost everywhere convergence of Fourier series. Carleson 
proved this theorem for p = 2 Carleson (1966), and R.A.Hunt extended it to 
the case of p > 1 in his work Hunt (1968) . 

1. Preliminaries 

In this section we will briefly recall the Carleson- Hunt theorem, and some of its 
easy consequences that we will apply in the proof of our main result . Consider 
an interval [- A, A]~ ffi., where A> 0. For every f E L1([- A, A]), the Fourier 
coefficients In, n E ;Q:;, are all defined by 

In = lA f(t)e- fint dt . 
-A 

For every nE N U {0}, we denote by Sn(x; f) the nth partial sum 

n 

Sn(x; f) = L f~efikx , X E [-A, A], 
k=-n 

(1) 

(2) 

of the Fourier series for f. After an easy computation we obtain the well-known 
formula 

Sn(x; f) = j~ f(t)Dn(x- t)dt , (3) 

where Dn is a periodic function with period 2A defined on [- A, A] by 

_ { sin [ft (~;H· )] 
Dn(t)- sm 2A 

2n + 1 

ift E [-A, A]\ {0} (4) 
if t = 0 

By F1 we denote the class of measurable functions defined on [-A, A] with 
values in [0 , +oo]. For every p, 1 < p < + oo, we define the operator MA : 
LP([- A, A])--+ F1 by 

(MAf)(x) = sup { ISn(x; f) I : nE NU {0}} (5) 

The crucial step in proving the Carleson-Hunt theorem is a result that the 
operator MA is of type p, for every 1 < p < +oo (see, for example, Mozzochi, 
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1971, p.8), i.e., there exis~s a positive constant Cp,A, which depends only on p 
and A, such that, for every f E LP([-A, A]), 

(6) 

In particular, (3), (5), and (6) show that, for every f E LP([-A, A]), there 
exists a subset HA (f)~ [-A , A] of Lebesgue measure zero, such that, for every 
x E [-A, A]\ HA (f), 

sup I lA f(t)Dn(x- t)dt < +oo . 
nEl':J u{O} -A 

Consider the family of functions F>. : lR --+ lR, A E [0, +oo), defined by 

{ 
sin[};>.t] ift :j:. 0 

F>. = 2A 
2A if t = 0 

(7) 

(8) 

Using the same type of estimates as in Lemma 3.3 on p.12 in Mozzochi (1971) 
we can prove easily that there exists a constant ]{ > 0, such that, for every 
nE 1':1 U {0} and for every t E [-(3/2)A, (3/2)A], 

I Fn(t) - Dn(i) I :SI< . (9) 

We apply (9) and Holder's inequality on (7), to obtain that, for every f E 
LP([-A, A]), there exists a subset HA (f) ~ [-A, A] of Lebesgue measure zero, 
such that, for every x E [...:...A/2, A/2] \HA (f), 

sup I lA f(t)Fn(x- t)dt I < +oo . 
nEl':J u{O} - A 

(10) 

Notice that in (10) we had to restrict x to [-A/2, A/2], because of (9), which 
is not valid on [-2A, 2A], but only on [-(3/2)A, (3/2)A]. 

For every A E [0, +oo), there exist n E 1':1 U {0} and () E [0,1), such that 
A = n + (). It follows that 

IF>.(t)- Fn(t)l 

( 
7r ) 11 -cos (2'-Bt) I ( 1r ) I sin ( E.()t) I :S I sin Ant I · rr~t A · I2BI + I cos Ant I · rrf · I2BI 

[ 
1

1 - cos ( i Bt) I I sin ( i Bt) ll 
:S 2 rrBt + rrBt ' 

A A 

Since the functions (defined to be continuous at zero) 

~ ~ 11 - ~os a I I sin a I ~ .-. "' and a >--+ ---;:;--
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are bounded on the entire real line, we obtain, using (10), that for every f E 
LP([-A, A]), there exists a subset HA(!)~ [-A, A] of Lebesgue measure zero, 
such that, for every x E [-A/2, A/2] \HA(!), 

A 

sup j f(t)F>.(x- t)dt < +oo . 
>.?:0 - A 

(11) 

The following lemma is now an easy consequence of (11). We prove it here 
for the sake of completeness. 

LEMMA 1 Let p E (1, +oo). For every f E LP(~), there exists a subset H(f) ~ 
~ of Lebesgue measure zero, such that, for every x E ~ \ H(f), 

lj
+oo f() sin[211"..\(x-t)]dtl 

sup t ( ) < +oo , 
>.?:0 - oo X - t 

(12) 

where the function u ,___. [sin(271"..\u)]/u is defined to be continuous at zero. 

PROOF. Since the countable union of sets of Lebesgue measure zero is again of 
Lebesgue measure zero, it is enough to prove (12) for every x in an arbitrary 
interval [-B, B]. 

Consider [-B, B] ~ ~, B > 0. For every x E [-B, B] we have 

lj
+oo f(t) sin[211"..\(x- t)] dt I 

_
00 

(x-t) 

::;IJ28 
f(t)sin[211"..\(x-t)]dtl+ [ lf(t)ldt. 

-2B (x- t) Jlti>2B lx- t l 

Since lxl::; Band ltl > 2B, we have that lx - t l >B. Using Holder's inequality 
we obtain that the second integral above is smaller than 

1/p (' d ) 
1
1 q (k IJ(t)IPdt) jui>B lu~q ' 

1 1 
-+-=1. 
p q 

(13) 

Since f E LP(~), the expression in (13) is finite, and does not depend on..\. 
The first integral is estimated by ( 11) already; taking A = 2B, and realizing 

that f restricted to [-A, A] is in LP([- A,A]) and that 

sup IJA f(t) sin[211"..\(x- t)] dt I 
>.?:o -A (x- t) 

2A JA ()sin[1'..\1(x-t)]d =-.sup f t t 
71" , >O rr(x-t) 

"'- - A 2A 

where ..\1 = 2A..\ . • 
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2. Main result 

For every f E L2 (JW.) we denote by j its Fourier transform, i.e., for every w E JW., 

}(w) = L:oo f(t)e-2"iwt dt . (14) 

We will say that 1/J E L2(1W.) is a mother wavelet if 1/J E Ll(JW.), II1/JII2 = 1, and 
~(0) = 0. To simplify the notation, we assign to each mother wavelet 1/J two 
families of functions { 1/J~ : a E lW., a # 0 } and { 1j;~ 0 : a E lW., a # 0 } defined 
by 

(15) 

where z denotes the complex conjugate of the complex number z. Notice that 
1/J~, 1/J~ 0 E Ll(JW.) n L2(1W.), II 1/J~II2 = II 1/J~ 0 l12 = 1, and 

~~(w) = lal 1
/

2 sign(a)~(aw) , ~~0 (w) = lal 1
/

2 sign(a)~(aw) (16) 

Let p E (1,+oo), and consider LP(JW.). We define the continuous wavelet 
transform with respect to 1/J by 

(17) 

where a, b E lW., a # 0, and * is the convolution operator. Recall that Young's 
theorem guarantees that 

b >--+ (Twav f)( a, b) 

is in LP(JW.), for every a E JW., a# 0. In the case when p = 2, i.e., f E L2 (1W.), 
formula (16) implies that 

(fwav f)( a, ·)(w) = }(w)lal 1 1 2sign(a)~(aw) (18) 

We can state our main result now . 

THEOREM 1 Let 1 < p, q < +oo, 1/p + 1/ q = 1. Suppose that 1/J and <p are 
mother wavelets such that, 

l +oo l~(w)l · l0(w)l dw < +oo 
- oo lw I 

(19) 

Then, for every f E LP (JW.), 

lim 1 G(a~ x) da = C'IJ,<p · f(x) (a.e.), 
.X-+0+ iai~.X a 

(20) 
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where G(a, x) is defined by 

j +oo (x-b) G(a, x) = lal - 1/2 -oo (Twav f)( a, b). 'P -a- db , (21) 

where rwav denotes the continuous wavelet transform with respect to 1/J, and the 
constant C..p,<p is given by 

j +oo ;}(w) · cp(w) 
C..p,<p = - oo lwl dw < +oo . (22) 

Notice that, as indicated at the beginning of this paper, the inverse formula 
(20) is given for very general class of functions f and wavelets 1j; and <p. The 
condition (19) is the only assumption on the pair of mother wavelets 1j; and <p, 

and (20) is valid for every f E LP (!R). 
The rest of the paper is devoted to the proof of Theorem 1. Consider first 

G(a,x) in the case when f E L2(JR). Then, G(a,x) can be expressed by 

G(a, x) = { [(Twav f)( a,·)]* <p~0 } (x) . (23) 

Since <p~0 ( x) = <P~ ( - x), it follows that G( a, x) is equal to the scalar product (in 
L2(JR)) of b ~--+ (Twav !)(a, b) and b ~--+ 'P~(b - x) . Now, applying Plancherel's 
theorem and (16) and (18) we obtain 

j +oo 0 
G(a., x) = -oo [(fwav f)( a, ·)](w) ·[~a(-- x)](w) dw 

1:00 

/(w)lal 112sign(a)J(aw) · la1 112sign(a)e2rriwxcp(aw) dw 

j
+oo -

lal -oo /(w)e2rriwx{;(aw)cp(aw) dw 

Let us define the function f2 by 

f2 = 'lj;~ * 'P~o . (24) 

Then, we obtain that, for every f E L2 (IR), 

l
+oo 

G(a, x) = lal -oo j(w)e2 rriwx §(aw) dw (25) 

Notice that (24) implies that § E L1 (IR), and that condition (19) is equivalent 
to the condition 

1 §1~1)1 E L1(IR) . (26) 

We claim that (25) implies that 

r G(a~ x) da = I §(a) da r j(w)e2rriwx dw 
Jlai?.>. a }JR la l }lwl~ l a l/-' 

(27) 
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Notice that (27) follows by application of Fubini's theorem. Hence, to prove 
(27), it is enough to justify Fubini's theorem. Using (25) we get 

1 /a2/da f /](w)/·/§(aw)/ dw 
lal~>. a JJR 

== r /](w)/ dw 1 /§,(a,)/ da 
}JR lal~lwl>. a 

== r /§(a)/daj /](w)/dw 
JJR /a/ lwl~lai/>-

:S 1 /§(a)/ da 1 /](w)/dw + 1 /§(a)/ da 1 /](w)/dw. 
lal~l /a/ lwl~l/>. lal>l /a/ lwl~lal/>. 

The first integral in the last line above is finite, since (26) is valid and 

1 /](w)/ dw :S 1/f/12 · ff < +oo . lwl~l/>. V 'X 

That the second integral is finite follows from the fact that § E L1 (JR), and from 
the estimate 

_/1/1 /](w)/ dw :S _/1/ 1/]1/2 [2/,a/] 1/2 :S 1/]1/2. ~' 
a lwl~lal/>- a " V -x 

where the last inequality follows since /a/ > 1. Therefore, we just proved (27). 
Recall a well-known formula, which is an easy consequence of (14), and says 

that, for every f E L2 (JR ), 

r ](u)e2rriuxdu == ~ r f(t) sin[27r~(x- t)] dt . 
Jlul~t; 7r JJR (x- t) 

(28) 

Apply (28) on (27), and we get that for every f E L2 (JR) and for every x E JR 
and>.> 0 

{ G(a,x)da==~ { §(a)da { f(t)sin[27r(/a/f>.)(x-t)]dt. (29) 
Jlai~>. a 2 7r JJR /a/ }JR (x- t) 

Notice that on both sides of (29) there is no more], but only f, and that, 
in particular, (29) is valid for every f continuous with compact support, i.e., 
(29) is valid on a dense subspace of LP(JR). Therefore, (29) is valid for every 
f E LP (IR), if we can prove that both sides of (29) define continuous linear 
functionals on LP(JR). Indeed, this is the case. 

Consider the integral on the right hand side first. Since the function 

sin[27r(/a// >.)(x- t)] t 1-> --=-----'-;---"----'-c-'---'--'-
(x- t) 



768 M . RAO, H . S IKIC, R . SONG 

is in Lq (JR ), we obtain, using Holder's inequality, that the integral on the right­
hand side is bounded above by 

(~) 1 /p· -1- · II J JI · llsint ll . f l§(a) lda . 
..\ 1r 1/ q P t 9 JJR la l119 

Recall (26) and e E L1 (JR) to prove that 

f ll e(l ~} l da ~ 1. liil(al) lda + J. lii(a) lda < + oo 
}]R a q l a l ~·1 a iai>1 

Therefore, the right-hand side is a continuous linear functional on LP (JR) . 
Consider the integral on the left-hand side of (29). Using (17) and (23) we 

obtain that 

Let us denote by J.l the measure 1{a: i a i ~>.}da/a 2 . We claim that the function 

(30) 

is in L9(JR). By Schwarz inequality and the fact that ll'l/>~l l 2 = ll<p~ 0 l l 2 = 1, we 
obtain that I ('!/>~ * <p~0 )(b) I ~ 1, for every b E lR. Therefore, we obtain 

Il l('!/>~* <p~0 )(-)dJ.L(a) L < j 11 (1/>~ * <p~0 )(-) ll 9 dJ.L(a) 

< j 11 (1/>~ * <p~0 )(·)11i 19 dJ.L(a) 

< J ll 'l/>~lli 1 9 · ll <p~0 ll i 19 dJ.L(a) 

ll 'l/> ll i19 · ll <p ll i19 · j la l119dJ.L(a) 

1/q 11 111/q 1. da II1P II 1 · <p 1 · I l2-1/q 
i a i ~>. a 

II 1P II i
19 

·ll <p ll i
1
q . p..\~fp 

< + oo' 

where in the third line above we used Young's inequality. Therefore, we just 
proved that the function defined by (30) is in Lq (lR ). Applying this result we 
prove that the left-hand side of (29) is also a continuous linear functional, since 
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(by Holder's inequality) 

{ f * [1 (1/1~ * <p~o)(·) d~l} (x) 
lal?:>- a 

< I I fliP · 111(1/1~ * <p~0 )(-)d~L(a)L . 

Hence, (29) is valid for every f E LP(JR). 
Consider now the family of functions Cl( (JR), where Cl( (JR) is the set of 

infinitely differentiable functions with compact support. Recall that Cl( (JR) is 
a dense subspace of LP (JR), for every 1 < p < +oo , ~nd that j E L1 (JR), for 
every f E CJ((JR). Using (28), we obtain that for every f E CJ((JR), and for 
every a,x E JR, a :f. 0, 

lim ~ [ f(t)sin[27r(lai/-X)(x-t)]dt=f(x), 
>.--+O+?TlJR . (x-t) 

(31) 

and, by (27) and the dominated convergence theorem, for every x E lR, 

lim { G(a~ x) da = ( { el(al) da) · f(x) = C.p,<p · f(x) . (32) 
>. --+O+ }lal?:>- a }m. a 

Consider the family of operators Tt defined on LP (JR) by 

(Tt f) (x) = ~ [ f(t) sin[27r(ti/A\(x- t)] dt , 
7T }JR X- t 

(33) 

and the operator T* defined on LP (JR) by 

(T* f)(x) =sup I(Ttf) (x)l . (34) 
>->O 

Notice that supremum in (34) does not depend on a E lR, a :f. 0, so the definition 
ofT* makes sense. 

Consider the set D of functions f E LP(JR) such that, for every a E lR, a :f. 0, 
the limit 

lim (Ttf) (x) = (Ta f) (x) 
>.--+0+ 

(35) 

exists for almost every x. By (31) D is dense in LP(JR). However, Lemma 1 
shows that for every f E LP(JR), (T* f)(x) < +oo , x-(a.e.). Using the Banach 
principle (see, for example, Garsia, 1970, pp.1-3, Theorem 1.1.1.) we conclude 
that D is a closed set. Therefore, D = LP (JR) . Using Lemma 1 one more time 
on (34) (notice that (T* f)(x) does not depend on a), we apply the dominated 
convergence theorem on (29), and obtain that, for every f E LP(JR ), 

lim [ G(a, x) da = [ el(al) (Ta f) (x)da X- (a.e.). 
>.--+O+ Jiai?:>- a 2 }m_ a 

(36) 
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Now we need only to prove that, for every a E lR, a# 0 and for every f E LP(JR ), 

(Ta f) (x) = f(x) x- (a.e.). (37) 

It is enough to prove that the sequence of functions {T1a1nf} converges almost 
everywhere to f. 

Let us fix a # 0. By Lemma 1 we ca.n apply the Banach principle (Garsia, 
1970, p.2) one more time, to get that there exists a positive, decreasing function 
C : (O,+oo)---> (O,+oo), such that, 

lim C(>.) = 0 
>.-++oo 

(38) 

and, for every f E LP(JR) and R > 0, 

Leb {X : ~~~ I(Tf;nf)(x) l > R} ::; c ci~IP) , (39) 

where Leb denotes the Lebesgue measure. 
Let f E LP (JR) and c: > 0. There exists a sequence 'f/k /' +oo such that 

C( 'f/k) ::; 1/2k. By taking a subsequence if necessary, we can choose a sequence 
{fk} <;;; Cj( (JR) such that 

fk ---> f (a.e.), ask-+ +oo, (40) 

and, for every k E N, 

€ 
11 fk -fliP ::; -

'f/k 
(41) 

In particular h --->fin LP(JR). Using (39) for c: > 0 and every k, we obtain, 
since (41) is valid, that 

( 42) 

Using ( 40) and ( 42) we conclude that there exists a set H(f, c:) <;;; lR of Lebesgue 
measure zero, such that, for every x tf_ H(f,c:), there exist k1(x) E N and 
k2(x) EN, such that, for every k 2: k1(x), 

I fk(x)- f(x) I::; c: , ( 43) 

and, for every k 2: k2( x), 

(44) 

Therefore, if we take k 2: max(k1(x),k2 (x)), then, since fk E Cj((JR), there 
exists no EN, such that, for every n 2: no, 

I (Tf;nh)(x)- fk(x) I:=:; C: (45) 
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Using (43), (44), and (45), and the fact that 

I(Tt;nf)(x) - f(x )I 

~ I(Tt;nf)(x) - (TI',tnfk)(x) l + I(Tt;nfk)(x) - fk(x) l + lfk(x) - f(x) l, 

we obtain that there exists a set H(f, c:) ~ ffi. of Lebesgue measure zero, such 
that, for every x ft H(f, c:), there exists no(x, c:) E M, such that, for every 
n 2:: no(x, c:), 

I (Tt;nf)(x) - f(x) I ~ 3c: (46) 

Consider the set 

Then LebH(f) = 0, and, for every x (/:. H(f), 

lim (rt;nf) (x) = f(x) . (47) 
n~+oo 

This statement completes the proof of Theorem 1, and finishes this paper. • 
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