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Resulting from application of the Bittner operational calculus
the definition of a generalized linear dynamic differential system is
presented. For the system the problem of synthesis of the optimal
regulator with the quadratic performance index is solved.

1. Preliminaries

The Bittner operational calculus, Bittner (1974) is referred to as a system
CO(L®, £+, 8,75, 8. &) (1)

where L° and L! are linear spaces over the same field I' of scalars such that
L' C L°. The linear operation S : L' — L° (denoted as S € L(L!, L?)), called
the (abstract) derivative, is a surjection. Moreover, a nonempty set () is the set
of indices ¢ for the operations Ty € L(L°, L') such that ST, f = f, f € L°, called
integrals and for the operations s, € L(L', L') such that s,z = 2—T,Sz,z € L',
called limit conditions. The kernel of S, i.e. the set KerS := {c € L' : S¢ = 0},
is called the space of constants for the derivative S.

2. The matrix operational calculus

In this paper we will assume that the operational calculus (1) is given after
Wysocki (1994), in which:

a) L° is a real commutative algebra with unity e and L' is its subalgebra

b) the derivative S satisfies the Leibniz condition

S(z-y)=Sz-y+=z-Sy, z,ye L
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¢) the limit conditions s, ¢ € QcCQ (where @ has at least one element) are
multiplicative, i.e.
sq(m-y)zsqm-sqy, qe@) l‘,yELl .
The mapping I} € L(L% KerS) described by the formula

Igéf = (qu _Tlh)f = s‘hTQOf , 90,91 € Q; .f € LO

is called operation of definite integration. It is easy to verify that the Leibniz-
Newton formula

I35z =Rz, z €L’ @
holds, where the operation R} € L(L', KerS) is described by the formula
Rtz == (sq, — 5¢0)% , 90,1 €Q, z € L' (3)

Let Matmyn(Z) denote the set of all matrices with m rows and n columns
with elements belonging to the set Z. In the sets Mat,xn(L¥),k = 0,1, we
define the usual operations of addition of matrices and multiplication of matrix
by a number. Then the sets Mat,xn(L¥),k = 0,1, Maty,xn(KerS) are real
linear spaces such that

Matpxn(KerS) C Matmxn(L') C Matmxn(LP) .

For the elements X € Matmx,(Lk),? € Mat,xn(L*),k = 0,1 we define the
product XY as the usual matrix multiplication. Then the sets M aty ey (LF), k=
0,1, are real algebras with unity £ := [6ij - €lnxn, where &;; denotes the Kro-
necker symbol.

Let

SX n= [Smij]mxn ) T‘qﬁ1 = [quz'j]an ) SqX = [Sqmij]mxn ) (4)

where I := [fij] € Matmxn(L®) , X = [2i;] € Matmxn(L'), ¢ €Q .

It is not difficult to notice that the operations (4) are linear. Moreover, using the
definitions of matrix operations and the properties of the operational calculus,
it is easy to prove the following relations:

SC=0,5C=C,qeQ, C€Matmxn(KerS) (5)
S(X V)=8X-Y4+X-SV, X € Matyx, (L"), ¥ € Mat,xn(L') (6)
(the Leibniz formula)
54X -V)=6,X -5V ,¢€Q, X € Matmxr(L'), Y € Mat,xn(L) (7)
(the multiplication condition)
ST, =Fs,X =X ~T;SX , ¢ €Q, F € Matyxn (L), (8)
X € Matyxn(LY) .
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It is obvious that M at, x, (K erS) is the subalgebra of algebras M at,, wn(L*), k =
0,1. Moreover, E € Matnxn(KerS).

Let Inv(Z) denote the set of invertible elements in an algebra Z. If X €
Inv(Mat,xn(L')), then sqf( € Inv(Matn,xn(KerS)),q € Q and

se(X71) = (s,X)7", ¢€Q 9)
SE-V==X"*.8% . X, (10)

Assume that there exists a solution X € Inv(Mat,xn(L')) of the abstract
matrix differential equation

SX = AX, (11)

where A € Mat,yn(L°) is a given matrix.
Let

FM(A) :={X € Inv(Mat,xn(L')): SX = AX }.

THEOREM 1. The differential equation (11) with the limit condition
squ =Xo,q0€Q, X € Matpxn(KerS)

has a unique solution in the set FM(A)

Each element X € FM(A) is called fundamental matrix of the equation

(11). R i
An element X € F'M(A) which is the solution of the problem

SX =AX, s(X=FE, q€Q

is called normalized fundamental matrix of the equation (11) (corresponding to
qo) and denoted as @, (A).
Let

LY = Matrxl(Lk) , k=0,1, (KerS), := Mat,x1(KerS) .

THEOREM 2. I[/i € Matnxn(ALO),ﬁ € Matyxm(L°),u € LY, are given and for
a certain qo € Q) the element @4 (A) exists, then the abstract vector-matriz
differential equation

Sz =Az+ Bu, z €L}
with the limit condition

SgoZ = To , To € (KerS)n
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has the unique solution defined by the Cauchy formula
T = ci)qo (/i).’l_.'o + é'ln (A)qu [(i);ol(fi)éﬁ] )

where &, 1(A) := [, ( AL
THEOREM 3. IfAl Ag, I € Mat,xn(L°) are given and for a certain qo € () the
elements ®,, (A1), @4, (AY) ezist, then the abstract matriz differential equation

SX = A1X + X/iz + F " X € Mat,,x,,(Ll)
with the limit condition
quf( =Xo, Xo € Mat,xn(KerS)

has the unique solution defined by the Cauchy formula

X:Aqu(/il)'XO (A)"‘
+®g, (A1) - Too { @7, (A1) - F - [&, (A’z)]}@ (48),

where the symbol ”1” denoles the transposition and <I> (A ) = [éqo(fltz)]t.

3. The generalized dynamic system

Let us consider all real systems whose dynamics, after taking the suitable models
of the operational calculus, is described by the dependences

Sz=Az+Bu,uel®  zelLl (12)

y=Cz+Du,yeL®, (13)

where the matrices A € Maty, xn(L°), B € Matyxm(L®),C € Mat,xn(L°), D €
Mat,xm(L°) are given.

Model (12),(13) of these systems will be called generalized ((m, n, 7)-dimen-
sional) linear dynamic differential system with compensating constants. The
given element # will be called input signal (control) of the system (12),(13),
whereas the elements z and y will be called state (the state variable) and output
signal (response) of the system, respectively. The abstract differential equation
(12) will be called the equation of state and the equation (13) - the equation of
output of the generalized dynamic system.
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4. The optimal regulator

The generalized dynamic system in which the control is a function of state, i.e.
u = h(z) (14)

will be called closed system (Fig. 1a). If the control is a function of limit state
Sgok = Zo € (KerS),, ie.
u = h(Zo) , (15)

then the generalized dynamic system will be called open system (Fig. 1b).

The mapping h : L, — L describing the dependences (14),(15) will be
called regulator.

Let L O L° be a Mikusiniski space. It is a real linear partially ordered space
in which the order is introduced by a cone K C L satisfying suitable conditions,
Bittner (1974). The elements of the cone K are called non-negative elements.

Let KO := KN L% and K° # (). Moreover, let there be given a function of
control u

J () = g(z, ) (16)

with values in L%, where Z is a solution of the state equation (12).

&} regulator system
T u=h(z) - Sz = Az +Bu |—
b)
regulator system
20 = h(z) - Sz = A+ Ba |——

I'ig.1 The block scheme of control
a) in the closed system b) in the open system

The function (16) will be called index of performance.
Assume that

V A lJ@-J@)eK]. (17

a*€L9 ueLl,
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From (17) it follows that J(u*) is the least element in the set of values of the
performance index (16).

The element 4* satisfying the condition (17) will be called optimal control.
The problem of establishing the dependence

u* = h*(z) or u* = h*(2)

will be called synthesis of the optimal regulator.

5. The synthesis of the optimal regulator
It is easy to notice that
[(zyeE)A(z+y=0)]=[z=y=0]. (18)

Suppose also that L is a commutative algebra (with unity e) such that

(zel)=(z?€K) (19)
[(zeL)A(z?=0)]=>[z=0] (20)
[(z€ K)A(y€Inv(K))] = [z+y € Inv(K)], (21)

where Inv(K) := K N Inv(L).
The elements of the set Inv(K) will be called positive elements.
Using (18)-(20) it is easy to verify that the mapping

(:]): Ln X Lp — L (22)

given by the formula
n
(Zlg) =" =) =i v
i=1

has the following properties:
(i.1) (21 + Z2ly) = (B1|Y) + (Z2y)
(.2) (azlg) = a(@l3)
(i3) (l7) = (312) )
(i4) (zlz)e K, [(z]lz)=0]=[2=0],
where Z1,%9,%,9 € Lp := Mat,x1(L), @ € RL.
The mapping (22) satisfying the conditions (i.1)—(i.4) is called inner product
in L, (see Wysocki, 1989).
Further we shall assume that the operation I{!, qo,q1 € @ has the following
properties:

In(K% c K° (23)
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18 (Inv(K°)) C Inv(K°) (24)

[ze K)A(IZe=0)]=[z=0]. (25)
From (23) and (25) it follows that

(@|9)1 = I (z|9) = I (&*-9) , 2,9 € Ly,

is the inner product in LY (see Mieloszyk, 1987).
Consider the problem of synthesis of the optimal regulator for the perfor-
mance index given by the formula

J(u) = IR (2 Mz + u'Ni) + 5., (2 PZ), 0 €Q, 1 €Q, (26)

where M € Mat,xn(L°), N € Matymxm(L®), P € Mat,xn(KerS) are given
symmetric matrices such that

/\ (2'Mz € K°) (27)
TELL
/\ (@'Nu e Inv(K°)) (28)
aeL?,\{0}
N\ (&PeeK®). (29)
ce(KerS)n

The matrices M and P satisfying the conditions (27) and (29) will be called
non-negatively defined matrices in L} and (KerS),, respectively. The matrix
N satisfying the condition (28) will be called positively defined in L,.

COROLLARY 1. sq,(z'Pz) € K° for eachz € L}.

PROOF. As 54, %' = (sq,%)*, so from multiplicativity of the operation s,, and
from the property (5) it follows that

50, (B PZ) = (54,2)' - P - 50, % .

Moreover, s,, % € (KerS),. Hence and from (29) we obtain the statement. Il
COROLLARY 2. N € Inv(Matmxm(L°)).

ProOOF. From the condition (28) it follows that
(Nu=0)<=(u=0),

meaning the existence of N=!. Il
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COROLLARY 3. If u€ L3 \ {0}, then J(u) € Inv(K").

ProoF. This property follows from the conditions (27),(28),(21),(24) and from
Corollary 1. Il

LEMMA 1. If the matrices A € Mat,xn(L°) , B € Mataxm(L®) , R €
Mat,xn(L') are given, then for the elements u € L3,z € L. satisfying the
equation

St = Az + Bu (30)

the equality
Ig;([ﬁt’;_ct] § msAwEIEEEEsEE )_Rg;(i'téj) = 0(31)

holds.

PRrOOF. From the Leibniz formula (6) we have
11 S(z' Re) = I (S&' - Rz + 'SR - & + #' RSE) .
Because
Szt = (Sz) =z At + @B,
what follows from (30), so
I8 S(z' kz) = In{(z'A' + @' B') Rz + 'SR - z + z' R(Az + Bu)} . (32)
From the Leibniz-Newton formula (2) it follows that
19 S(z' Re) — RI (2" Rkz) =0 .
Hence and from (32) we obtain the expanded form of the formula (31).
The abstract matrix differential equation
SR=—AR— RA+ RBR-'B'R— M (33)

will be called Riccati equation.
Assume that the equation (33) with the limit condition

suft=P (34)

has a unique solution.

COROLLARY 4. The solution R of the problem (33),(34) is a symmetric matriz.
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PROOF. It is easy to notice that the matrix BN~1B! is symmetric. Therefore
from (33) we obtain

(SRY' = SR = —A'Rt — RUA+ RUBN-1B'Rt — I . (35)
Moreover,
s i = (8 Rt = Pr= P (36)

From (35) and (36) it follows that matrices 2 and R! are the solutions of the
same differential equation (33) with the same limit condition (34). From the
uniqueness of the solution of that problem it follows that R = k. Ml

THEOREM 4. Assume that the generalized dynamic system with the state equa-
tion

Sz = Az + Bu
and the limil condition

S =0 , Q0 €Q, To € (KerS),

s given. There exists the uniquely defined optimal control u* represented by the

formula:
—n the closed system
it =—-N"'B'Rz, (37)

it € 19\ {0},
—1n the open system
= —N_IBtR(i)qO(A — BN_IBtR)i'o i (38)

if g € Q,u* € LY \ {0} and the element &, (A — BN-1B'R) exists, where R
is the solution of the Riccati equation (33) with the limit condition (34).
Moreover,

J(@") = sy (2 RE) , if 10 €Q (39)
J(@*) = Zpsqo R %o, if @ €EQ. (40)

Proor. Suppose that @ € L9, \ {0}. Representing the performance index (26)
in the vector-matrix form and availing of Lemma 1 we obtain

Koo A
J(a) = (a2 ]| -~ - e oo ) + s (B PE)+

1

0 : M

81
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o
uig
=
21

_|_[gé([at’;z-f] A 3 mvesiawssiisedt )—Rg;(i'tf%i') )
RB : SR+ A'R+RA z
On the basis of the multiplicativity of s,, , the formulas (3),(5) and
saiR=P, SR+ A'R+ RA+ M = RBNT'B'R

we obtain

J(ﬂ) — Ig;([ﬂtii,t] S w s v @ RE ¥ NI E _— )-I—Squ(;EtRi’) B
RB : RBN-'B'R

I

Using Corollary 4 it is not difficult to verify that the last equality takes the form
J(u) = I8 [(@+ N~ B'Rz)' N (@ + N ™' B' RE)] + s,, (&' Ri&) .

If w+ N-1B'Rz € L% \ {0}, then the first addend of that expression is the
positive element, what follows from (28) and (24). Therefore the condition (17)
will be satisfied for a* € L8, \ {0} such that

J(@*) = 54 (' RZ) . (41)

From Corollary 3 we have J(u*) € Inv(K°). The element J(u*) has the form
(41) if and only if the optimal control in the closed system is represented by the
formula

*=—N"'B'Rz . (42)

Assume that qo € Q. Then

J(@*) = Ehsg R g ,

as the operation sy, is multiplicative, 5o, &% = (54,%)* and s,,& = Zo. Putting
the element (42) into the equation Sz = Az + B we obtain the optimal state

equation
Sz =(A—BN~'B'R)z .

Assume that there exists the normalized fundamental matrix
&,,(A— BN~'B'R). Then on the basis of Theorem 2 we get

& = b, (A— BN-1B'R)zo .

Putting Z* into (42) we obtain the form (38) of the optimal control in the open
system. =
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The index of performance corresponding to the generalized dynamic system
with the state equation
St = Az + Bu
and the output equation
§=Cz

is determined by the formula

J(@) = I (' Fy+ @' Nu) + 5., (2 P7), 0€Q, n €Q,

where the matrix ' € Mat,x,(L°) is non-negatively defined in L2 and N, P are
maftrices deﬁned AasApAreviously. This performance index takes the form (26) if
we admit M = C'FC.

6.

The explicit form of solution of the Riccati equation

A. In the case when M = (), i.e. when the performance index (26) is represented
by the formula

J(u) = I (#' Na) + s, (2 Px)

we are able to obtain the solution of the Riccati equation in an explicit form.
For M = 0 the matrix R is the solution of the problem

SR=—A'R— RA+RBRN-'B'R
sy B=B.

(43)

(44)
Assume that R € Inv(Mat,xn(L')). Then P € Inv(Mat,x,(KerS)).Moreover,
from (43) we obtain

ISR R = ROVAN+ AR - BNC1BY
Because SR~ = —R-1SR - R~!, so

SR™' = R~'A'+ AR"' - BN7'B!
We also have

(45)

53, B = Pl (46)
what follows from (9). Applying Theorem 3 we obtain the solution R~! = H of
the problem (45),(46). Hence R = H~1.

COROLLARY 5 (cf Th.3 Bittner, 1974). If A = 0, then R=* = P~*=T,,(BN~'B*)
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B. The abstract differential equations

Sz = Az — BN~'By

- T age T o i (47)
Sy =—-Mz— A , z,¢ € L,
will be called canonical Hamilton equations corresponding to the generalized
dynamic system with the state equation (12) and the performance index (26).
In the vector-matrix notation the system (47) takes the form

7 A —BN-1B? E
S — |
P -M — At P
Let
. . ‘i’u 2P
B, (G)= | -
By 1 By

be the normalized fundamental matrix corresponding to the matrix

G=1| .. . . (48)

5% = 6B, i,j=1,2. (49)

THEOREM 5. If &1+ &15P € Inv(Matyxn(L')), then the matriz

R= (g1 + BoaP)(®11 + 12P) 71 (50)
is the solution of the Riccati equation (33) with the limit condition (34).
PROOF. As the operation s,, is multiplicative then from the properties (5),(9)

and (49) we obtain s, R = P, i.e. the limit condition (34).
Define X, ¥ € Mat,xn(L') as follows:

X = (i)ll + (i)lzp . \i’ = <i>21 =+ (i>22}5 .
Therefore
X

>
>

T

R = gbfh(é’) '

Y

o -
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and

<
e)

Hence
$X = AX — BN“'B*¥
SV =-MX — AV .
As R = WX~ so from the last equalities we obtain
SR=S¥ X-'+¥SX~1=8¥ X~ —¥X-1SX X~'=
=(-MX - AW X1 - ¥X-1(AX - BN-1B X1 =
=—-M— A'R— RA+ RBN-'B'R
what means that the matrix R, defined by the formula (50), is the solution of
the Riccati equation (33). M

7. Examples
A. Let

L% :=0%Q,RY) , I* = CHQ,RY)
and

d ¢
S::—,T::/,S::]t:,
dt q g q q

where ¢ € Q = [to, tx] C R

With the usual multiplication of functions, the spaces L%, L' are commutative
algebras with unity e = {1}, the derivative S satisfies the Leibniz condition and
the operations s, are multiplicative.

With the cone

K:={fel’: f(t)>0,teQ}

and the modulus

L= {r@n, F={f)} € L°

L := LY is the Mikusiriski space.
In the considered model of the operational calculus the equation (12) is the state
equation of a nonstationary dynamic system with compensating constants, i.e.

Z'(t) = A(t)z(t) + B(t)a(t) .




22 H. WYSOCKI

The performance index (26) (for go = to,q1 = tx) takes the form

J(u) = /t k[;Et(T)M(T)i(T) + ﬂt(T)N(T)ﬂ(’T‘)]dT + zfrt(tk)ﬁft(tk) .

The formulated classical problem of synthesis of the optimal regulator can be
solved by means of the Pontryagin maximum principle or the Bellman dynamic
programming. In Kalman, Falb, Arbib (1969) that problem has been solved by
elementary methods using the linearity of the system and the elementary prop-
erties of quadratic forms. The solution described in this work has been obtained
in an elementary way by reference to the operational calculus in algebras and
the basic properties of partially ordered spaces. Moreover, the obtained general
method can be used in other models of the operational calculus.

B. Consider the generalized dynamic system

Sy=wn (51)
with the limit conditions

S0y = €0, S5y =cC1, (52)

where y€ L2 :={ye L' : Sye L'}, ue LY, co,c1 € KerS , qo € Q.
Admitting

z1i=y, T2:=S5y (53)
the problem (51),(52) can be represented in the vector-matrix form
Sz=Az+ Bu,y=C%, 55, = %o , (54)

where

=[] 4[] 5[] cmbmne[3] o0

and e is a unity in an algebra L°.
The non-homogeneous differential Euler equation of second order

2i+ty=u (56)
with initial conditions

y(1) =do, y(1) = dy (57)
can be reduced into the form (54) if we consider an operational calculus in which

Lt =0%Q, BY) , It = CYQ,RY)
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and

syi= 0, = 1ar}, = (0ta)

where f = {f(1)} € L%,y = {y()} € L,q € @ :=[1,2].
Then the initial conditions (57) determine the limit conditions (52) with
go = 1. Namely,

Co = {do} , C1 = {dl} .

Assume that the algebras L° L' and the Mikusiiski space L are defined as
in Example A. Then the derivative S satisfies the Leibniz condition and the
operations s, are multiplicative.

Let us consider the problem of synthesis of the optimal regulator for the
problem (56),(57) with the index of performance

J(u) = /1 %UZ(T)CZT—I— y2(2) . (58)

Taking into consideration the matrix representation (54),(55) of this problem
and the form of integrals 7, we have here g0 =1,¢; = 2 and

M:O,N:m,ﬁ:[é 8}

It is not difficult to check that

3 2
1 In %ln L —%ln i
2
o X 0 1 %ln% ——ln%
(I)Q(G):(D(t): ..............................
0 0 1 0
. 0 0 —Inf 1 i

is the normalized matrix, 1.e.
d - S 5 %
taq)(t) =Ge), ®2)=F,

where G is the matrix of the form (48) corresponding to our problem. Moreover,
&, + 12 P is a non-singular matrix in the interval [1,2]. Therefore from the
formula (50) we have
3 [ 1 — h;% ]
= | .
—~las oS

R=——7
3—In’L
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Using the formula (37) we obtain

W= —eu—(z1ln- —22ln"2),
i.e. the optimal control depended on the state vector z. Taking into considera-
tion the form of the derivative S and the formulas (53) we have

* 3 1 ? Zt

Putting (59) into (56) we obtain the equation of optimal trajectory of the system

3t1n2%), 3In%
3-I L

24+ (t + y=0 (60)

3—Int

with initial conditions (57). It is easy to prove that the function
t t
g = a11n-2— — ay(6 +1n® 5) ,

where

_ 6d; — 3dgIn®2 —dy In®2 4 — ot diin2
B 6+ 21n°2 T 61212

431

is the solution of the problem (60),(57). Putting this function and its derivative
into (59) we obtain

i
u* = —6ay In g (61)

i.e. the explicit form of the optimal control of the system (56),(57) minimizing
the performance index (58). Using the formula (40) or putting directly the
function (61) and y*(2) = —6as into the functional (58) we obtain

o 3(d() + dl In 2)2

J(u*) = 12a2(3 +1n®2) T %3

C. Let a distributed parameters system be given the dynamics of which is de-
scribed by the partial differential equation

Oz Oz
0z Ot e (62)

Moreover, let

2(2,0) = p(2) , p € C*(R' R"). (63)
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Assume that we are to find such functions u*(z,t), z*(z,t), corresponding to the
system (62),(63), for which the functional

1
J[u(z0,t0)] = / u?(z0 —to + 7, 7)dT + 2%(20 — to + 1,1) (64)
0

attains its minimum at a given point (zo,%o) € R x [0, 1].

This problem can be solved as the problem of synthesis of the optimal re-
gulator in a given point of the surface R x [0, 1] if we consider the operational
calculus with the derivative '

Oz Oz

the integrals

Tf = {/qt f(Z—t+T,T)dT}

and the limit conditions
sqr = {a(z —t+4q,q)},

where
f={f=1) € L° =C*{R* x [0,1}, RY),
z={z(z,t)}e L' ={z€L’:Sz €L, qgeQ :=10,1]

(see Bittner, Mieloszyk, 1982) Then with the usual multiplication of functions
of two variables, the spaces L°, L' are commutative algebras with unity e =
{1}, the derivative S satisfies the Leibniz condition and the operations s, are
multiplicative.
With the cone

K:={feCR x[0,1,RY): f(z,1) >0, (z,t) € R" x[0,1]}
and the modulus

L= A{If(z, 01}, f={f(z0)}e€COR" x[0,1], )

L := C%R! x [0,1], R") is the Mikusiriski space such that L° C L.

In the considered model of the operational calculus the system (62) takes the
operational form Sz = u,y = & whence it follows that A = [0], B = [1], C' = [1],
whereas the Cauchy condition (63) determines the limit state of the system with
qo = 0. Namely,

g0t = o = {p(z — 1)} . (65)
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For M = [0], N =[1], P = [1] and q1 = 1 the performance index (26) takes the
form (64) in every point (zo,%0) € R! x [0, 1].
Using Corollary 5 we have

1
R—lzl—/ dr=2—1.
1

Hence and from (37) we obtain the form of the optimal control in the closed
system

u :—2it:c(z,t). (66)

Therefore the optimal state variable satisfies the partial equation

oz Oz 1

_8_;+E__2—t$(z’t) (67)
and the Cauchy condition (63) which induces the limit condition (65).
As

D4 (a) = exp[/ a(z —t+ 7, 7)dr]
qo

is the normalized fundamental function corresponding to the function
a={a(z,t)} € L% i.e. S®y,(a) = a®y,(a), 54,Pg(a) = 1 (see, Mieloszyk 1987),
so from Theorem 2 the solution of the problem (67),(63) takes the form

t
dr 2—1
— — . — 1) = —— — .
z* = exp| /0 . T] p(z —1t) 5 o(z —1)
Putting this function in (66) we obtain
4r = —%(p(z —t),

i.e. the explicit form of the optimal control of the system (62),(63).
Moreover, from (40) we get

Tl (20,10)] = 59720 —to)

where (z0,t0) € R! x [0,1] is an arbitrary point.

8. Conclusions

The Bittner operational calculus has been applied to give an algebraic descrip-
tion of a group of problems known as the optimal regulator synthesis. In this
approach we generalize the ideas from Kalman, Falb, Arbib (1969). This has
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led to the solutions which cover some particular cases as Examples A and B,
~ solvable in the classical way (cf Kalman, Falb, Arbib, 1969; Kwakernaak, Sivan,
1972). Moreover, in a unified form we can cover some cases of the optimal
regulator synthesis for systems described by partial differential equations (see
Example C).
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