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We shall be dealing with the following optimal control problem (P): over all 
triples {y( u), u, ~( u)} satisfying the variational inequality 

{ 
- 6y(u) = u + ~(u), y(u) E HJ(D), u E Ua, 

y(u);:::: 0, €(u);:::: 0, (~(u), y(u)) = 0, €(u) E H - 1 (D) 

* * * we need to find such optimal triple {Y, u, 0 that 

* * * J(Y,u,O:::; J(y(u),u,~(u)) . 

Here J is the cost functional : 

J(y, u,~) = ~ II Y- zd ll i2(f1) + ~l l u ll i2(f1)> 
Ua is the nonempty closed convex subset of L2 (D), z d E L2(D) . 

We suppose that zd <· inf y(u) . Then the existence and uniqueness of an 
uEUa 

optimal triple can be found in Mignot (1976). 
We shall prove that such a Lagrange multiplier p E HJ(D) exists that the 

control problem (P) can be transformed into the lagrangian minimization prob
lem (L) : 

* * * L(Y, u,Cp):::; L(y, u,~;p), 

* * * Y,u , ~, 't/y,u,~ E <I>, 

where 

L(y,u,~;p) = J(y,u,~) + (6y + u + ~,p) 
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and <P is defined with the allowance for the regularity properties of the optimal 
triple: 

Then it is possible to obtain the necessary conditions for the problem (P) via 
the constrained increments method, Puel (1987). 

Let us consider the following penalty control problem (P'): 

{ 
-6y'- (3'(y') = u', 

inf J(y', u', (3' (y')), 
y' E HJ(D), 
u' E Ua, 

where (3'(r) = C 1r- is the penalty function, 7'- =- inf{O, 7'} . The solution 
* * * *E *E 

{y', u', (3'} (here (3 = (3' (Y ) ) of this problem exists for every E: > 0, converges 
to the optimal triple atE: ---> 0 and provides the converges of the cost functional, 
13arbu (1984): 

* * * * * * J(y',u',(3')---+ J(Y,u,~). 

We shall obtain the convergence estimates. From the cost functional we have 
that u' is bounded umiformly in E: in L2 (D) and therefore for some subsequence 
(denoted by r::) : 

* * u' ---+ u weakly in L2 (D) . 

*' For every r:: > 0 : y E H 2(D) n HJ(D). Multiplying the state equation by 
•' -6 y gives: 

* * * * * 116 y' 1112(0) + c- 1 (\l(y')-, 'V(y')-) = (u', -6 y'). 

Since 116 ;, 11£2(0) ::::: 11 ;, IIH2(0) for ;, E H 2 (D) n HJ(D) , the above 
relation yields: 

* 11 y' IIIP(O) ::; c uniformly in E:, 

and therefore we may choose such a subsequence (denoted by E: ) that 

•' . 
y ---+ y 

*t * *e * * * 
Then (3 ---+~ weaklyinL 2 (D),andconvergencesof u and J(y',u',(3') g1ve 
us that 

• * 
u' ---+ u strongly in L2 (D). 
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The optimality conditions for the penalty control problem are in the exis-
* * * * tence of the adjoint state p'E HJ(O.) satisfying, together with y', u' and /3' , 

the optimality system, Barbu (1984) : 

* y'E HJ(O.), 
* p'E HJ(O.), 
* u', VuE Ua . 

• E: .E: 

Here f3 (r) = d~f3'(r), /3 (r) ~ 0, Vc > 0. Then the uniform convergence 
*E: * -
y ---*Y (by the compact imbedding H 2 (0.) in C(O.) ) and the condition for Zd 

give: 

for all c < c0 
. 

By virtue of the maximum principle for the adjoint state equation, we have : 

* -

p'?. 0 in n for all c < c0 
. 

This equation also gives the estimate: 

* 
11 P' IIHt(n) ~ C uniformly in c. 

Choosing a subsequence (denoted by c ) , we may assume that· 

* * p' ---* p weakly in HJ (0.). 

* The function p is called the adjoint state for the problem (P). 
Let us consider the minimization problem (L') : 

- - - * * 
L(y', u', /3'; p') ~ L(y', u', /3'; p') 

on the convex set 

* -
Since p' is non-negative on 0. and 

* the functional L(y', u', /3'; p') is strictly convex on <l>'. Then the following 
system gives the necessary and sufficient conditions for the problem (L') : 

-
y'E H 2 (D) n HJ(O.), 

u', VuE Ua. 
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Comparing it with the optimality system of (P'), we establish that the triple 
* * * {y', u', ,8'} gives a solution of the problem ( L') : 

* * * * * L(y', u', ,B';p') ~ L(y', u',,B';p'). 

Let us show that for all {y, u, 0 E <I> on can construct such a sequence 
{y', u', ,8'} E <I>' that 

y' ---+ y 
u' ---+ u 

strongly in H 2 (n) n H6(n), 
strongly in L 2 (n), 
strongly in L2(n). 

By using the smoothing functions ~n(x) = J ~(y)wn(lx- yl)dy , where wn(r) 
!1 

is a mollifier in R2 , wn 2: 0, we may build for all ~ E L2 (n), ~ 2: 0 such a 
. 00 

sequence e EC (n), e 2: 0 that 

strongly in L2 (n), 
strongly in L2 (n). 

Let us define the functions y' =: y- ce, u' =: u, ,8' =: ,B'(y') = c- 1(y- cy')-. 
Since lW- ~lli2(!1) = lie- ~lli2(!1+) + llelli2(f1o)> where no is a subset of 
n : y(x) "¥:- 0, X E no; n+ = n\no, we have: lW- ~11£2(!1+)• lleli£2(!10)---+ 
0, if E: tend to zero. Moreover, 

lll 

m 
n+: 
no: 

C 1(y-ce)- =e. 
0 ~ E:- 1(y- ce)- ~e. 

Hence, ,8' ---+ ~ strongly in L 2(n) . The function y' has also the required 
convergence property. 

* * * * Using these results and the convergence of y', u', ,8' and p' , it is possible 

to pass to the limit in (L') and obtain the function Y, ~and ~ as the solution 
* of the problem ( L) for p = P . Therefore, the existence of the desired Lagrange 

multiplier has been proved, and it has been established that this multiplier is 
the adjoint state function. 
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