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The objective of this contribution is a study of two new effec
tive models of cracked three-layer laminates developed in Lewiriski, 
Telega (1994A, B). The convergence problems are discussed by us
ing the method of r-convergence. For a moderately thick laminate 
weakened by transverse cracks of high density the convergence the
orem is formulated. The convergence problems for a thin laminate 
weakened by transverse cracks of arbitrary density are investigated 
in detail. The application of the augmented Lagrangian method to 
solving the local problems is proposed . 

Introduction 

Two new effective models of three-layer laminates with intralaminar cracks have 
been proposed in the paper by Lewiriski and Telega (1994A) . The cracks were 
assumed to be distributed in a periodic manner. Stochastically periodic distri
bution has been proposed in Telega, Lewiriski (1993). The study performed in 
Lewiriski and Telega (1994A) is based on the mathematically formal method of 
two-scale asymptotic expansions. The first model derived in Lewiriski and Tele
ga (1994A) applies to mo.derately thick laminates with high density of cracks. 
Only an in-plane scaling is performed. In Section 4 of the present paper we 
will formulate the convergence theorem justifying the first model. The second 
model applies to thin laminates and involves rescaling of characteristic length 
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dimensions of the laminate. Such an approach implies the rescaling of the stiff
nesses and loading. Consequently, singular terms appear in the expression for 
the functional of the total potential energy Je(c: > 0). Section 5 of the paper 
reports all the relevant results concerning the epi-convergence of the sequence 
of functionals {Je}e>O· Application of the models developed in Lewinski and 
Telega (1994A) to the case of laminates with aligned cracks is discussed in de
tail in the paper by Lewinski and Telega (1994B). To know the explicit form 
of the homogenized (effective) elastic potential one has to solve unilaterally 
constrained minimization problems. In Section 6 we will suggest an application 
of the augmented Lagrangian method to solving the local problems. 

1. Preliminaries: in-plane deformation of symmetric three
layer laminates of moderate thickness 

A new two-dimensional model of three-layer symmetric laminate, introduced in 
Lewiriski and Telega (1993, 1994A, B), Telega and Lewinski (1993) , will now be 
briefly described. The model is capable of describing the independent in-plane 
displacements of the faces and of the internal layer . 

Consider a symmetric laminate composed of the faces of thickness d and 
the internal layer of thickness 2c. The middle plane n of the internal layer is 
parameterized by Cartesian coordinates Xa; (xa) =X En. The whole laminate 
occupies a cylindrical domain B = n X ( -h, h) ; h = c + d. To an arbitrary 
point : E B we assign its coordinates : = (x;) = (xa, X3 = z), z axis being 

perpendicular to the plane n. 
The lower and upper faces z = ~h are assumed to be free of loads, whilst 

the lateral edge surface S = f X ( -h , h) , f = oD, is subjected to the tractions 
pi(s, z ), s E r, on its part Su = r u X ( -h, h). The remaining part of s, Sw = 
r w X ( - h, h) (r = f w u f u) is clamped. The loading pi is assumed to have the 
following through-the-thickness distribution 

lzl < c , 
(1.1) 

otherwise ; 

z -
- 2dQ(s), lzl < c, (1.2) 

1 -
2
iz + h)Q(s) , - h < z < - c. 

The prescribed loading functions N"' , La and Q are defined on r u. For the 
sake of simplicity body forces are neglected . 
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The through-the-thickness distribution of elastic compliances has the form 

_ { Di]kz, 
Diikl - . 

D{ikl, 

lzl < c, 

otherwise, 
(1.3) 

where nm and nf may depend on X Er. We assume that the planes z = const. 
are the planes of material symmetry, hence 

Dn - Dn - 0 n m or f 3a{3-y - 333a - ' = · 
The tensor D satisfies the usual symmetry condition 

D;j kl = Djikl = Dklii . 

We make further the following assumption 

Dijkl E L00 (B) , 

(H) there exists a constant C > 0 such that 

D;j k!( X )Tii Tkl 2: CITI2 , 

(1.4) 

(1.5) 

for a.e. X E n and for each T E lE;, where lE; is the space of symmetric 3 X 3 
matrices and 

Throughout this paper only Cartesian coordinate systems are employed, con
sequently we may identify (Tii) with (T;j ), etc. The summation convention is 
applied to repeated indices at the same and different levels. Moreover, C with 
possibly a subscript will denote a positive constant. 

The three-dimensional problem of equilibrium of the laminate considered 
amounts to finding a stress field u(:) as well as a displacement field w(:) for 

which the two-field Reissner's functional, Fung (1965) 

I(u,w) j [~(wa,/3 + ~,6,a)G'01 {3 + (wa,3 + W3, 01 )G'
013+ 

B 

+ w3,3G'33 - ~Dijk!G'ij G'kl] d: -
-j pi(s, z)w;(s, z)ds dz 

(1.6) 

attains its stat ionary value at the saddle point (w, u). Towards this end one 
can apply Arnold and Falk version of the Brezzi's theorem (Arnold, Falk, 1987), 
assuming that pi E L2 (Sa)· We note that in (1.6) p = (p01 ,p3

) is not necessarily 
of the form (1.1) and (1.2). 
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A new two-dimensional laminate model is based upon the following stress 
and kinematic assumptions (Lewinski, Telega, 1994A): 

where b = ~ + ~· 

lzl < c' . 

otherwise ; 

1 
2
iz- h)Qa(x) , c < z < h , 

z 
-2cQa(x) ' lzl < c' 

;d(z + h)Qa(x) , - h < z <-c. 

41iz - ·h)2 R(x) ' c<z<h, 

1 
4

c(- z2 + ch)R(x), lzl < c, 

;d(z + h) 2 R(x) , - h < z <-c. 

va(x) + 2~2 (c2
- z2 )ua(x) , 

Va(x) , 

1 
bw(x) , c<z<h, 

zw(x) lz i<c , c;-b-
1 

-bw(x) , -h < z <-c. 

lz l < c' 

otherwise ; 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

(1.11) 

The two-dimensional model of the laminate is obtained as follows. For the 
sake of simplicity it is assumed that D;jkl depend on x E rl only. We substi
tute the expressions (1.7)- (1.11) into the Reissner's functional (1.6) and next 
perform z-integration to obtain a new functional J 

J(v, u, w; N, L, Q, R) = I(w, u) (1.12) 

Here u and w have the form (1.7)- (1.11). Finally J can be expressed as follows 

J(v,u,w; N,L,Q,R) = 
= j [Na,6Va,,6 + La,6Ua,,6 + Qa(ua- W,a )+ 

n 

(1.13) 
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+Rw- Wc(x, N, L, Q, R)] dx- j (Ncxva + Laua- Qw)ds, 

r,. 

where the complementary energy density is given by 

and 

We = ( D~f3AJ-£Naf3 NAJ-£ + D~f3AJ-£Laf3 £AI-'+ 2D~~AJ-£Naf3 LA~-'+ 

DQ QaQf3 +2DRL RLaf3 + 2DRN RNaf3 + DR R2 ) /2 
~ ~ ~ ' 

777 

(1.14) 

(1.15) 

The Reissner-type functional J attains its stationary value if the following are 
satisfied: 

i. the equilibrium equations 

N a{J - 0 Laf3 +Qa - 0 - ,f3 - ' - ,p - ' 

ii . the constitutive relationships 

Ka = D~f3Qf3 , 

where the deformation measures, are defined by 

cap = cap(v) = (va,/3 + Vp,a)/2, 

/a{J = 'Yaf3(u) = (ua,{J + up,a)/2 , 

Kcx = Ka(u, w) = Ua- W,a , 

iii. the stress-type boundary condition along the liner q 

(1.16) 

(1.17) 

(1.18) 

(1.19) 

(1.20) 
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where 

(1.21) 

Here n = ( na) and T = ( r a) are unit vectors: outward normal and tangent to 
the r a line, respectively. 

The constitutive relationships (1.17) and (1.18) can be inverted to the form 

NAJ-L = A~J-Laf3C:af3 + A~f:a{3/a{3 + A~~W } 

L>-.~-' = A~f:af3 C:af3 + A~J-Laf3'Yaf3 +A~ I:, w 

R = A~&c:af3 + A~e'Yaf3 + Aww 

(1.22) 

(1.23) 

The properties of the compliance tensor (Dijkl) imply that each element of the 
matrix 

(1.24) 

belongs to L00 (D) and D~f3 E L00 (D). Lewinski and Telega (1994A) proved that 
the assumption (H) implies existence of a constant C such that 

KD(x)KT ~ C(Aaf3 Aaf3 + Baf3 Baf3 + a2), 

DQ (x)aaaf3 > Caaaa a{3 - ' 

for a.e. x En and for all K = (A,B,a) E lE; x lE; x IR and a E IE2
. Here lE; is 

the space of symmetric 2 x 2 matrices 
Now we may write 

Wc(x, N, L, Q, R) = ~(N D(x)NT + D~f3QaQf3), 

whece N = (N,L,R) and NT = [ ~ ]· 
We also set 

Jc(x, N, L, Q, R) = ~N D(x)NT, 

(1.25) 

(1.26) 
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and note that pi E L2 (Sa) implies 

(1.27) 

Due to the condition (H1) and (1.27) from the already mentioned version of 
Brezzi's theorem (Arnold, Falk, 1987) we conclude that the functional J, given 
by (1.13), possesses a unique saddle point, say (v, u, w; N, L, R, Q), solving the 
two-dimensional equilibrium problem of the three-layer laminate in terms of 
the generalized fields. 

For our subsequent developments we set 

[ 

Av Avu 
A = o- 1 = Avu Au 

Avw Auw (1.28) 

H = [H<>f3] = (DQ)- 1 

The explicit form of the generalized stiffness matrix A can be found by using 
the Fenchel conjugate of }c(x, . , . ), i.e.: 

j1(x, e, ry, r) := j~(x, e, ry, r) = sup{N"f3~af3 + L"f31Jaf3 + Rr

-jc(x , N, L, R)I(N, L, R) Eo:; x o:; x IR} = ~EA(x)ET, 
(1.29) 

where E = (e, ry, r) Eo:; x o:; x IR. The conditions satisfied by the generalized 
compliance matrices D and DQ imply that a positive constant C1 exists such 
that for a.e. X E n 

EA(x)ET 2: C1(lel 2 + 1"11 2 + r 2
) , 

H"f3(x)aaaf3 2: C1lal 2 

for all E = (e,ry,r) Eo:; x o:; x IR and a E IR2
. 

2. Elements of the theory of epi-convergence 

(1.30) 

A detailed presentation of the theory of epi-convergence is provided by At
touch (1984) and Dal Maso (1993). In this section only essential notions will be 
adduced. 

DEFINITION 2.1 Let (X, 1) be a metrisable topological space and { G, }e>O a se
quence of functionals froni X into IR - the extended reals. 

a. The T-epi-limit interior, denoted also by Gi, is the functional on X defined 
by 
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b. The r-epi-limit superior, denoted also by G 8
, is the functional on X de

fined by 
c•(u) = T -lseG<:(u) = min limsupGe(ue) . 

{u • ...:u} <:-+0 

c. The sequence { G<: h>o is said to be r-epi-convergent if Gi = G• ; we then 
write 

G = T -limeG<: 

PROPERTIES 
Let G<: : (X, r) -+ IR be a sequence of r-epi-convergent functionals and let 
G= r-limeG<:. 

The following properties hold: 
1. The functionals G; and a• are r-lower semicontinuous (r - l.s.c.) . 

11. If the functionals G<: are convex, then G 8 = T - lseG<: is also a convex 
functional. Hence the epi-limit G = r - lime G<: is a r-closed (r -l.s.c.) 
convex functional. 

m. If <I> : X -+ IR is a T -continuous functional called a perturbation func
tional, then 

T- lime(G<: +<I>)= T -limeG<: +<I>= G +<I> . 
lV. 

!
Vu<: .!... u, G(u) :=:; liminfG<:(ue), 

E:-+0 

G(u) = T -limeG<:(u) {::} VuE X :3 u<:.!... u such that 

G(u) 2: liminf G<:(u<:)· 
E:-+0 

uEX; 

Further characterization provides 

THEOREM 2.1 Let G = T -lime G" and suppose that there exists a r-relatively 
compact subset Xo C X such that infG<: = infG<:('t/c; > 0). Then infG = 

Xo X X 

lim(infG<:)· Moreover, if {u<:}<:>O is such that G<:- infG<:--+ 0, then every T 
<:-+0 X X <:-+0 

- cluster point of the sequence { u<: : c: -+ 0} minimizes G on X. 

REMARK 2.1 Of practical importance is the following sufficient condition of 
existence of a compact set X. 

If (X, 11·11) is a Banach space with r-relatively compact balls, then a sufficient 
condition of existence of a.compact set Xo is that the sequence { G<: }<:>O satisfies 
the condition of equi-coercivity 

limsupG<:(ue) < +oo => limsup lluell < +oo, (2.1) 
f: f: 

3. Transverse cracks in the internal layer 

The three-layer laminate modelled and studied in Section 1 is an undamaged 
one. From now on it is assumed that the internal layer incurs transverse cracks 
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which form a fixed layout. More detailed description of the intralaminar cracking 
provides our paper (Lewinski, Telega, 1994A). Here we introduce only essential 
notions required for the epi-convergence study. 

The internal layer is weakened by fissures c:F C D(c: > 0) distributed c:Y 
-periodically and of constant depth 2c. The basic cell Y is two-dimensional and 
c:Y is homothetic toY. We assume that F is of class C1 and F = F C Y, where 
F denotes the closure of F. When discussing the properties of the homogenized 
(effective) elastic potential the last hypothesis will be relaxed. The following no
tation is introduced for the sum of fissures such that the corresponding c:Y -cells 
are contained in n 

F' = U F, ,i , .n• = n \ F' 
iEl(<) 

(3.1) 

The Signorini-type conditions model the closing and opening of fissures and 
are given by 

1 2 1 2 
L~ =L~ =L~ ~ 0, [u~] 2: 0, L~[u~] = 0, L~ =L~ = 0 (3.2) 

As usual, [.] denotes jump on F' and 

(3.3) 

are values of L';f3n 01 nf3 , L';f3n 01 Tf3 on the CJ' -th side ofF,,;. Here n = (n 01 ) is a 
unit vector normal to F,,; and directed from the side 1 to the side 2. Moreover, 
r = (r01 ) stands for the unit tangent vector to F,,;. Kinematical fields v and w 
are assumed not to suffer jumps on F', the jump [ur] being unconstrained. The 
meaning of u' and L, will become evident from our subsequent developments. 

For later use we introduce further notations 

where 

IK, := IK(D)' = Hrw(D) 2 x K(D') x Hrw(D) , 

V(D') := Hrw(D) 2 x Hrw(D') 2 x Hrw(D) , 

(3.4) 

(3.5) 

(3.6) 

4. Moderately thick laminate weakened by transverse 
cracks of high density 

Applicability of the model based on an in-plane scaling is discussed in our paper 
(Lewinski, Telega, 1994A). The set of kinematically admissible fields is specified 
by (3.4) and for a fixed c; > 0 the equilibrium problem is formulated as 
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PROBLEM (PA.) 

Jf(v", u", w") = inf {Jf(v, u, w) l(v, u, w) E D<o}, 

where the functional of the total potential energy Jf is given by 

Jf(v, u, w) = j [il(x, e(v),1(u), w)+ 
n• 

1 
+2Haf3(x)x:a(u, w)x:13(u, w)]dx - f(v , u, w) , 

( 4.1) 

where 

f(v, u, w) = J (f?v'a + Laua - Qw)ds. (4.2) 

r .. 

The functional Jf is coercive on the space V(r2") provided that F = F C Y. It is 
also coercive on the closed and convex set 0<0 . To prove that the functional Jf is 
coercive, the Korn's inequality for the highly irregular domain r2" is needed. The 
relevant inequality was derived in our paper (Telega, Lewinski, 1988), cf. also 
Telega (1990B). Obviously, (v",u",w") E 0<0 solving problem (Pfi,) is unique. 

The case when F intersects the boundary aY of Y is more complicated, 
cf. Fig. 4 in Lewinski and Telega (1994A). We still assume that Y \ F is a 
connected set . By combining the results concerning extension theorems, pre
sented in Chapter I of the book by Oleinik et al. (1990), with our approach 
(Telega, Lewinski, 1988) one can demonstrate that Korn's inequality still holds 
true. Consequently the existence and uniqueness result remains valid also in this 
case. 

The fundamental result of this section concerns the epi-convergence of the 
sequence {Jf}o>O· 

THEOREM 4.1 The sequence of functionals { Jf}o>O is epi-convergent in the 
topology r = (w - H 1(r2) 2 ) x (s - L2 (r2)) x (w- H 1(r2)) to 

Jf(v, u, w) = J Uh [x, e(v), 1(u), x:(u, w), w]dx- f(v, u, w) , ( 4.3) 

n 

The functional Jf is coercive on the space Hrw(r2) 2 x Hrw(r2) 2 x Hrw(n) 
and Uh = Ut + U2, where 

(4.5) 
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Here c;h, lh, Kh E n:;, wh E IR ; moreover 

c;~ (v) = ( ~~; + ~~:) / 2, 

and similarly for 1Y ( u). Furthermore we set 

H/;er(Y) = { v E H 1(Y)Iv assumes equal values at 
opposite sides of Y} , 

{ 
1 . 2 } 

/{yp = u E Hper(YF) I [uv] ~ 0 on F . 

783 

(4.6) 

(4.7) 

(4.8) 

where v stands for the unit vector normal to F and directed from the side 1 to 
2 of F. 

The prooffollows that ofTh. 4.1 given in Telega (1993) and is omitted here. 
We only observe that the functional 

<f;(v, u, w) = ~ j H':x~(x)l\:a(u, w)l\:~(u, w)dx- f(v, u, w) , (4.9) 

n 

is continuous in the topology r and plays thus the role of a perturbation func
tional. Next, we set 

" -1 jh [x,c:(v(x)),l(u(x)),w(x)]dx, 

G (v,u,w)- if v E H 1(0) 2 ,w E H 1 (0) and u E K"; 

+oo , otherwise 

where 

The demonstration reduces to proving that the sequence of functionals 
{G"(v, ·, w)}<>O epi- converges in the strong topology of L2(0) 2 to -1' Ul[x,c:(v(x)),l(u(x)),w(x)], 

G(v,u,w) - ifv,uEH1(0) 2 ,wEH1(0); 

+oo , otherwise . 

( 4.10) 

(4.11) 

( 4.12) 

REMARK 4.1 The partial effective elastic potential u2 coincides with the corre
sponding potential for the virgin material. To characterize the behaviour of the 
effective potential uh it is thus sufficient to examine the partial potential ul' 
cf. Lewinski, Telega (1994A). 
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PROPERTIES OF U1 

1. U1(x, ·, ·, ·)is a strictly convex function provided that F does not separate 
Y into two (say) disjoint subdomains. Otherwise it is a convex function. 

II . U1(x, ·, ·,·)is of class C 1. 
m. There exists a constant C 1 > 0 such that 

Ul(x,eh,,h,wh):::; Cl( leh l2 + bhl2 + lwh l2), 

for a.e. X En and all (eh, lh, wh) E o:; X o:; X IR. 
1v. There exists a constant C0 > 0 such that 

Ul(x,eh,,h,wh) ~ Ca(leh l2 + bhl2 + lwhl2), 

for a.e. X E n and all (eh, lh, wh) E o:; X o:; X IR, provided that F does 
not separate Y into disjoint parts. 

5. Thin laminate weakened by transverse cracks of arbi
trary density: refined scaling 

5.1. Preliminaries 

In this section we are studying a thin three-layer laminate with transverse cracks 
in the internal layer by imposing the following natural rescaling, cf. Lewinski, 
Telega ( 1994A): 

c -----+ c: c , d -----+ c:d , h -----+ c:h . (5 .1) 

If c: tends to zero, the thickness of the laminate also diminishes to zero. To 
compensate for this degeneracy we scale the loading 

(5.2) 

The length scales scaling (5.1) implies the following scaling of the stiffnesses 
involved in the constitutive relationships (1.22) and (1.23) 

( Aa~AJ.L Aa~AJ.L Aa~AJ.L)-----+ (c:Aa~AJ.L c:Aa~AJ.L c:Aa~AJ.L) 
V ' VU ) U V ' VU ) U ) 

( ~Aa~ ~Aa~) c: vw, c: uw , 

Ha~ -----+ ~Ha~ . 
c: 

The constitutive relations become 
1 

Na~ c:Aa~>.~-'c:.x (v') + c:Aa~>.l-'"'1 (u') + -Aa~w' 
0 V J.L VU 1~1' C VW 

1 
c:A~e.x~-'c:.xl-'(v') + c:A~~>.~-''Y>.J.L(u') + €A~ew• 

~A~ec:a~(v') + ~A~e~a~(u') + 
1
3 Aww' 

c: c: c: 

(5.3) 

(5.4) 
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We set 

A'= p 

1 
- H"'f3 lip( u', w') . 
€ 

cAv cAvu 
1 
- Avw 
€ 

cAvu eAu 
1 
-Auw 
€ 

1 1 1 
- Avw -Auw 3Aw 
€ € € 

785 

(5.5) 

(5 .6) 

(5.7) 

where (e, 17, a, r) E lE; x lE; x IR2 x IR. For a fixed € > 0 the functional of the 
total potential energy is given by 

J;(v,u,w)= (5.8) 

= 1 j; [x, e(v),-y(u), K.(u, w), w]dx- 1 (c]'\j'Ova + cL"'ua- Qw)ds , 

n• ru 

where ( v, u, w) E IK,. In fact, the functional 1; is well defined for ( v, u, w) E 
I-!1 (0.) 2 x I-!1 (0.') 2 x I-!1 (0.). Since the functional 1; is convex, the minimization 
problem 

(P;) I J;('v',il!,ii/) = inf{J;(v,u,w) I (v,u,w) E IK,}, (5.9) 

is equivalent to solving the following variational inequality, cf. Kikuchi, Oden 
(1988), Telega (1987) 

Here 

Find (v', u', iil') E IK, such that 

b' ( -, - ' -, . - < ) > , ( - < ) w( ) IK V , u , w , v, u - u , w - g v, u - u , w V v, u, w E E 

b~(v, u, w; s, t, z) 1 {[e(v), -y(u), w]A~ [e(s),-y(t), z]T + 
n• 

1 + -J-l"'f3 K.a( u, w )li(J(t, z )}dx, 
€ 

(v, u, w), (s, t, z) E I-!1 (0.) 2 x I-!1 (0.') 2 x I-!1 (0.) , 

g<(v, u, w) = j (c]'\j'Ova + cL"'ua - Qw)ds. 

r" 

(5.10) 
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Variational problem (5.10) transforms readily to 

Find ( v", u", w") E D<. such that 

a"(v",u",w" ;v,u- u",w") 2': f"(v,u - u",w) V(v,u,w) E D<., 

where a" = :b•, j< = :g• . The last problem is equivalent to solving 

Problem (Pe) 

Find 

J.(v",u",w") = inf{J.(v,u,w) I (v,u , w) E D<e}, 

where J = lp and 
£ £ p 

le(v,u,w) = jf[x,t:(v),l(u),K(u,w),w]dx- g<(v,u,w), 

n• 

Here 
1 

Av Avu 2Avw c 

N -~N- 1 
Avu Au 2Auw - c p- c 

1 1 1 
2Avw 2Auw 4Aw c c c 

(5.11) 

(5 .12) 

(5.13) 

(5.14) 

(5.15) 

We observe that the functional 1; models the physical problem for c > 0. 
The mathematical situation is described by le. As we already known, they are 
interrelated by 1; = cle. 

For the domain n• a trace theorem seems not to be available. To obtain some 
estimations required in the study of epi-convergence of the sequence {le }00 

we assume 

La E L00 (fa), (5.16) 

and preserve the properties satisfied by the matrices A and H, cf. Section 1. 
Then we have 

THEOREM 5.1 Under the assumption {5.16} a solution (v", u", w") E D<e to 
problem ( Pe) exists and is unique. 

PROOF. The functional le is strictly convex and the cone I<(O<) is closed in 
Hl(0") 2 . To demonstrate the coercivity of le(O < c < 1 and fixed) we use two 
following lemmas. 
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LEMMA 5.1 (TELEGA (1990A)) Let BD(fl) be the space of functions of with 
bounded deformation, Telega {1990B}. The injection H 1 (0.') 2 cBD(fl) is con
tinuous. 

LEMMA 5.2 (TELEGA (1990B), TELEGA, LEWINSKI (1988)) Suppose that 
meas fw > 0. For each u E Hrw(fl') 2 Korn's inequality holds true 

5.2. The macroscopic elastic potential and its dual 

We set 

(5.17) 

where (e, 17, a, r) Eo:; x o:; x IR2 x IR . The homogenized (effective) potential is 
given by, cf. Lewir\.ski, Tel.ega (1994A) 

Wh(x, e) ~in! { ~~V;[x, e+e'(v) ,-y'(u), w]dy I (v, u, w) E D<y F} , (5.18) 

where e E o:; and 

IKyF = H~er(Y)2 
X I<y F X H~er(Y) 

PROPERTIES OF Wh. 
a. Wh (X, ·) is strictly convex and of class C1. 

(5.19) 

b . There exist constants cl > Go > 0 such that for a.e. X E S1 

for all e E o:; . (5.20) 

These properties are preserved even when F separates the basic cell Y into 
disjoint parts. 

The Fenchel conjugate of Wh permits to find the complementary elastic 
potential Wh' : 

(5.21) 

Taking account of (5.18) and proceeding similarly as in Telega (1992), after 
lengthy calculations we fi~ally get 

Wh'(x,Nh) = 

= I~ I inf { ./ Wc[x, N h + n(y) , l(y) , q(y) , r(y)]dy 
Y \ F 

(5.22) 

(n, l, q, r ) E S,.,} , 
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where 

S,,, { (n, 1, q, r) E L'(Y, lE~) x L'(Y \ F, lE~) x L'(Y: IR')x 

x L2(Y) I divyn=O in Y; divyl-q=O, in Y\F; 

divyq + r = 0 , in Y ; np, , lp, and q · p, 

assume opposite values on opposite sides of Y ; 

(5.23) 

Here p, stands for the outward unit normal to aY, whilst T denotes the unit 
tangent vector to F ; moreover 

np, = (n011' 11!3) , lp, = (101 ~' 11!3) , q ·p, = q01 
• 11a , 

REMARK 5.1 
1. The local equilibrium equation 

divyq+r=o·, inY, 
yields 

J r(y)dy = - J divyq(y) = - J q01 11 01 ds = 0 , 

Y Y BY 
because q · p, assumes opposite values on opposite sides of Y. 

n. By using the local equilibrium equation 
divy l - q = 0 , in Y \ F , 

we write 

J J 
()lOitJ 

q01 (y)dy = ayl' dy = 
Y YF 

= J 101 ~' l1t3ds + J (lall- l0112)dF = 0 

BY F 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

since lp, assumes opposite values on opposite sides of Y and, according to 
the action and reaction principle, lall = lf{'vl' = -lal2· 

m. Local equilibrium equations (5.24) and (5.26) imply 
divydivy l = divyq = -r, (5.28) 

and thus divydivyl E L2(Y \F). Consequently the following expression 
makes sense J [divy(divyl- q)]wdy = 0 

Y\F 
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Integrating by parts we infer that ( divy l) · p, assumes opposite values on 
opposite sides of Y. 
For our subsequent developments we make the following assumption: 

the scalar local field r is Y- periodic. (5.29) 
Hence, divyq and divydivy l are Y- periodic. 

lV. Performing the rescaling y --+ xjc, from the local equilibrium equations 
one readily gets 

1 (.) . €divn € = 0, m n , 

~divl (~) - q G) = 0 , 

~divqG) +r(~) =0, m n , 

c
1
2 divdivl (~) = ~divq G)= -r G) 

5.3. Convergence 

The basic result of this Section is formulated as 

(5.30) 

(5.31) 

(5.32) 

(5.33) 

THEOREM 5.2 The sequence of functionas {J<h>o epi-converges to h , h = 
T -lime J<, where T = s- L2 (0) 2 x L2 (0) 2 x L2 (0) and 

h(v) = J Wh[x, e:(v(x))]dx- J f?vads , v E Hr..,(0) 2 
. (5.34) 

n rff 

PROOF. It is similar to the proof of Th. 5.1 in Telega (1992) and is omitted here. 
Apart from the auxiliary results formulated in previous two subsections one has 
to use some duality argument, as in Telega (1992) , and the following lemmas. 

LEMMA 5.3 (TELEGA, LEWINSKI, 1988) For each c > 0 there exists a linear 
and continuous operator · 

satisfying the conditions: 

a. IIQ<ullo,n :5 Cllullo,n , 
b. llf(Q<u)llo,n :5 Clif(u)llo,n• , 
c. IIQ<u- ullo,n:::; cC lif(u)llo,n• , 

For an arbitrary sequence {u<}<>O such that 

sup llu<lh.n• < oo , 
<>0 

the seq1tence {Q<u<}<>D is bounded in H 1(0) 2 and 

IIQ<u<- u<llo,n---+ 0 when c---+ 0. 
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LEMMA 5.4 Let 

{v',u',w'}e>O C H1(0) 2 x H 1(0') 2 x H1(0), 

be such that 

sup{ ll v'llt,n + llu'll1,n• + llw'llt,n} < oo · 
r>O 

J.J . TELEGA, T . LEWINSKI 

Suppose a constant C ~ 0 independent of c exists and satisfying 

J,(v' ,u' , w') :S C . (5.35) 

Denote by (v, u, w) the limit of a convergent subsequence in (w- H 1 (0) 2 ) x 
(s - L2 (0) 2 ) x (w- H 1 (0)). Then u = \lw = 0 and w = 0. 

REMARK 5.2 If (v', u', w') solves problem (P,) then C = 0 because J,(O, 0, 
0) = 0. 

LEMMA 5 .5 Let (n, l, q, r) E Sper , <p E 0(0) and 

{v',u',w'}e>O C H 1(0) 2 x H1(0'? x H1(0) 

be a sequence strongly convergent to ( v, u, w) in L 2 (0) 2 x L 2 (0) 2 x L2 (0). Then 
we have 

+ qcx (~) Ka(u', w') + r (~) w'] dx = 

-~~~ j lcxf3(y)dy j <p,f3 (x)ucx(x)dx. 

Y\F !1 

REMARK 5.3 Of interest in the study of epi-convergence is the case u = 0, see 
Lemma 5.4; then R = 0. 

6. The augmented Lagrangian method for solving local 
problems 

The minimization problems occurring in ( 4.4) and (5.18) are unilaterally con
strained ones. In this section we are sketching an application of the general 
results due to Ito and Kunisch (1990) to minimization problem (5.18). Simihr 
procedure is valid for (4.4). 

The minimization problem occurring in (5.18) can be written in the following 
way 

(P) inf {-
2

1
ayF(U,U) -l(U)IU E Hper} 

g(U):<>O 
(6.1) 
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where U = ( v, u, w) , if per C H per is the sub space of periodic functions with 
zero mean value over Y; Hper = H~er(Y) 2 

X H~er(Y F) 2 X H~er(Y), ayF(-, ·) 
is the bilinear form which is coercive on Hpen l is the linear and continuous 
functional and g(u) = -[uv] E L2(F). 

According to Ito, Kunisch (1990) there exists (U*, .A*) E Hper x H , H = 
L2(F), such that U* is the solution to (P), .A* 2: 0 and 

1. < .A*,g(u*) >L2xL2 = 0 
n. ayF(U*,U) - L(U) - < .A*, [uv] >L2xL2 = 0 

for all U E Hper· If nv stands for normal contact stresses on F, then ,A* 
- j-1(nv), nv E H- 112(F), j = Riesz map, j: H112(F) --> H- 112(F) . 

Now we define a family of augmented Lagrangian problems by 

(P)m ,>-. min{Lm(U, .A) I U E Hper} , 

where 

Lm(U,>.) = ~ayF(U,U) -L(U)+ < >.,g(u,>.,m) > + ~IJg(u,.A,m) llk 
and 

g(u,.A,m)=sup(g(u),~), m>O, .AEH. 

The augmented Lagrangian algorithm 

(1) Choose >. 1 EH , >.1 2: 0 and m> 0. 
(2) Put n = 1. 
(3) Solve (P)m,>-.n for un. 
(4) Put An+l = An +mg(un,>.n,m) = sup(O,>.n +mg(un)) . 
(5) Taken = n + 1 and return to step (3). 

This algorithm consists of a sequence ofunconstraint minimization problems 
(P)m,>-.n whose solutions converge to the solution of (P), provided that they 
exist. Moreover we have 

C II U* - unll;j + -2
1 

ll>.n+l- .A* Ilk:::; -2
1 

11-An - ).,* Il k . 
p e r m m 

The positive constant C follows from the obvious inequality 

for all U E Hper . 

In the case of the augmented Lagrangian algorithm with variable stepsize, step 
( 4) is to be replaced by 
(4') Put An+1 = An + c5mg(un,An,m), c5 E (0 , 1). 
Then we have 

C II U*- uniJ~pe< + ;(1 -c5) ll a(un, An, m) Ilk+ 

2~5 ll >.n+1 - >.* II II :S 2~5 11 -An -.A* II II · 
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