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Poland 

A simple version of the Monotone Follower Problem is considered. 
We prove the following Theorem: For a given absolutely continuous 
tinction '!f;, defined on the interval [0, T], and any c > 0, there exist 
a family of Gausian processes zN = { z{"; 0 :::; t :::; T}, N E R, such 
that 

Prob ( sup lzf"- '!f;(t)l <c) ~ 1- 6N, 
O~t~T 

where tiN -+ 0 as N-+ 00 . Moreover, the process zN is recursively 
constructed with respect to time i.e. it follows the demanded '!f; . 

Possible applications of this results are also indicated. 

1. Introduction 

The Monotone Follower Problems (MFP's) are usually considered as stochastic 
control problems . They consist, roughly speaking, in finding a "new" process 
following the "old" one in the best way, in some sense (see Benes, Sheep and 
Witsenhausen, 1980, and the references given there). 

In mathematical modelling of many phenomena occurring in various branches 
of applied sciences one can meet a somewhat different version of the MFP. 
This version can be described as follows: given a deterministic function '!f; 
and c > 0, find a stochastic process Z = {zt; t ~ 0} which follows '!f; and 
Prob(supo<t<T izt- '!f;(t) i <c) is close to one. 

From the-computational point of view it is desirable that the process Z be 
as simple as possible, for instance a Gaussian process. 

In this paper we settle the question by constructing the process Z explicit­
ly. Moreover, we'determine Z as the unique strong solution ·of an appropriate 
stochastic differential equation (SDE). 
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This means that we determine Z recursively, as data are coming in i .e. the 
value Zt+L'., D.. > 0, is determined on the basis of the value Zt and the "new" 
information 'l/;(s), t::; s::; t+D.., so that the value 'l/;(s), s > t+D.. is not required. 

Applications of the problem considered here might include investment policy 
meant to meet demand or a description of a phenomenon whose state is con­
tinuously fluctuating around the most probable trajectory, guessed on line by 
experts. 

2. The main results 

To state our results we first introduce several notions and definitions. 
Let W = { Wt; t _2:: 0} be a standard Wiener process defined on a given 

complete propability space (0, F, P) satisfying the usual conditions. Let L[O, T] 
denote the space of Lebesgue- integrable functions on [0 , T] and CA [O , T] the 
space of absolutely continuous functions on [0 , TJ, T ::; oo . 

THEOREM 2.1 For any 'lf;(-) E CA'[O, T] and any E > 0, there exist a function 
1c{) E L[O, T] and a positive number N, sy,ch that 

P( sup lz{"·'P- 'l/;(t)l < c:) _2:: 1- ON,T 
O~t~T 

where the process { z{"•'P; 0 ::; t ::; T} is the solution of the SDE 

dzt = -N[zt- <p(t)]dt + dwt, zo = 'l/;(0) 

and 

2 J 1 _ 2Ne 2 

ONT::;- -(1- e2NTe 1-e 2N1' -+N--+oo 0. 
' E 7rN 

(1) 

(2) 

(3) 

PROOF. For fixed N > 0, let X N = { x{"; t _2:: 0} denote the solution of the SDE 

(4) 

It is easy to prove that XN is a Gaussian process with zero mean and variance 

Moreover, we can state the following 

LEMMA 2.1 Let E > 0. Then 

P( sup lxf" l < c:) _::=: 1- bN,T 
O~t~T 

where ON,T satisfies {3). 

(5) 
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PROOF. Since x{" = e-Nt J~ eNs dws is Gaussian with zero mean and covari­
ance N- 1e-Nt sh (Ns), (assuming t > s), then the processes {x{"; 0 ~ t ~ T}, 

{yt; 0 ~ t ~ T}, (where Yt ~ e-Ntwp(t), p(t) ~ (2N)- 1(e 2Nt -1)) are stochasti­
cally equivalent. In fact {yt; 0 ~ t ~ T} is again .Gaussian with zero mean and 
covanance 

Ey,y, e-N(t+s) Ewp(t)Wp(s) = e- N(t+s)[p(t) A p(s)] = 
e-N(t+s)p(s) = N-1e-Nt sh (Ns). 

Now let f3t ~ WpN(t)· Then cov f3t = Ef3tf3s , = [pN(t) A pN(s)] = pN(s) = 
N- 1e-Ns sh (Ns) and cov x{" = cov Yt ~ cov f3t· This implies 

P( sup lxfl ~ c:) ~ P( sup lwuN(t) l ~ c:) = 
O~t~T O~t~T 

P( sup lwu l ~c)= 
O~u~uN(T) 

P( sup I JrrN(T)w_;_l~c:)= 
O~u~uN(T) ~ (T) 

c; 
P( sup lwtl ~ ~) ~ 

o~t~ 1 erN (T) 
c; 

2P( sup Wt > ~)= 
o~t~ 1 - erN (T) 

< 

4 joo 2 2 J 1 _ 2Ne 2 
__ e-x / 2dX ~ _ -(1 _ e-2NT)e 1 e 2NT . 

V21f • c; 7rN 
v~N(T) 

The last inequality follows from the estimation 

and the third equality from the invariant property of Wiener processes, Le . 
{ Wt; t ~ 0} and { VaWtf a; t ~ 0} are both the standard Wiener processes. 

The Lemma is proved .• 
To finish the proof of the· theorem, let us take the function 

1 . 
~P(t) = 1/J(t) + N 1/J(t) for all t E [0, T] (6) 

and define 

Zt = z{·"' = x{" + 1/J(t). 
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Applying Ito's formula we get 

dzt -N[zt -?f(t)]dt + dwt + ~(t)dt = 
-N[zt- cp(t)]dt + dwt, zo = ?f(O) 

T.BANEK 

Thus z{"''P = x{" + ?f(t) satisfies the Eq. (2). Applying Lemma 2.1 to z{"''P­
?f(t) = x{" we get (1) and (3). Finally, note, that (6) implies that cp(-) E L[O , T] , 
thus the Ito's uniqueness conditions hold for the Eq. (2) , i .e. Eq. (2) admits 
the unique strong solution defined and continuous for all t E [0, T], see Lipcer, 
Shiryayev (1977); Ikeda, Watanabe (1981). The Theorem is proved. • 

CoROLLARY 2.1 For any ?f(-) E CA[O, =) and any c > 0, there exist a function 
cp(-) E L[O, CXl) and a positive number N, such that 

P(sup lz{"''P -?f(t)l <c)~ 1- ON 
t2':0 

s: 2 -2Ne2 0 
UN < --e --+N-+ oo · - c.JiN 

CoROLLARY 2.2 Let r > 0 be a fixed number. For any ?f(-) E CA[O, =) and 
any c > 0, there exist a function cp(-) E L[O, =) such that 

P(sup iz;''P -?f(t)i <c)~ 1- be 
t2':0 

where {z;''P; t ~ 0} solves the Eq. (2} with N = c( 2+r), and 

Oe :S 27r-l/2cr/2e-2/er --+e-+0 0. 

The above Corollaries are easy consequence of Theorem 2.1, and therefore the 
proofs are omitted. 

3. Remarks 

1. Corollary 2.2 shows that if the demanded cp(-) is an absolutely continuous 
function then one can follow it on the whole R+ = [0, =)with arbitrarily high 
accuracy. 
2. Possible application in pursuit - evasion games. Let {?f(t); t ~ 0} represent 
a trajectory of the evader. It can be given for example by the simple equation 
of motion 

~(t) = v(t), v(-) E L[O, =) . 

The aim of the pursuer which moves according to the equation 
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is to follow the evader 'as close as possible in spite of random disturbances. The 
value Ut has to be determined only by means of the following information: the 

. trajectory {~(s); 0 ~ s ~ t} and the evader control Vt. If the initial states ~(0), 
z0 are equal or close together, then our results are applicable with 

Ut= N[~(t)- Zt] + ~(t). 

3. Possible applications in economics and finance. The process zN defined in 
(2) is an Ornstein-Uhlenbeck process. Such a process is a fairly good model 
of the short term interest rate's behaviour, see Vasicek (1977); Merton (1973); 
Merton (1974); Abikhalil, Dupont and Janssen (1985) . 

Let ~(t), 0 ~ t ~ T, be the prediction of the interest rate behaviour on [0, T], 
made by experts at time t = 0. Theorem 2.1 indicates that if ~ E CA [0 , T] then 
the model (2) can be as much in agreement with the experts' anticipations, as 
one could wish. Moreover, since the process Z is recursively constructed, the 
above statement is also true if the initial time t = 0 is replaced by the current 
time,~ E CA[t, t + h], where his now the prediction horizon. 
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