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1. Introduction 

We shall consider the Sobolev spaces V= HJ(O), H = L 2 (0), V* = H- 1 (0), 
Y = L 2 (S; V), Y* = L 2 (S; V*), S = (0, T) for 0 < T < =, where n c an is a 
sufficiently regular set, Lions (1969). 

We shall be concerned with the nonlinear paraboli{; differential equation: 

dy 
dt +Ay- f(y) = V on Q = (0, T) X n (1) 

with the initial condition 

y(O) = Yo (2) 

where A : Y -+ Y* is defined as 

a0 , aij E L00 (rl) fori, j = 1, 2, .. . , n, v E Y *. 
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We assume that: 

n n 

L a;j(x)~i~j 2: a La v~i,~j ER (3) 
i,j=l i=l 

a0 (x) 2: a for a certain a> 0 

f: Y-+ Y* is Volterraoperator (Gajewski, Groger, Zacharias, 1974) , f(O) = 
0 and 

(4) 

for a certain fJ > 0. 

THEOREM 1.1 Let the assumptions (3) and (4) be satisfied. If a > fJ then for 
each Yo EH, v E Y* there exists a unique yEW = {wlw E Y 1\ ~~ E Y*} (with 
a norm llwllw = llwll + llwiiiY• ), which is the solution of the problem (1-2). 
Moreover, this solution is continuously depending on (y0 , v) from H x Y* to W. 

Proof. Let Yl, Y2 E Y; then from 3 and 4 we have 

((A- f)y1 -(A- f)y2, Y1 - Y2) = (A(yl - Y2), Y1 - Y2) 

-(f(yt)- f(v2), Y1- Y2) 2: (a- fJ)IIYl- Y2ll~ 

((-,·)denotes the pairing between appropriate Sobolev space and its dual). 
It follows from this inequality that the operator A- f is strongly monotone 

and coercive (Deimling, 1985). Because it is continuous, too (from Y toY*) then 
the problem (1-2) has a unique solution yE W (Gajewski, Groger, Zacharias, 
1974). 

Now we can check that the operation (y0 , v) -+ y from H x Y* to W is 
continuous . 

Equation (1) can be presented in the following form: 

(dy(t), z) + ((Ay)(t), z)- ((f(y)(t), z) = (v(t), z) 
dt 

Vz E V and a.a. t E S. 

We put in (5) z = y(t) and we obtain the equality: 

1 d 
--d llv(t)ll1 + ((Ay)(t), y(t)) = ((f(y))(t), y(t)) + (v(t), y(t)) 
2 t 

Using assumptions (3-4) we have 

d 1 
-llv(t)IIII +(a- f3)11v(t)1 1~ :::; --f311v(t)ll~· 
dt a-

(5) 
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and by integration in [0, T ] : 

IIYII} :S c( II Yo ii J:r + llvll }.) 

or 

for a certain constant c > 0. 
From (1) and these inequalities follows, Lions (1983): 

dy - = V+ f(y) -Ay E y• 
dt 

Furthermore, from (3,4) and (6) we obtain 

for a certain constant c1 > 0. 

(6) 

(7) 

(8) 

From (7) and (8) it follows that the solution of problem (1-2) continuously 
depends on Yo and v. 

LEMMA 1.1 Let the assumptions (3) and (4) be satisfied for a > {3, let Yo E H 
and v E Y*. Let f : Y --> Y* be demicontinuous on Y with the norm from 
U(S; H). Let (vn)nEAf be a sequence of elements in Y* and (Yn)nEAfa sequence 
of solutions of (1-2) for Vn E Y* . 

If Vn -->n_, 00 ii weakly in Y* , then Yn -->n_,00 fj weakly in W and Yn -->n_, 00 fj 
strongly L 2 (Q) where y is the unique solution of problem (1 -2} for v 

Proof. From Theorem 1.1 we know that the equation 

(dy~p) , z) + ((Ayn)(t), z)- ((f(Yn))(t) , z) = 

= (vn(t), z)'t:/z E V 

with the initial condition 

Yn(O) = Yo 

(9) 

(10) 

has for each n E N exactly one solution Yn = y(vn) E W. We take in (9) 
z = Yn(t) E V and we obtain 

~ :t iiYn(t) ii JI + ((Ayn)(t), Yn(t))- ((f(yn))(t), Yn(t)) = 

= (vn(t), Yn(t )) for a.a. t E [0, T]. 
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From (3-4) and by integration in [0, T] we have, Malanowski(1975) 

From this inequality and from the assumption Vn -+n-+oo ii in Y* we see 
that 

for a certain c1 > 0. 
From (9) we have directly: 

Ynl = Vn + f(yTI) - Ayn E Y* 

Hence, it is clear that from (3,4) and (11) we have the estimation 

IIYn ll w ::=:; c2 for a certain c2 > 0. 

(11) 

It follows that the sequence (Yn)nEN is bounded in W and thus there exists 
a subsequence, which we also denote (Yn)nENconverging to an element y weakly 
in W, so, Lions (1969), strongly in L 2 (Q): 

Yn -+n-+oo y weakly in W 

Yn -+n-+oo y strongly in L 2(Q) . 

Now we can prove that y is the solution of problem (1-2) for v. 
Multiplying equation (9) by an arbitrary function <p E C 1([0, T]) which satis­

fies rp(T) = 0 and integrating with the integration-by-parts theorem for Bochner 
integral over the domain [0, T] we obtain 

- 1T (Yn(t), z)r.p'(t)dt + 1T ((Ayn)(t), z)r.p(t)dt+ 

T ( 
-1 ((f(yn)(t), z)r.p(t)dt = Jo (vn(t), z)r.p(t)dt + (Yo, z)rp(O) 

Now we are able to pass to the limit with n-+ oo: 

- 1T(y(t), z)r.p'(t)dt + 1T ((AY)(t), z)r.p(t)-

-1T ((f(Y)(t), z)r.p(t)dt = (12) 

= 1T (v(t), z)r.p(t)dt + (y0 , z)rp(O). 
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This equation is verified for any rp E C 1([0, T]), rp(T) = 0. 
This implies that from definition of distributional derivate, for rp E D(O, T) 

too we obtain: 

faT (y' (t), z)dt +faT ((AY)(t), z)dt­

-faT ((f(y))(t), z)dt = 

=faT (v(t), z)dt 

Hence y verifies equation (1) for v = v. 

(13) 

By theorem of integration by parts for Bochner integrals from (12) and (13), 
rp E C 1 ([0, T]) being arbitrary we can conclude that y(O) = Yo. 

Soy is a solution of equation (1-2) for v. 
From the fact that there is only one solution of (1-2) we deduce that not only 

the subsequence but the whole sequence (Yn)nEN converges weakly toy= y(v) 
in Wand strongly in L2(Q) . • 

LEMMA 1. 2 Let the assumptions of Lemma 1.1 be satisfied. If Vn --+n---+oo v 
strongly in Y* then Yn --+n---+oo y strongly in Y where y is the unique solution of 
problem (1-2) for v. 

Proof. From Lemma 1.1 we have immediately that Yn --+n---+oo y weakly in 
Wand Yn --+n---+oo y strongly in L2 (Q) where y is the unique solution of problem 
(1-2) for v. 

Since 

11T d 1T 2 
0 

dt II Yn(t)- y(t)111dt + 
0 

((A(yn- y))(t), Yn(t)- y(t))dt 

-1T ((f(yn))(t)- (f(fl))(t), Yn(t)- fl(t))dt = 

1T 1 1 
= 

0 
(vn(t), Yn(t))dt + 2(y(T), y(T))- 2(Yn(T), y(T)) + 

1 1 
-2(y(T), Yn(T)) + 2(yo, Yo) + 

+ 1T [((Ay)(t), y(t)) + ((Ayn)(t), y(t))- ((AY)(t), Yn(t)) ]dt + 

+faT [((f(y))(t), Yn(t)) + ((f(Yn))(t), y(t))- ((f(y))(t), y(t))]dt = Pn 



34 A. DE(BINSKA-NAG6RSKA, ADNRZEJ JUST, ZDZISLAW STEMPIEN 

then from (3) and (4) we have 

0 ~(a- ,B) IIYn- Yl l ~ ~ Pn. 

Now for n--> oo we see that Pn --> 0, hence Yn --> y strongly in Y. • 

2. Optimal control problems 

Let there be given a space of controls U = L2 ( Q) and a given element v0 E U. 
The optimal control problem (I) can be stated as follows: find a control 

v 0 E U which minimizes the integral functional 

J(y, v) = llvi ii,(Q) + llv- volli2(Q) (14) 

where y = y(v) is a solution of (1-2) for v E U. 
We put f/;(v) = J(y(v), v). 

THEOREM 2.1 (Siedman, Zhou, 1982) Let f : Y --> Y* be demicontinuous on 
Y with the norm from L 2 (S; H), a > ,B and the assumptions (3) and (4) be 
satisfied. Then the optimal control problem (I) has at least one solution v 0 E 

X L 2(Q) such that <I>(v 0 ) = infvEU <I>(v). 

Proof. Let (vn)nEN be a minimizing sequence for the function <I>: 

V ENVn E U and lim <I>(vn) = inf <I>(v). n n-+oo vEU 

<I> is radially unbounded, then (vn)nEN is bounded in U. It follows that there 
exists a subsequence, which we also denote by (vn)nEN such that Vn ->n-+oo v 
weakly in U. 

Let Yn = y( Vn) and y0 = y( v0 ). From Lemma 1.1 we know that the sequence 
(Yn)nEN is weakly convergent in W toy and the pair (v, Y) satisfies the equation 
(1-2). Because function (14) is weakly lower semicontinuous in L 2 (Q) x L 2 (Q), 
then 

inf <l>( V) = lim <l>( Vn) = lim inf J(yn, Vn) 2: J(y, v) 
vEU n-+oo n-+oo 

From this J(y, v) = infvEU <I>(v) = J(y0 , v0 ), which proves the theorem. • 
The optimal control problem (11) can be stated as follows: find a control 

v0 E Uad, Uad being a closed, convex, non-empty set of U, which minimizes the 
functional (14), where v0 E U and y = y(v) is a solution of (1-2) for v E Uad· 

THEOREM 2.2 (DI(biri.ska-Nag6rska, Just, Stempieri., to appear) Under the as­
sumption from Th.2.1 if Uad C U is closed, convex and non-empty, then the op­
timal control problem (I!) has at least one solution v0 E Uad such that <I>( v0 ) = 

infvEUad <I>(v). 

Proof. The theorem can be proved in the same way as theorem 2.1. 
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3. Approximation of the control problems 

Consider a family {Vh}hEG of finite- dimensional subspaces of V (Malanowski, 
1975; Deimling, 1985), which satisfies the following conditions: 

'Vh1, h2 E G(h1 > h2 => Vh1 C Vh2) 

Uvh = v 
hEG 

where the set GC (0, 1] of parameters h has an accumulation point at 0. 

(15) 

The approximation of space L 2 (S; V) is understood here as a family of spaces 
{L 2(S; Vh)}hEG· As an approximate solution of (1-2) we assume the function 
Yh E L 2(S; Vh) which is the solution of the equation: 

(yhl(t), zh) + ((Ayh)(t), zh)- (f(yh)(t), zh) = (v(t), zh) 

'Vzh E Vh 

with the initial condition 

Yh(O) = Yoh 

(16) 

(17) 

where Yoh is the orthogonal projection of Yo onto Vh with the norm from H. 
From the assumptions (3) and (4) it is obvious (Gajewski, Groger, Zacharias, 

1974) that problem (16-17) for each h E G has the unique solution Yh E 
L 2(S; Vh)· Moreover Yh E W. 

As an approximation of control space U (Malanowski, 1975) we assume 
a family of finite dimensional subspaces {Uk}kEK, which satisfy the following 
conditions: 

where the set J{ C (0, 1] of parameters J{ has an accumulation point at 0. 

(18) 

(19) 

We shall study the following optimisation problem (h): find a control which 
minimizes the cost functional: 

where Yhk = Yh ( Vk) is the solution of the equation 

(yhl(t), zh) + ((Ayh)(t), zh)- ((f(yh))(t), zh) = (vk(t), zh) 

'Vzh E Vh 

(20) 

(21) 
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with the initial condition (17) for a control Vk E uk, Vok being the orthogonal 
projection of Vo onto Uk. 

THEOREM 3.1 Under the assumption from Th. 2.1 the optimal control problem 
(h) has at least one solution v~h E UK such that 

Proof. The theorem can be proved in the same way as Theorem 2.1. 

LEMMA 3.1 Let (vkhEK be a sequence of elements in uk and (Yhk)hEG, kEK a 
sequence of solutions of (21) with the initial condition (17) for the above. Let 
f: Y-> Y* be demicontinuous on Y with the norm from L 2 (S; H), a > j3 and 
the assumptions (3) and (4) be satisfied. Then the following conditions hold: 
a) ifvk ->k-+0 v weakly in U then Yhk ->k,h-+0 y weakly in W and Yhk ->k,h-+0 y 
strongly in L 2(Q) where y is the unique solution of problem {1-2) for v. 
b) if Vk ->k-+0 v strongly in U then Yhk ->k,h-+0 y strongly in L 2(S; V) where y 
is the unique solution of problem (1- 2) for v. 

Proof. The proof is analogous to the proof of Lemmas 1.1 and 1.2. 
Taking in equation (21) Zh = Yh(t) E vh we obtain: 

Integrating this equality in [0, T] from (3) and ( 4) we have: 

from this inequality and from the assumption Vk ->k-o v 

IIYhk IIY ~ c2 for a certain c2 > 0 

where Yhk = Yh(vk) · 
From (21) we have directly 

and from this IIYhk llw ~ c3 for a certain cs > 0. 
It follows that the sequence (Yhk )hEG, kEK is bounded in W. Hence there 

exists a subsequence which we also denote by (Yhk )hEG, kEK, converging toy 
weakly in W , so- strongly in L2 (Q) (Lions, 1969) : Yhk -> y in W , Yhk -> y in 
L 2(Q) where k, h -> 0. 

Now we can prove that (v , Y) is the solution of (1-2). 
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Function Yhk verifies the equation: 

with the initial condition: 

Yhk(O) = Yoh 

where Zr is an element of Vj, (also V;;, for h(h) 
Multiplying this equation by any function <p E C 1 [0, T], rp(T) = 0, integra­

ting in [0, T] we obtain in the limit 

-faT (y(t), Zr )rp'(t)dt +faT ((Ay(t), Zr)<p(t)dt = 

=faT (f(y)(t), Zr)<p(t)dt +faT (v(t), Zr )<p(t)dt + (yo, Zr)<p(O) . 

This equation is verified for any <p E C1([0, T]), in particular for <p E D(O, T) 
and from the definition of distributional derivate we have: 

{T T 
Jo (y'(t), Zr)<p(t)dt +la ((Ay)(t), Zr )<p(t)dt = 

=faT (f(y)(t), Zr)<p(t)dt +faT (v(t), Zr)<p(t)dt. 

By theorem of integration-by-parts for Bochner integrals (Gajewski , Gri:iger, 
Zacharias, 1974), free choice of <p E D(O, T), Zr E vh and the condition 
uhEG vh = V we can conclude that y(O) = YD· Soy is the solution of equa­
tion (1-2) for v. 

From the fact that problem (1-2) has only one solution it follows that the 
whole sequence (Yhk )hEG, kEK, not only the subsequence is weakly convergent 
in W to y = y(v). • 

The proof of part (b) is identical to proof of Lemma 1.2. 
Let us now consider the problem of convergence of the approximation. 

THEOREM 3.2 Let the assumptions of lemma 3.1 be satisfied. Then there exist 
weak condensation points of a set of solutions of the optimisation problem (h) 
in U x W and each of these points is the solution of the. optimisation problem 

{I). 

Proof. Function (20) is radially unbounded, so that the sequence 
(v~h)hEG, kEK is bounded in U. It follows that there exists a subsequence which 
we also denote by (v~h)hEG, kEK such that v~h --+k,h --+ 0 v weakly in U. Then 
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Lemma 3.1 implies that y~k -+k,h--+0 y weakly in Wand y~k -+k,h--+0 y strongly 
in L 2 (Q), where (ii, fj) verifies (1-2). The function J is weakly lower semi­
continuous in L 2(Q) x L 2 (Q). Then, because (v~h)hEG, kEK is a minimising 
sequence, Lions (1983) we have: 

This implies that ( v, fj) is one of the solutions of the optimisation problem 
(I), since ii = v 0 and fj = yO. 

· THEOREM 3 .3 Let the assumption of Lemma 3.1 be satisfied and 

(v~h- Vok, Vk- vZh)£2(Q) + (Y~k> Yhk- Y~k)L2(Q) 2: 0\:/vk E uk (22) 

then there exist strong condensation points of problem (h) in U x L 2 ( Q) and 
each of these points is a solution of the oplimisation problem (I). 

Proof. From Theorem 3.2 and Lemma 3.1 it follows that the appropriately 
chosen subsequence (vZh)hEG, kEK converges to v0 weakly in L 2 (Q) and the 
adequate sequence (y~k)hEG, kEK where y~k = Yh(vZh) converges to y0 weakly 
in Wand strongly in L 2 (Q). According to (18) and (19) for v0 there exists a 
sequence (vko)kEK such that Vko -tk--+0 v0 strongly in u and Vko E uk Vk E K . 

From (15) for Vk = Vko and YhkO = Yh(Vko) we have 

0 :S llvZh- Vkolli2(Q) :S (Y~k, YhkO- Y~k)£2(Q)- (vko '- vok, vZh- Vko)£2(Q) 

Now we can find the limit for k, h-+ 0 of this inequality and thus we obtain: 

v~h -+ Vko strongly in U. 

From the above and the inequality: 

it follows that vZh-+ v0 strongly in U. Consequently, that result, together with 
lemma 3.1 , prove the theorem. • 

We can now take into consideration the optimisation problem (11). 
We shall study the following optimisation problem (IIh): find a control vZh E 

Uadk = UadnUk which minimizes the cost functional (20) where Yhk = Yh(vk) is 
a solution of equation (21) with the initial condition (17) for a control Vk E Uadk 

and Vok is the orthogonal projection of vo onto Uadk. 
Similarly to Theorems 3.1 , 3.2 and 3.3 we can prove three theorems. 

THEOREM 3.4 Let f : Y -+ Y* be demicontinuous on Y with the norm from 
L 2 (S; H), a > f3 and the assumptions (3) and (4) be satisfied. Then the optimal 
control problem (I h) has at least one solution vZh E Uadk. 
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THEOREM 3.5 Let (vk)kEK be a sequence of elements in Uadk and (Yhk)hEG, kEK 
a sequence of solutions of {21) with the initial condition (17). Let f be demicon­
tinuous from L 2 (S; V) with the norm from L 2 (S; H) to L 2 (S, V*), a > f3 and 
the assumptions (3) and (4) be satisfied. Then there exist weak condensation 
points of a set of solutions of the optimisation problem (I h) in U x W and each 
of these points is the solution of the optimisation problem (II). 

· THEOREM 3.6 Let the assumptions of theorem 3.5 be satisfied and the inequality 
(22) hold. Then there exist strong condensation points of problem (I h) in 
U x L 2 ( Q) and each of these points is the solution of optimisation problem (II). 

4. An example 

We introduce the operator A : Y --> Y*: 

n [J2y 
Ay=-~-+y 

6 ax2 
i=l ' 

and f : Y --> Y*: 

(f(y))(t) = g(t)lly(t)IIP(n) 

where g is the given function from L2 (Q) such that 

The optimisation problem can be formulated as follows: find a control v0 E 
L 2 (Q)(v 0 E Uad C L 2 (Q)) which minimizes the functional: 

J(y, v) = IIYIII2(Q) + llv- vo ll l2(Q) 

where y is the solution of the equation 

{ fit - 2:.:7=1 fx7 + Y- 9IIYII£2(!1) = v on Q 

y(O) = Yo 

and v E L2 (Q) (v E Uad C L2 (Q)). 
The operations A and f satisfy all the assumptions of Theorem 2.1. 
Using the notations from paragraph 3 we transform this problem into the 

one of control for the system of non-linear ordinary differential equations: 

{ 
( dy~p), zh) + a(yh(t), zh) + IIYh(t)IIP(O)(g(t), zh)£2(!1) = 
(vk(t), zh)£2(!1) Vzh E V 

. Yh(O) = Yho 
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with cost functional: 

where, from Lax-Milgram lemma (see Lions, 1968) 
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