Control and Cybernetics

vol. 23 (1994) No. 4

Existence of a Lagrange multiplier for the control problem of a variational inequality

by

Anatoly Leontiev

Institute of Hydrodynamics
 630090 Novosibirsk
 Russia

We shall be dealing with the following optimal control problem (P) : over all triples $\{y(u), u, \xi(u)\}$ satisfying the variational inequality

$$
\left\{\begin{array}{l}
-\triangle y(u)=u+\xi(u), \quad y(u) \in H_{0}^{1}(\Omega), \quad u \in U_{\partial} \\
y(u) \geq 0, \xi(u) \geq 0,(\xi(u), y(u))=0, \quad \xi(u) \in H^{-1}(\Omega)
\end{array}\right.
$$

we need to find such optimal triple $\{\stackrel{*}{y}, \stackrel{*}{u}, \stackrel{*}{\xi}\}$ that

$$
J\left(\stackrel{*}{y}^{*} \stackrel{*}{u}, \stackrel{*}{\xi}\right) \leq J(y(u), u, \xi(u))
$$

Here J is the cost functional :

$$
J(y, u, \xi)=\frac{1}{2}\left\|y-z_{d}\right\|_{L^{2}(\Omega)}^{2}+\frac{1}{2}\|u\|_{L^{2}(\Omega)}^{2}
$$

U_{∂} is the nonempty closed convex subset of $L^{2}(\Omega), z_{d} \in L^{2}(\Omega)$.
We suppose that $z_{d}<\inf _{u \in U_{\theta}} y(u)$. Then the existence and uniqueness of an optimal triple can be found in Mignot (1976).

We shall prove that such a Lagrange multiplier $p \in H_{0}^{1}(\Omega)$ exists that the control problem (P) can be transformed into the lagrangian minimization problem (L) :

$$
\begin{aligned}
& L(\stackrel{*}{y}, \stackrel{*}{u}, \stackrel{*}{\xi} ; p) \leq L(y, u, \xi ; p), \\
& \stackrel{*}{y}, \stackrel{*}{u}, \stackrel{\forall}{\xi}, \forall y, u, \xi \in \Phi
\end{aligned}
$$

where

$$
L(y, u, \xi ; p) \equiv J(y, u, \xi)+(\Delta y+u+\xi, p)
$$

and Φ is defined with the allowance for the regularity properties of the optimal triple:

$$
\Phi=\left\{y \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega), u \in U_{\partial}, \xi \in L^{2}(\Omega), \mid y \geq 0, \xi \geq 0,(\xi, y)=0\right\}
$$

Then it is possible to obtain the necessary conditions for the problem (P) via the constrained increments method, Puel (1987).

Let us consider the following penalty control problem $\left(P^{\varepsilon}\right)$:

$$
\left\{\begin{aligned}
-\triangle y^{\varepsilon}-\beta^{\varepsilon}\left(y^{\varepsilon}\right)=u^{\varepsilon}, & y^{\varepsilon} \in H_{0}^{1}(\Omega) \\
\inf J\left(y^{\varepsilon}, u^{\varepsilon}, \beta^{\varepsilon}\left(y^{\varepsilon}\right)\right), & u^{\varepsilon} \in U_{\partial}
\end{aligned}\right.
$$

where $\beta^{\varepsilon}(r)=\varepsilon^{-1} r^{-}$is the penalty function, $r^{-}=-\inf \{0, r\}$. The solution $\left\{y^{*}, u^{*}, \beta^{*}\right\}$ (here $\stackrel{*}{\beta}^{\varepsilon} \equiv \beta^{\varepsilon}\left({ }^{*^{\varepsilon}}\right)$) of this problem exists for every $\varepsilon>0$, converges to the optimal triple at $\varepsilon \rightarrow 0$ and provides the converges of the cost functional, Barbu (1984):

$$
J\left(y^{*}, \stackrel{*}{u}^{\varepsilon}, \stackrel{\beta}{\beta}^{\varepsilon}\right) \rightarrow J(\stackrel{*}{y}, \stackrel{*}{u}, \stackrel{*}{\xi})
$$

We shall obtain the convergence estimates. From the cost functional we have that u^{ε} is bounded umiformly in ε in $L^{2}(\Omega)$ and therefore for some subsequence (denoted by ε):

$$
\stackrel{*}{u^{\varepsilon}} \rightarrow \stackrel{*}{u} \quad \text { weakly in } L^{2}(\Omega)
$$

For every $\varepsilon>0: \stackrel{*}{y}_{y}^{\varepsilon} \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$. Multiplying the state equation by $-\triangle \stackrel{*}{y}^{\varepsilon}$ gives:

$$
\left.\left\|\Delta \stackrel{*}{y}^{\varepsilon}\right\|_{L^{2}(\Omega)}^{2}+\varepsilon^{-1}\left(\nabla()^{y^{\varepsilon}}\right)^{-}, \nabla\left(y^{\varepsilon}\right)^{-}\right)=\left(\stackrel{*}{u^{\varepsilon}},-\Delta \stackrel{*}{y}^{\varepsilon}\right) .
$$

Since $\quad\left\|\triangle \stackrel{*}{y}^{\varepsilon}\right\|_{L^{2}(\Omega)} \geq\left\|y^{\varepsilon}\right\|_{H^{2}(\Omega)} \quad$ for $\quad{ }^{*} \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$, the above relation yields:

$$
\left\|\stackrel{*}{y^{\varepsilon}}\right\|_{H^{2}(\Omega)} \leq C \quad \text { uniformly in } \varepsilon
$$

and therefore we may choose such a subsequence (denoted by ε) that

$$
\stackrel{*}{y}_{y}^{\varepsilon} \rightarrow \stackrel{*}{y} \quad \text { weakly in } H^{2}(\Omega) \cap H_{0}^{1}(\Omega)
$$

Then $\stackrel{*^{\varepsilon}}{\beta} \rightarrow \stackrel{*}{\xi}$ weakly in $L^{2}(\Omega)$, and convergences of $\stackrel{*}{u}^{\varepsilon}$ and $J\left(\stackrel{*}{y^{\varepsilon}}, \stackrel{*}{u}^{\varepsilon}, \stackrel{*}{\beta}^{\varepsilon}\right)$ give us that

$$
\stackrel{*}{u^{\varepsilon}} \rightarrow \stackrel{*}{u} \quad \text { strongly in } L^{2}(\Omega)
$$

The optimality conditions for the penalty control problem are in the existence of the adjoint state $\stackrel{*}{p}^{\varepsilon} \in H_{0}^{1}(\Omega)$ satisfying, together with $\stackrel{*}{y^{\varepsilon}}, u^{\varepsilon}$ and $\stackrel{*}{\beta^{\varepsilon}}$, the optimality system, Barbu (1984) :

$$
\begin{cases}-\Delta \stackrel{*}{y}^{\varepsilon}-\stackrel{*}{\beta}\left(y^{*}\right)=\stackrel{*}{u}^{\varepsilon}, & y^{\varepsilon} \in H_{0}^{1}(\Omega) \\ -\Delta \stackrel{*}{p^{\varepsilon}}+\dot{\beta}^{\varepsilon}\left(y^{\varepsilon}\right) p^{\varepsilon}=y^{\varepsilon}-z_{d}, & \stackrel{*}{p^{\varepsilon} \in H_{0}^{1}(\Omega)} \\ \left(p^{\varepsilon}+u^{\varepsilon}, u-u^{\varepsilon}\right) \geq 0, & u^{\varepsilon}, \forall u \in U_{\partial}\end{cases}
$$

Here $\dot{\beta}^{\varepsilon}(r)=\frac{d}{d r} \beta^{\varepsilon}(r), \quad \dot{\beta}(r) \leq 0, \forall \varepsilon>0$. Then the uniform convergence $\stackrel{*^{\varepsilon}}{y} \rightarrow \stackrel{*}{y}$ (by the compact imbedding $H^{2}(\Omega)$ in $C(\bar{\Omega})$) and the condition for z_{d} give :

$$
\stackrel{*}{\varepsilon}_{y^{\varepsilon}}-z_{d}>0 \quad \text { for all } \varepsilon<\varepsilon^{0}
$$

By virtue of the maximum principle for the adjoint state equation, we have :

$$
\stackrel{*}{p^{\varepsilon}} \geq 0 \quad \text { in } \bar{\Omega} \text { for all } \varepsilon<\varepsilon^{\circ}
$$

This equation also gives the estimate:

$$
\left\|\stackrel{p}{p}^{\varepsilon}\right\|_{H_{0}^{1}(\Omega)} \leq C \quad \text { uniformly in } \varepsilon
$$

Choosing a subsequence (denoted by ε), we may assume that

$$
\stackrel{*}{p^{\varepsilon}} \rightarrow \stackrel{*}{p} \quad \text { weakly in } H_{0}^{1}(\Omega)
$$

The function $\stackrel{*}{p}$ is called the adjoint state for the problem (P).
Let us consider the minimization problem (L^{ε}) :

$$
L\left(\overline{y^{\varepsilon}}, \overline{u^{\varepsilon}}, \bar{\beta}^{\varepsilon} ; \stackrel{p}{ }^{*}\right) \leq L\left(y^{\varepsilon}, u^{\varepsilon}, \beta^{\varepsilon} ; \stackrel{p}{ }_{\varepsilon}^{\varepsilon}\right)
$$

on the convex set

$$
\Phi^{\varepsilon} \equiv\left\{y^{\varepsilon} \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega), u^{\varepsilon} \in U_{\partial}, \beta^{\varepsilon} \equiv \beta^{\varepsilon}\left(y^{\varepsilon}\right)\right\}
$$

Since $\stackrel{*}{p}^{\varepsilon}$ is non-negative on $\bar{\Omega}$ and

$$
\beta^{\varepsilon}\left(\lambda w_{1}+(1-\lambda) w_{2}\right) \leq \lambda \beta^{\varepsilon}\left(w_{1}\right)+(1-\lambda) \beta^{\varepsilon}\left(w_{2}\right) \quad \text { for every } \lambda, 0 \leq \lambda \leq 1
$$

the functional $L\left(y^{\varepsilon}, u^{\varepsilon}, \beta^{\varepsilon} ; p^{*}\right)$ is strictly convex on Φ^{ε}. Then the following system gives the necessary and sufficient conditions for the problem (L^{ε}) :

$$
\left\{\begin{array}{cl}
-\Delta p^{\varepsilon}-\dot{\beta^{\varepsilon}}\left(\overline{y^{\varepsilon}}\right) \bar{p}^{*}=\overline{y^{\varepsilon}}-z_{d}, & \overline{y^{\varepsilon}} \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \\
\left(p^{*}+\overline{u^{\varepsilon}}, u-\overline{u^{\varepsilon}}\right) \geq 0, & \overline{u^{\varepsilon}}, \forall u \in U_{\partial}
\end{array}\right.
$$

Comparing it with the optimality system of $\left(P^{\varepsilon}\right)$, we establish that the triple $\left\{y^{\varepsilon}, u^{\varepsilon}, \stackrel{*}{\beta^{\varepsilon}}\right\}$ gives a solution of the problem $\left(L^{\varepsilon}\right)$:

$$
L\left(y^{*}, u^{\varepsilon}, \stackrel{\beta}{ }^{*} ; p^{*}\right) \leq L\left(y^{\varepsilon}, u^{\varepsilon}, \beta^{\varepsilon} ; p^{*}\right) .
$$

Let us show that for all $\{y, u, \xi\} \in \Phi$ on can construct such a sequence $\left\{y^{\varepsilon}, u^{\varepsilon}, \beta^{\varepsilon}\right\} \in \Phi^{\varepsilon}$ that

$$
\begin{array}{ll}
y^{\varepsilon} \rightarrow y & \text { strongly in } H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \\
u^{\varepsilon} \rightarrow u & \text { strongly in } L^{2}(\Omega), \\
\beta^{\varepsilon} \rightarrow \xi & \text { strongly in } L^{2}(\Omega) .
\end{array}
$$

By using the smoothing functions $\xi_{n}(x) \equiv \int_{\Omega} \xi(y) \omega^{n}(|x-y|) d y$, where $\omega^{n}(r)$ is a mollifier in $R^{2}, \omega^{n} \geq 0$, we may build for all $\xi \in L^{2}(\Omega), \xi \geq 0$ such a sequence $\xi^{\varepsilon} \in \dot{C}^{\infty}(\Omega), \xi^{\varepsilon} \geq 0$ that

$$
\begin{array}{ll}
\xi^{\varepsilon} \rightarrow \xi & \text { strongly in } L^{2}(\Omega) \\
\varepsilon \xi^{\varepsilon}, \varepsilon D \xi^{\varepsilon} \rightarrow 0 & \text { strongly in } L^{2}(\Omega)
\end{array}
$$

Let us define the functions $y^{\varepsilon} \equiv y-\varepsilon \xi^{\varepsilon}, u^{\varepsilon} \equiv u, \beta^{\varepsilon} \equiv \beta^{\varepsilon}\left(y^{\varepsilon}\right)=\varepsilon^{-1}\left(y-\varepsilon y^{\varepsilon}\right)^{-}$. Since $\left\|\xi^{\varepsilon}-\xi\right\|_{L^{2}(\Omega)}^{2}=\left\|\xi^{\varepsilon}-\xi\right\|_{L^{2}\left(\Omega^{+}\right)}^{2}+\left\|\xi^{\varepsilon}\right\|_{L^{2}\left(\Omega^{\circ}\right)}^{2}$, where Ω° is a subset of $\Omega: y(x) \not \equiv 0, x \in \Omega^{\circ} ; \quad \Omega^{+} \equiv \Omega \backslash \Omega^{\circ}$, we have: $\left\|\xi^{\varepsilon}-\xi\right\|_{L^{2}\left(\Omega^{+}\right)},\left\|\xi^{\varepsilon}\right\|_{L^{2}\left(\Omega^{\circ}\right)} \rightarrow$ 0 , if ε tend to zero. Moreover,

$$
\begin{array}{llr}
\text { in } & \Omega^{+}: & \varepsilon^{-1}\left(y-\varepsilon \xi^{\varepsilon}\right)^{-} \equiv \xi^{\varepsilon}, \\
\text { in } & \Omega^{0}: & 0 \leq \varepsilon^{-1}\left(y-\varepsilon \xi^{\varepsilon}\right)^{-} \leq \xi^{\varepsilon} .
\end{array}
$$

Hence, $\beta^{\varepsilon} \rightarrow \xi$ strongly in $L^{2}(\Omega)$. The function y^{ε} has also the required convergence property.

Using these results and the convergence of $\stackrel{*}{y^{\varepsilon}}, \stackrel{u}{u}^{\varepsilon}, \stackrel{\beta}{\beta}^{\varepsilon}$ and $\stackrel{*}{p^{\varepsilon}}$, it is possible to pass to the limit in $\left(L^{\varepsilon}\right)$ and obtain the function $\stackrel{*}{y}, \stackrel{*}{u}$ and $\stackrel{*}{\xi}$ as the solution of the problem (L) for $p \equiv \stackrel{*}{p}$. Therefore, the existence of the desired Lagrange multiplier has been proved, and it has been established that this multiplier is the adjoint state function.

References

Mignot F. (1976) Contrôle dans les inéquations variationelles elliptiques, J. Func. Anal. 22, 130-185.

Puel J. P. (1987) Some result on optimal control for unilateral problems, Cont. Partial. Diff. Equat. : Proc. IFIP WG 7.2 Work.Conf., Santiago de Compostela, July 6-9, 1987, Lecture Notes in Control and Information Science, 114, Springer-Verlag, 225-235.
Barbu V. (1984) Optimal Control of Variational Inequalities, Boston.: Pitman, (Research Notes in Mathematics, 100).

