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A system of variational inequalities is considered, describing the
quasi-stationary equilibrium problem of an elastoplastic plate con-
tact with a rigid obstacle, according to the plastic flow theory. The
presence of free boundaries of contact and plasticity leads to geo-
metrical and physical restrictions of the inequality type upon the
solution. The restrictions are changed by a penalty operators and
the penalty problem is linearized with the help of an iteration pro-
cedure. Convergence of solutions is proved.

1. Introduction

Formulation of the problem is as follows, Khludnev (1988). Let 2 C R? be a
bounded domain with a smooth boundary 8Q. It is required to find functions
w,m=(mij), 1,7 =1,21in Q x (0,T) satisfying following relations

w >, (1.1)
(mijij + o —w) <0 forany@:@ > ¢, (1.2)
jml < (13)
(cijemes + wij, Mi; —my;) > 0 for any m : |m| < a, (1.4)
w=w,=0 ondf, (1.5)
w=w’ m=m’ whent=0. (1.6)

Where ¢ € C(0,T;C%(Q)), ¢ on 89 is less than 0; f € C(0,T; L*(Q));
cijer € C(0,T; L®(R)), eijribribij > cijéij, ¢ > 0; w® € HE(Q); m® € L2(Q);
a € C(0,T), a > 0 are given. Brackets (-, -) denote the scalar product in L3(Q),
|m| means |m?| = m;jmi;, upper point denotes the derivative with respect to

variable ¢ € (0,7, w, is the derivative in the direction of external normal.
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H*(Q) = W$(Q) is usual Sobolev space and HZ means the closure of C§°(2)
in the corresponding norm of the space. Here and in what follows, repeated
lower indices mean summation from I to 2, lower indices after a comma mean
differentiation with respect to the corresponding space variable (21, z5) € Q. All
functions under consideration are symmetric with respect to the lower indices.

In the model formulated, functions w, m, ¢, f describe the normal displace-
ment of plate points, the bending moments, the obstacle shape and the external
force, respectively. Inequality (1.1) is the geometrical condition of unpenetra-
ble obstacle and (1.3) is the physical restriction upon moments mentioned in
Temam (1983). Strict inequality in (1.3) means the elastic state of a plate and
the equality holds when the plastic state is reached. Let us divide (0, T') into the
intervals of length At by points t = sAt, s =0,1,...,5 and replace continuous
derivative with respect to ¢ by its finite—difference analogy, marking function
values in point ¢ = sAt by the upper index s. We obtain from (1.1)—(1.6) the

set of stationary problems s = 0,1,...,5—1
W't > prH, (L.7)
(mifs + 1 ,0—wt) <0 forany@:@ > ¢t (1.8)
Ims+1| & a‘H'l, (19)
s+1 5 s+1 _ 8
1My — My Woa) — Wi 1 - +1
(c:;;cf At + Al » Mij — m:;- ) >0, |m| < a®*, (1.10)
il =ttt =0 By 81 (1.11)

One way of studying any variational inequality is to reduce it to an extremal
problem, Khludnev (1992), and another way is to use penalty method, Li-
ons (1969).

2. Formulation of the penalty problem
Let us define ’

)0, when w > g,
ﬁ"o(w)_{ w—, when w<ep.

Let 7 be the orthogonal projection of space (L?(£2))* ontoset {m e (L?(Q2))*/ |m]|
< a}. We take ay(m) = m — wm, and then

T, when |m| < q,
aa(m) = { (1 —a/|m|)m, when |m|> a.

The following penalty problem with positive parameters e, g is considered

1
~T A e () = 4, (2.1)
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s+1, s+1,e,9 1 s+l,eqy.. — s+1,e,9 +1
ikt Mgy + ~age41(m Dij = —wi; + M + @i,
i,j=1,2, (2.2)
ws+1,8.q - w:-i—l.c,q =0 on 9. (2‘3)

Weak convergence of the slution of problem (2.1)-(2.3) to the solution problem
(1.7)-(1.11) as e, ¢ — 0, when (1.7)-(1.11) have a smooth solution (w*+!, m*+1)
€ H2(Q) x (L*(Q))* and [ is sufficiently small, is proved in Khludnev (1988).

Now we shall rewrite (2.1)—(2.3) in the equivalent formulation. We shall not
indicate dependence of functions upon the parameters e, ¢, s for the sake of
simplicity. Let us rewrite (2.2) as follows

1 ..
mij + aa(m)i; =gij, 7=12, (2.4)
where
gij = —wij + (8ikbj1 — cijer)me +pij, 4,5 =1,2, (2.5)

1 e
pij = Cfﬂ:mir +wy, =12

LEMMA Equation (2.4) is equivalent to the following equation
1 .
mij = gij — T %@y Hi=12 (2.6)

Proor. Let (2.4) hold. Let [m| < a, then a,(m) = 0 and m;; = gij,
therefore, |g| < a and (2.6) holds. Let |m| > a then it follows from (2.4) that

1 a
]."f‘—(l_‘—"")) mi; = Gij, 31.}':1;2 2.7
( g\ |m| P @7

Squaring and summing up of equation (2.7) gives

jm = 2oL+, (2.8)

1+g¢q

therefore, |g| > a. We can obtain the following equality by substituting (2.8)
into (2.7)

1 a
i e (1= — g, 1,7=1,2.
myj gij 1 q( |§i) Fijy 47

and, therefore, (2.6) holds. On the other hand, (2.4) follows from (2.6) by
analogy with the above reasoning. This completes the proof.
Let us introduce the notation

aijrr = (cijkr — Girbj1) . (2.9)
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Equation (2.5), together with (2.9), gives

mi; = —aie(w p + get —pre1), 4,5=1,2. (2.10)
We can obtain the following equations substituting (2.10) into (2.6) and (2.1)
1
(aijri + Oikbit)grt — - qa’a(g)ij = aijr1(Pri — W ki) (2.11)
1
aij kW klij + Eﬁw(w) = [+ aijui(prris — griiz)- (2.12)

System (2.10)—(2.12) is equivalent to (2.1), (2.2) a.e. on Q in view of the Lemma.
Obtained value-boundary problem of the elliptic type with the essential non—
linearity (2.10)—(2.12), (2.3) will be linearized as in the sequel.

3. The iteration penalty problem

Let (w®, mP) be any functions from HE(Q)x (L?(Q))*. We organize the following
iteration procedure as n =10,1,2,....

1 1
aijpiwlily + W = f o (@" = B (W) + wijmi(Priis — ghg),  (31)

1 v i
(aijk:+5='k5_fi)§§f'1:—qaa(gn)s‘j+a='jkz(Pk:—wfﬁ"l), i,j=1,2, (3.2)

1+
mitt = gt +oitt —pw), 4,i=12, (33)
Wl = =0 on 80 (3.4)

Let problem (1.7)~(1.11) have smooth solution (w**!, m*+1) € HZ(Q)x(L?(Q))4,
then py; € L2(Q), k,1 = 1,2 and the r.h.s. of equation (3.1) belongs to H=2(Q),
while the one of equation (3.2) belongs to L?(2). Therefore, a unique solu-
tion (wnt!, gt mnHl) € HE(Q) x (L2(Q))* x (L?(Q))* of the linear problem
(3.1)—(3.4) exists in view of the general theory of monotonous operators.

Let the following inequalities be satisfied

e1(&ij, &ij) < (aijribin, &ij) < ea(&ij, &ij),  c1,e2> 0. (3.5)

THEOREM Under the above conditions, the following convergence holds
(W, m") — (w,m) strongly in H{(Q) x (L*(Q))* es n— oo,

where (w, m) is the solution of problem (2.1)-(2.3).
ProoF. Let us denote u"t! = wntl —wn oyl = gntl — g7 Tt follows from
(3.1)—(3.2) that

1 1 ) n . n
Gijkfﬂ‘:rh-'} + ‘ﬁjunﬂ = g(“ — Bp(w") + Bp(w" 1)) = SULITRTE (3.6)




Tteration penalty method for the contact elastoplastic problem 807

ﬁ(aa(y")i;‘ + @a(g"Y)ij) — @iyt
=102, (3.7)
The monotonicity of penalty operators gives
loa(g™) — a9 )| < g™ — 9",
™ — Wt — (Bp(w") = Bp (W )] £ W™ —wn .
Further, we can introduce the scalar product in L?(Q2), thanks to condition
(3.5), as follows

(sl s%) = (aijrisigs s2;)
and define equivalent norms in (L2(2))* and HE(Q), respectively,
I3 = (vij,vi5),  [u]d = (w5, u4).

We write the estimates of the norms using (3.5)

1
llulld < llull? < a[ulﬁ, g < e ) lluislif,s (3.9)

(aijri + bixbi)vp =

(3.8)

where || - ||x is the usual norm in H¥(2). We multiply (3.6) by u"*! and (3.7) by
v"*+1, then we integrate over {2 and sum. We can obtain the following inequality
using Holder inequality and estimates (3. 8) (3.9)

) 4+ [+ + R+ Zuv““nas
e([u“1§+§||uﬂ||3 R+ o Zn na)s
o (W]% L3+ (o133 Zuvnnu),

where constant ¢ < 1 depends on s, e, ¢, ¢1, ca. Thus, we have the strong
convergence as follows

u™,v") — (0,0) strongly in HZ(Q) x (L*(2))* as n—oo. (3.10)
Element (w,g) € H3(Q) x (L?(Q))* exists, by virtue of convergence of the

geometrical progression series with exponent ¢ < 1, such that the following
convergence holds

(@™, g") — (w,g) strongly in H3(Q) x (L*(Q)* as n—oo. (3.11)
Let us pass to the limit in (3.1)~(3.3) as n — oo using convergence (3.10), (3.11)
and penalty operators continuity. Therefore, we shall obtain that (w,m), where
mi; = —aijri(w k1+ gkt —pri), 1,5 = 1,2, is the solution of problem (2.10)-(2.12),
(2.3). This concludes the proof. L
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