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A simple version of the Monotone Follower Problem is considered.
We prove the following Theorem: For a given absolutely continuous
finction v, defined on the interval [0, 7], and any € > 0, there exist

a family of Gausian processes ZV = {z]N;0 <t < T}, N € R, such
that

Prob ( sup Ith —¢(t)| < 6) >1-én,
0<t<T

where 65 — 0 as N — co. Moreover, the process ZV is recursively
constructed with respect to time i.e. it follows the demanded .
Possible applications of this results are also indicated.

1. Introduction

The Monotone Follower Problems (MFP’s) are usually considered as stochastic
control problems. They consist, roughly speaking, in finding a “new” process
following the “old” one in the best way, in some sense (see Benes, Sheep and
Witsenhausen, 1980, and the references given there).

In mathematical modelling of many phenomena occurring in various branches
of applied sciences one can meet a somewhat different version of the MFP.
This version can be described as follows: given a deterministic function
and ¢ > 0, find a stochastic process Z = {z;¢ > 0} which follows ¢ and
Prob(supg<,;<p |2t — 1 (t)| < €) is close to one.

From the computational point of view it is desirable that the process Z be
as simple as possible, for instance a Gaussian process.

In this paper we settle the question by constructing the process Z explicit-
ly. Moreover, we 'determine Z as the unique strong solution of an appropriate
stochastic differential equation (SDE).
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This means that we determine Z recursively, as data are coming in i.e. the
value z;4a, A > 0, is determined on the basis of the value z; and the “new”
information ¥ (s), t < s <t+A, so that the value 9(s), s > t+A is not required.

Applications of the problem considered here might include investment policy
meant to meet demand or a description of a phenomenon whose state is con-
tinuously fluctuating around the most probable trajectory, guessed on line by
experts.

2. The main results

To state our results we first introduce several notions and definitions.

Let W = {wy;t > 0} be a standard Wiener process defined on a given
complete propability space (2, F, P) satisfying the usual conditions. Let L[0, T
denote the space of Lebesgue - integrable functions on [0,77] and C4[0,7] the
space of absolutely continuous functions on [0,7], 7' < co.

THEOREM 2.1 For any ¢(:) € C4l0,T] and any € > 0, there exist a function
o(-) € L[0,T] and a positive number N, such that

P( sup
0<t<T

N _ ¢(t)’ <6 > 1—fgr : (1)

where the process 2% 0 <t < TV is the solution of the SDE
t

dzs = — Nz — @(t)]dt + dwy, 20 = $(0) (2)

1 g
Snr < g\/m(l _ eNT " TeENT 0. (3)

PRroOF. For fixed N > 0, let XV = {z]N; ¢ > 0} denote the solution of the SDE

and

dzy = —Nzdt + dwy, ©g = 0. (4)
It is easy to prove that X is a Gaussian process with zero mean and variance
1
N —2NT
t) = —(1— . 5
oV (1) = 51— e (5)
Moreover, we can state the following

LEMMA 2.1 Lete > 0. Then

P( sup Iw{vl <e)>1—6bnr
0<t<T

where 7 satisfies (3).
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PROOF. Since ¥ = e~ N fot eN*dw, is Gaussian with zero mean and covari-
ance N~le™Nt sh (Ns), (assuming ¢ > s), then the processes {z}V; 0 <t < T},

{y1; 0 <t < T}, (where y, = e Ntw,ay, p(t) 2 (2N)~1(e2Nt — 1)) are stochasti-
cally equivalent. In fact {y; 0 <t < T} is again Gaussian with zero mean and
covariance

Eyy, = e N Buygywyy = e N p(t) Ap(s)] =
e~ N@+s) p(5) = N=1e=Nt gh (Ns).

Now let 8; 2 wyn(ry. Then cov By = EB,Bs = [pN(t) A pN (s)] = pN(s) =

N-1e=Ns sh (Ns) and cov zl¥ = cov y < cov fB;. This implies

P( sup Ival 2 €) < P( sup I'U)GN(t)l >e) =
0<t<T 0<t<T

= P( sup |u>e)=

0<u<oN(T)
SN .
o (T)me

= P(sup |wl> =

0<t<1 \/O’N(T)) =

< 2P(sup wy > =

€
0<i<1t  AJoN(T)

= %/00 e~% 1 2dg < ;/LN(I - e—ZNT)e_%T.
\2m e T

;; e N (T)

The last inequality follows from the estimation

Il

P(  sup
0<u<oN(T)

>e) =

/ e—x2/2dz < le-—a2/2
a a

and the third equality from the invariant property of Wiener processes, i.e.
{we; t > 0} and {\/aw,/q; t > 0} are both the standard Wiener processes.

The Lemma is proved.

To finish the proof of the'theorem, let us take the function

BlF) = (8 %w'(t) for all t € [0, T] (6)
and define

2= 20 = 2N + (1)
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Applying It6’s formula we get

dze = —N[zx —(t)]dt + dwy, + p(t)dt =
= =Nzt — p(t)]dt + dwy, zo = ¥(0)

Thus 2% = zN + p(t) satisfies the Eq. (2). Applying Lemma 2.1 to 2% —
¥(t) = 2V we get (1) and (3). Finally, note, that (6) implies that ¢(-) € L[0, T],
thus the It6’s uniqueness conditions hold for the Eq. (2), i.e. Eq. (2) admits
the unique strong solution defined and continuous for all ¢ € [0, 77, see Lipcer,
Shiryayev (1977); Ikeda, Watanabe (1981). The Theorem is proved. H

COROLLARY 2.1 For any ¢(-) € Ca[0,00) and any € > 0, there ezist a function
@(-) € L[0,00) and a positive number N, such that

P(sup
>0

2 — (1) <) > 1-bw

2
by € —e—e 2V Ly 0.

COROLLARY 2.2 Let r > 0 be a fized number. For any (-) € C4x[0,00) and
any € > 0, there exist a function ¢(-) € L[0,00) such that

P(sup |z;? —9Y(t)| <€) > 1 -6
>0

where {25'%; t > 0} solves the Eq. (2) with N = e=(>*") and
0 < L2227 510,

The above Corollaries are easy consequence of Theorem 2.1, and therefore the
proofs are omitted.

3. Remarks

1. Corollary 2.2 shows that if the demanded ¢(-) is an absolutely continuous
function then one can follow it on the whole Rt = [0, co) with arbitrarily high
accuracy.
2. Possible application in pursuit — evasion games. Let {#(t); ¢ > 0} represent
a trajectory of the evader. It can be given for example by the simple equation
of motion

$(t) = (1), o(") € [0, ).
The aim of the pursuer which moves according to the equation

dzy = wydt + dwy, u() € \L[O,oo)
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is to follow the evader ‘as close as possible in spite of random disturbances. The
value u; has to be determined only by means of the following information: the

“trajectory {9(s); 0 < s <t} and the evader control v;. If the initial states 1(0),
zp are equal or close together, then our results are applicable with

up = N[(t) — 2] + 9(2).

3. Possible applications in economics and finance. The process Z%V defined in
(2) is an Ornstein-Uhlenbeck process. Such a process is a fairly good model
of the short term interest rate’s behaviour, see Vasicek (1977); Merton (1973);
Merton (1974); Abikhalil, Dupont and Janssen (1985).

Let ¢(t), 0 < ¢ < T, be the prediction of the interest rate behaviour on [0, 71,
made by experts at time ¢ = 0. Theorem 2.1 indicates that if ) € C4[0,T] then
the model (2) can be as much in agreement with the experts’ anticipations, as
one could wish. Moreover, since the process Z is recursively constructed, the
above statement is also true if the initial time ¢ = 0 is replaced by the current
time, ¥ € Calt,t + h], where h is now the prediction horizon.
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