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Introduction

We shall consider the Sobolev spaces V = H{(R), H = L*(Q), V* = H~1(Q),
Y = L3S, V), Y* = L%S;V*),S=(0,T) for 0 < T < oo, where @ C R™ is a
sufficiently regular set, Lions (1969).

We shall be concerned with the nonlinear parabolic differential equation:

%?tiJrAy_f(y):vonQ:(o,T)xQ ©))

with the initial condition
y(0) = wo (2)
where A : Y — Y™* is defined as
=~ & Oy
A’l = ——i]Z-;l a—ml(au(m)a—m]) + a()(il')y

ag,a;j € L®(Q) fori,j=1,2,...,n,v €Y *.
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We assume that:
n

D aij(@)il > a) € VELEER (3)
i=1

i,j=1
ag(z) > « for a certain o > 0

f Y — Y* is Volterra operator (Gajewski, Groger, Zacharias, 1974), f(0) =
0 and

1F () = fw2)lly < Bllys — vally Vyr, 92 €Y (4)
for a certain > 0.

THEOREM 1.1 Let the assumptions (8) and (4) be satisfied. If o > B then for
each yo € H,v € Y* there exists a unique y € W = {wjw € Y A i’i—‘;’ eY*} (with
a norm ||w|lw = ||lw|| + ||w!||v+), which is the solution of the problem (1-2).
Moreover, this solution is continuously depending on (yo,v) from H x Y* 10 W.

Proof. Let yp,y2 € Y; then from 3 and 4 we have
(A= Dy — (A= Dy, y1 —v2) = (A1 — v2), 1 — ¥2)
—{f(y1) = F(v2), v1 = 92) > (@ = B)llyr — I3

((-,-) denotes the pairing between appropriate Sobolev space and its dual).

It follows from this inequality that the operator A — f is strongly monotone
and coercive (Deimling, 1985). Because it is continuous, too (from Y to Y*) then
the problem (1-2) has a unique solution y € W (Gajewski, Groger, Zacharias,
1974).

Now we can check that the operation (yo,v) — y from H x Y* to W is
continuous.

Equation (1) can be presented in the following form:

(@D ) 1 (A0, 2) ~ ()0, 2) = i), 2 (5)

Vze€V and a.a. t € S.
We put in (5) z = y(t) and we obtain the equality:

5 IOl + (A0, 5(8) = (F) O, v(D) + (0, 1(0)

Using assumptions (3-4) we have

1
a—p

2
v

o)

Syl + (@ = Pllvelly <
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and by integration in [0, T7:

Il < e(llvollz + lIvlIF+) (6)

or

lylly < Velllyollar + llvlly) (7)

for a certain constant ¢ > 0.
From (1) and these inequalities follows, Lions (1983):
dy

E:v‘Ff(y)‘AyEY*

Furthermore, from (3,4) and (6) we obtain

1Y lly+ < exlllyollar + [lvlly-) (8)

for a certain constant ¢; > 0.
From (7) and (8) it follows that the solution of problem (1-2) continuously
depends on yp and v.

LEMMA 1.1 Let the assumptions (3) and (4) be satisfied for o > B, let yo € H
and v € Y*. Let f Y — Y* be demicontinuous on Y with the norm from
L?(S; H). Let (vn)nen be a sequence of elements in Y* and (yn)nena sequence
of solutions of (1-2) for v, € Y*.

If vy, —n—oo U weakly in Y*, then y, —n—oo § weaklyin W oand yp, —n— 00 ¥
strongly L2(Q) where g is the unique solution of problem (1-2) for v

Proof. From Theorem 1.1 we know that the equation

(dygt(t) 2) + ((Ayn) (@), 2) = ((F(yn))(@), 2) = )

= (vn(t),2)Vz €V

with the initial condition

¥ (0) = vo (10)

has for each n € N exactly one solution y, = y(v,) € W. We take in (9)
z = yn(t) € V and we obtain

| =

Nlya I + ((Ayn) (@), yn (1)) = (F(W)) (), 9n (1)) =
= (vn(t), yn(t)) for a.a. t € [0, T7.

N[ =
U

t
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From (3-4) and by integration in [0, 7] we have, Malanowski(1975)

o (I + = Dlsnly < ooll + 5ol

From this inequality and from the assumption v, —,_0 ¥ In Y* we see
that

lynlly < 1 (11)

for a certain ¢ > 0.
From (9) we have directly:

Yn! = Vn +f(yn) — Ay, €Y*
Hence, it is clear that from (3,4) and (11) we have the estimation
[lyn|lw < c2 for a certain cg > 0.

It follows that the sequence (yn), N is bounded in W and thus there exists
a subsequence, which we also denote (yn, )nENconverging to an element y weakly
in W, so, Lions (1969), strongly in L?(Q):

Yn —n—oco Y weakly in W
Yn —n—oo T strongly in L2(Q).

Now we can prove that ¥ is the solution of problem (1-2) for v.

Multiplying equation (9) by an arbitrary function ¢ € C*([0,77]) which satis-
fies o(T') = 0 and integrating with the integration-by-parts theorem for Bochner
integral over the domain [0, 7] we obtain

T i
- mmxawawvy4<m%xm4www+
T T
— [ (o = [ (00 2o+ (o )00

Now we are able to pass to the limit with n — oo:

A & T
—L<mm4¢mﬁ+ﬂ<mmmxwm—
T
;A«ﬂmmwwmmz (12)
T

- / (@(2), 2)(t)dt + (30, 2) (0).
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This equation is verified for any ¢ € C1([0,7]), ¢(T") = 0.
This implies that from definition of distributional derivate, for ¢ € D(0,T)
too we obtain:

T T
/()(y’(t),z)dtnL/0 ((AG)(1), z)dt—
T
- [ @,z = a3)
T
- /0 (@(t), 2)dt

Hence g verifies equation (1) for v = 7v.

By theorem of integration by parts for Bochner integrals from (12) and (13),
¢ € C1([0,T]) being arbitrary we can conclude that 7(0) = yo.

So ¥ is a solution of equation (1-2) for 7.

From the fact that there is only one solution of (1-2) we deduce that not only
the subsequence but the whole sequence (Yn)neN converges weakly to 7 = y(v)
in W and strongly in L%(Q). B

LEMMA 1.2 Let the assumptions of Lemma 1.1 be satisfied. If v, —p_co T

strongly in Y* then Y, —n_ oo U strongly in Y where i is the unique solution of
problem (1-2) for .

Proof. From Lemma 1.1 we have immediately that y, —, . 7 weakly in
W and y, —n—co ¥ strongly in L?(Q) where ¥ is the unique solution of problem
(1-2) for w.

Since

1 T

T

3|l ® = 5O+ [ (A =700 - 50
Y i

~ [ (@) = @O, un0) — 5Nt =

= [ (000, 3u(0)et + D), D) = 500D, 7D +

(BT, un (1)) + 0, 30) +

(A7) (@), 5(0) + ((Ayn)(1), () — ((AY)(2), yn ())]dl +

((F@N@), yn (D) + ((f ()0, ¥()) = (F@)(@), Y(1)]dt = Pa

N =
N

+

+

o— o
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then from (3) and (4) we have

0< (= PB)lyn — 73 < Py

Now for n — oo we see that P, — 0, hence y, — 7 strongly in Y. H

2. Optimal control problems

Let there be given a space of controls U = L%(Q)) and a given element vg € U.
The optimal control problem (I) can be stated as follows: find a control
v° € U which minimizes the integral functional

J(y,v) = IWllzacq) + llv — volliz(q) (14)

where y = y(v) is a solution of (1-2) for v € U.
We put ¢(v) = J(y(v), v).

THEOREM 2.1 (Siedman, Zhou, 1982) Let f : Y — Y* be demicontinuous on
Y with the norm from L%(S;H),a > [ and the assumptions (8) and (4) be
satisfied. Then the optimal control problem (I) has at least one solution v° €
L*(Q) such that ®(v°) = inf,cpy ®(v).

Proof. Let (vs),N be a minimizing sequence for the function @:

V,eNvn €U and nllrglo D(vy,) = Ulg{fj d(v).

® is radially unbounded, then (vn), N is bounded in U. It follows that there
exists a subsequence, which we also denote by (U”)nGN such that v, —, .00 T
weakly in U.

Let yn = y(vn) and y° = y(v°). From Lemma 1.1 we know that the sequence
(Yn)neN is weakly convergent in W to y and the pair (7, y) satisfies the equation
(1-2). Because function (14) is weakly lower semicontinuous in L*(Q) x L*(Q),
then

in(fj<1>(v) = lim ®(v,) = lim inf J(yn,vs) > J(¥,7)
vE n—oo n—o0

From this J(7,7) = infyey ®(v) = J(y°,v°), which proves the theorem. H

The optimal control problem (II) can be stated as follows: find a control
v € Uga, Uqq being a closed, convex, non-empty set of U, which minimizes the
functional (14), where vg € U and y = y(v) is a solution of (1-2) for v € Uaa.

THEOREM 2.2 (Debuiska-Nagdrska, Just, Stempien, to appear) Under the as-
sumption from Th.2.1 if Uyd C U 1s closed, convez and non-empty, then the op-
timal control problem (II) has at least one solution v° € Uaq such that ®(v0) =
infueUad ¢(’U)

Proof. The theorem can be proved in the same way as theorem 2.1.
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3. Approximation of the control problems

Consider a family {V}}req of finite - dimensional subspaces of V' (Malanowski,
1975; Deimling, 1985), which satisfies the following conditions:

Vhy, hy € G(hy > hy = Vi, C Vi) (15)
Uwn=v
heG

where the set G C (0, 1] of parameters h has an accumulation point at 0.

The approximation of space L?(S; V') is understood here as a family of spaces
{L%(S; Vi)}rec. As an approximate solution of (1-2) we assume the function
yn € L2(S; V4) which is the solution of the equation:

(yn!(t), zn) + ((Ayn)(t), 2n) — (F(yn) (1), 2n) = (v(t), zn) (16)
Yz, € V)

with the initial condition

Y (0) = yor (17)

where yop, 1s the orthogonal projection of yy onto V3 with the norm from H.
From the assumptions (3) and (4) it is obvious (Gajewski, Groger, Zacharias,
1974) that problem (16-17) for each h € G has the unique solution y; €
L?(S;Vi). Moreover y, € W.
As an approximation of control space U (Malanowski, 1975) we assume
a family of finite dimensional subspaces {Uj}rex, which satisfy the following
conditions:

Vki, ks € K(ky > ky = Ur, C Ug,) (18)
Uu=vu (19)
ke K

where the set K C (0, 1] of parameters K has an accumulation point at 0.
We shall study the following optimisation problem (Ip): find a control which
minimizes the cost functional:

®(vi) = J(ynk, vk) = lynkll7cgy + llve — vorllZa(q) (20)

where ynr = yn(vi) is the solution of the equation

(yn!(t), zn) + ((Ayn) (1), 2n) — {(F(yn))(t), 2n) = (ve(?), zn) (21)
Ve, € Vi
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with the initial condition (17) for a control vy € Uy, vor being the orthogonal
projection of vy onto Ug.

THEOREM 3.1 Under the assumption from Th.2.1 the optimal control problem
(I1) has at least one solution v, € Ug such that

®(vY,) = vkirellflk ®(vi) where ®(vi) = J (Ynk, Vk)-

Proof. The theorem can be proved in the same way as Theorem 2.1.

LEMMA 3.1 Let (vk)rex be a sequence of elements in Uy and (Yrk)hee, kek @
sequence of solutions of (21) with the initial condition (17) for the above. Let
f:Y — Y* be demicontinuous on Y with the norm from L?(S;H), a > 8 and
the assumptions (3) and (4) be satisfied. Then the following conditions hold:
a) if vg —k—o U weakly in U then yny —i n—o Y weakly in W and ypr, —k h—0 7
strongly in L2(Q) where g is the unique solution of problem (1-2) for v.

b) if v —k—o ¥ strongly in U then ypr —k,h—o Y strongly in L2(S; V) where y
is the unique solution of problem (1-2) forv.

Proof. The proof is analogous to the proof of Lemmas 1.1 and 1.2.
Taking in equation (21) z, = yn(t) € V4 we obtain:

| =

lyn @17 + ((Ayn)(©), ya (t)) = (F(wa)(©), yn(2)) = (vr (2), ya (1))

[ SR
U

t

Integrating this equality in [0, 7] from (3) and (4) we have:

1§
Nlwa (D1 + (@ = Allvally < llvonlly + '&‘_—ﬂ”vk”?j
from this inequality and from the assumption vy —_0 T
[lynklly < co for a certain ¢y >0

where ynr = yn(vk).
From (21) we have directly

yn! = vk + f(yn) — Ay € Y™

and from this [Jysk||w < cs for a certain ¢z > 0.

It follows that the sequence (yak)neq, kekx is bounded in W. Hence there
exists a subsequence which we also denote by (ynk)nec, ke, converging to y
weakly in W, so - strongly in L2(Q) (Lions, 1969): ypx — 7 in W, ypx — ¥ In
L?(Q) where k,h — 0.

Now we can prove that (v,7) is the solution of (1-2).
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Function ypy verifies the equation:

(yne!(1), zr) + ((Aynr)(@), 2r) = ((f(ynr )(1), 2r) = (v (1), 2)

with the initial condition:
Ynk (0) = yon

where z, is an element of V}, (also V; for E(h)
Multiplying this equation by any function ¢ € C1[0,T], ¢(T) = 0, integra-
ting in [0, 7] we obtain in the limit

T 4 i
- / (), 2! ()t + / (AT(E), 2)p(t)dt =
i T
= / F@W), 2 )p(t)dt + / (), 2 p(t)dt + (yo, 20 )0(0).

This equation is verified for any ¢ € C([0,T1), in particular for ¢ € D(0,7")
and from the definition of distributional derivate we have:

T T
/0 (@ (1), 2)p()dt + / (AF)(E), ) p(t)dt =
= / @), 2 p(t)dt + / (5(2), =) p(t)dt.

By theorem of integration-by-parts for Bochner integrals (Gajewski, Groger,
Zacharias, 1974), free choice of ¢ € D(0,T), z € Vi and the condition
UregVa = V we can conclude that y(0) = yo. So 7 is the solution of equa-
tion (1-2) for w.

From the fact that problem (1-2) has only one solution it follows that the
whole sequence (yak)neq, kek, not only the subsequence is weakly convergent
in Wtoy=y(v) R

The proof of part (b) is identical to proof of Lemma 1.2.

Let us now consider the problem of convergence of the approximation.

THEOREM 3.2 Let the assumptions of lemma 3.1 be satisfied. Then there exist
weak condensation points of a set of solutions of the optimisation problem (I)
in U x W and each of these points is the solution of the optimisation problem

(D).

Proof.  Function (20) is radially unbounded, so that the sequence
(v9,)hea, kek is bounded in U. It follows that there exists a subsequence which
we also denote by (v9,)req, kex such that v), —k,noo ¥ weakly in U. Then
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Lemma 3.1 implies that y), —k a0 § weakly in W and y9, — r—o J strongly
in L?(Q), where (9,y) verifies (1-2). The function J is weakly lower semi-
continuous in L2(Q) x L%(Q). Then, because (v),)req, kex IS a minimising
sequence, Lions (1983) we have:

inf @(v) = lim ®(fy) = lim inf J(ofh, 1) > J(5,5).

This implies that (7, ) is one of the solutions of the optimisation problem
(1), since o = v and § = y°.

THEOREM 3.3 Let the assumption of Lemma 3.1 be satisfied and

(vRn — Yok, Ve — vRR)L2(Q) + (Yhk» Unk — Yak)L2(Q) = OVur € Uy (22)

then there ezist strong condensation points of problem (I) in U x L*(Q) and
each of these points is a solution of the optimisation problem (I).

Proof. From Theorem 3.2 and Lemma 3.1 it follows that the appropriately
chosen subsequence (v}, )heq, kek converges to v° weakly in L?(Q) and the
adequate sequence (Y9, )neq, kex Where yh, = ya(v),) converges to y° weakly
in W and strongly in L2(Q). According to (18) and (19) for v there exists a
sequence (vo)rek such that vgo —k—o v0 strongly in U and vio € Uy Vk € K.

From (15) for vx = vko and ynro = yn(vko) we have

0 < [JoRn — vrollF gy < Wk Ynwo — Yhr)L2(Q) — (Vko = vok, YRy, — Vko)L2(Q)
Now we can find the limit for &, h — 0 of this inequality and thus we obtain:
vgh — vgo strongly in U.
From the above and the inequality:
18 — o0l < [162 — veollor + llvko +0°llu

it follows that v3, — v° strongly in U. Consequently, that result, together with
lemma 3.1, prove the theorem. H

We can now take into consideration the optimisation problem (II).

We shall study the following optimisation problem (II;): find a control v9, €
Ugar = Uaa NUg which minimizes the cost functional (20) where ypr = yn(vi) is
a solution of equation (21) with the initial condition (17) for a control vy € Uaas
and vox is the orthogonal projection of vy onto Ugag .

Similarly to Theorems 3.1, 3.2 and 3.3 we can prove three theorems.

THEOREM 3.4 Let f : Y — Y* be demicontinuous on Y with the norm from
L%*(S; H),a > 3 and the assumptions (3) and ({) be satisfied. Then the optimal
control problem (11, ) has at least one solution v,‘gh € Uudr -
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THEOREM 3.5 Let (vi)rex be a sequence of elements in Uggr and (Ynk)hea, kek
a sequence of solutions of (21) with the initial condition (17). Let f be demicon-
tinuous from L%(S;V) with the norm from L%(S; H) to L%(S,Vx),a > 8 and
the assumptions (3) and (4) be satisfied. Then there exist weak condensation
points of a set of solutions of the optimisation problem (II) in U X W and each
of these points is the solution of the optimisation problem (II).

THEOREM 3.6 Let the assumptions of theorem 3.5 be satisfied and the inequality
(22) hold. Then there exist strong condensation points of problem (IIy) in
U x L2(Q) and each of these points is the solution of optimisation problem (II).

4. An example

We introduce the operator A :Y — Y*:

Ay = — 122; 6—1322 +y
and f:Y — Y™
F@) @) = gOlly®)llz20)
where g is the given function from L?(Q) such that

llgllza@) < A < 1.

The optimisation problem can be formulated as follows: find a control v° €
L*(Q)(v° € Uua C L?(Q)) which minimizes the functional:

J(y,v) = I9ll7a(q) + llv = vollZa(q)

where y is the solution of the equation

Wy Z—z% +y—gllyllz2@) = v on @
y(0) = wo

and v € L?(Q) (v € Uaa C L*(Q))-

The operations A and f satisfy all the assumptions of Theorem 2.1.

Using the notations from paragraph 3 we transform this problem into the
one of control for the system of non-linear ordinary differential equations:

(d_y:itﬁl’ zn) + a(yn(t), zn) + llyn (Ol L2(2)(9(t), 2n) L2(n) =
(vk(t), 2n)L2(q) Vzn €V
yn(0) = Yno
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with cost functional:

I (yn, 21) = llynllZacq) + llve — viollZ2(q)

where, from Lax-Milgram lemma (see Lions, 1968)

Oyp 0
a(yYn,zn) = /ZBZ}: 81}: /ﬂthhdz‘.
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	Bez nazwy

