
Control and Cybernetics

vol. 24 (1995) No. 1

Petri net model of a mobile robot

by

Grzegorz J. Blinowski

Institute of Computer Science,
Warsaw University of Technology

ul. Nowowiejska 15/19,
00-665 Warsaw, Poland
e-mail: gjb@ii.pw.edu.pl

This paper addresses the problems of modelling and evaluation
in distributed parallel systems using Petri nets with time. A net
model incorporating time, control over nondeterministic behaviour
and resource pools is presented. The model guarantees that if the
set of processes is correct (i.e. non-deadlocking) then corresponding
net, even after resources are added, will be also non-deadlocking.

It is shown how basic programme constructs such as choice and
loop statements can be implemented in nets. A single programme
consists of events which can be internal or external. Internal events
represent computational steps, while external - instances of inter­
process communication. The events will map to Petri net transitions.

Resource sharing can lead to deadlocked systems. Simple Ex­
tended nets can be safely used in time modelling. Such nets will be
used in the presented case study.

Probability introduced into the Petri net formalism allows to
model real world events more adequately; while priority assigned
to certain transitions enables construction of a process scheduler.

Our main goal is performance estimation. Case study concerns a
communicating sensor system in an Autonomously Guided Vehicle.
We construct a net model of sensor framework of a mobile robot.
Starting from a quasi-subsumption paradigm we obtain a model of
the net of intelligent sensors operating independently, sharing in­
formation about the surrounding world. It is assumed that some
sensors operate faster than others, while providing less information
per unit time. The basic events are instances of executions of data
processing algorithms and of data communication. It is shown how
overall performance is influenced by such factors as the number of
available processing units and speed of data processing algorithms.
A Figure of Merit for estimating global system performance is pro­
posed.

48 G. BLINOWSKI

1. Introduction

During the past decade considerable effort has been devoted to research in fields
related to mobile, intelligent robots. While such problems as multi-sensor fusion,
path planning, obstacle avoidance, navigation, etc. have been heavily studied,
only recently the need of integration of the above areas was realised, Wang
(1991). One aspect of such an integration is an important, and still unsolved
problem of the estimation of systems performance. The measure of performance
is needed for both evaluation of systems throughput vs. complexity (i.e. cost)
and unbiased comparison of different architectural models.

Performance estimation requires a high-level model which will integrate men­
tioned areas, and will be based ~n formal specification of the systems' architec­
tures. Such an approach will help to clarify routes of the infurmation flow,
process dependences between all levels and modules of the system; in the con­
sequence a meaningful estimation of the systems quality can be obtained.

This paper describes an effort to create such an integrating model. It was
partly carried out in the Oxford University Robotics Research Group (Dep. of
Engineering Science) as a contribution to the Oxford AGV project Hu, et al.
(1989).

Petri nets with time and some additional enhancements were chosen as a
primary modelling tool. Petri net theory has come to be a recognised modelling
methodology in the robotics literature, especially in the field of Flexible Manu­
facturing Systems, Freedman (1990). Recently it has been applied to other areas
such as individual machine modelling, Scimachen, Grotzinger, Nemec (1990) and
mobile robot control, Wang (1991). ·

The developed model is based on the formal specification of communicat­
ing, intelligent sensor architecture (logical sensors) described in Dijan, Probert
(1990). The transition from the specification (written ini.CSP) to the net model
was described in Blinowski , Probert (1992). A whole sensor network equiv­
alent to a mobile vehicle was implemented in Petri nets . Since the obtained
net system was far too complex to investigate analyticaly a series of computer
experiments was carried out in order to obtain the following:

• Verification of the formal model.
• Finding of time-critical dependencies between various data-processing al­

gorithm times and vehicle reaction times.
• Estimation of the processing power needed to support critical time pa­

rameters.
• Choice of an optimal process scheduling method.

This paper is divided into three parts. In the first one the basics of Petri
nets are covered. The issue of process modelling is tacled in the second, while
the last one contains the case study.

Petri net model of a. mobil e robot 49

2. Place/ transition systems- theoretical overview

We will begin with presenting the outline of the P /T-net theory - the definition
of a net, followed by definitions of a P /T system and its behaviour. In subse­
quent section the problem of fairness of the token game will be discussed, which
will lead to a definition of an extended "Probability /Priority" P /T system.

Certain useful properties i.e. liveness and boundedness can be proved only
for some subclasses of nets, time performance can be evaluated analytically only
for nets of particular topologies: Section 2.3. defines classes of nets in the order
of increasing complexity.

Time is the central topic in our considerations. Various methods of incorpo­
rating time into presented net theory will be discussed in section 2.4. The most
popular approaches are going to be presented, with the stress on models which
assign a fixed time duration or a well defined time interval to an event.

2.1. Fundamental concepts of P /T systems

The overview of P /T-systems can be found in Reisig (1987), Lautenbach (1987),
Reisig (1985), definitions and theorems in this and the following sections are
based on Reisig (1987), Lautenbach (1987).

Definition 2.1 A triple (S; T; F) is called a net iff:
1. S and T are disjoint sets (of places and transitions respectively).
2. F ~ (S x T) U (T x S) and \:ft E T there exists s, s' such that sFt and

tFs' .

Let us furthermore define the sets of predecessor and successor elements:

Definition 2.2 For x ~ S UT let •x := {y I yFx} and x• := {y I xFy}

Definition 2.3 A net marking is a function M : S ---> N

If M(s) = 0 the places is said to be empty;
if M(s) > 0 we say that a token(s) is (are) present in places.

In order to introduce token dynamics the net definition must be augmented
to that of the Place/Transition system:

Definition 2.4 A six-tuple (S; T; F; K; W; Mo) is called a place/transition sys­

tem if:
1. (S, F, T) is a net where S-elements are called places and the T-e lements

are called transitions
2. K : S ---> N+ U { oo} is a capacity function
3. W : F ---> N+ is a weight function

50 G. BLINOWSKI

4. Mo : S-> N is an initial marking function , which satisfies M 0 (s)::; K(s)
for all sE S

The W function is often canonically extended to cover the whole sum of Carte­
sian products by defining:
W(x, y) = 0 iff -.(x, y) E F.

The next definition describes dynamic aspects of P /T systems:

Definition 2.5 1. Transition t is enabled at marking M if:

Vs E S: W(s , t)::; M(s)::; K(s)- W(t, s)

2. if ·t is enabled at M then t may occur (fire), yielding a new marking M'
given by the equation:

M'(s) = M(s)- W(s, t) + W(t, s) for all sE S
3. The occurrence oft changes the marking M into th e n ew marking M' ;

this fact being denoted by M [t > M' , MtM' or M ~ M'.
4 _ By [M 0 > we denote the smallest set of markings of I; such that:

(a) Mo E [Mo>

(b) if M1 E [Mo >
[Mo>

and M1 [t > M2 for sorrie t E T then M2 E

The previous definition states simply that:
• transition is enabled when there is sufficient (defined by the W function)

amount of tokens in all places being its inputs, and that there must be
enough 'free space' in places being its outputs.

• Enabled transition fires , removing tokens from its input places and putting
tokens in its output places. Note that not every enabled transition must
fire: tokens from its input places can be removed by another transition .

2.2. Fairness & Probability /Priority P /T system.

When performance is being studied, fairness of the token game becomes the key
issue; also, when modelling real-world systems some control over nondetermin~
istic behaviour of P /T nets is desirable. Up to this point it has been assumed
tha t the choice of transition-to-execute is random and generally fair. Note that
the liveness of the net does not imply fairness.

Definition 2.6 The n et is live if for any transition and all reachable markings
th ere exists such a sequence of reachable markings that will eventually lead to
marking in which th e given transi-tion is enabled.

There is no guarantee that the enabled transition will be fired. In fact
it is possible that some transitions will "conspire" against the other ones to

Petri net model of a. mobile robot 51

prevent their firing. These issues are extensively discussed in Merceron (1987).
The problem of fairness is going to be solved here by the introduction of firing
rules which are located on a different level of abstraction than the basic P /T
formalism. Such an approach is purely practical: these new rules simply try to
enforce the "real world" behaviour on abstract nets.

Now, an Extended Probability /Priority P /T system (PPP / T) in which the
procedure of choosing among enabled transitions is completely clarified is going
to be introduced:

Definition 2. 7 Let P be a firing probability function defined for certain tran­
sitions only:

if 't:/s E S,'t:/t E s",'t:/s' E •t ls'"l > 1 =? "(s'") = {s'}}

then P is defined:

P : t -+< 0, 1 > such that : L P(t') = 1
t'Es•

nAI denoting cardinality of A)

Definition 2.8 Let Tp be the set of transitions over which P is defined:

Tp = {t E T l't:/s' E •t, Is'" I > 1 =? "(s'") = {s'}}

Example 2.1 Consider Figure 1, P is defined for to, h and t2; to, t1, t2 E Tp
but t3, t4 t/:. Tp

t3 t5

t6

Figure 1. Probabilistic and non-probabilistic transitions.

We assign probability to these transitions which we know to be always simul­
taneously enabled with some fixed set of other transitions (or enabled indepen­
dently). In case of ambiguity i.e. transition t3,t4,t5,t6 in Figure 1 it is difficult
to come up with any reasonable, marking independent probability assign­
ment, in such case we will define priority instead. Priority will be assigned to
all transitions which do not belong to Tp set. Furthermore the T \ Tp set will
be partitioned into subsets: priority groups.

52

Definition 2.9 \:/t ET , t rf:_ Tp let:
Pgroup : t --> N be a parti-tioning function .
Pprio : t --> N be a priority function .

G. BLINOWSKI

In other words: The set of all transitions which cannot be assigned to the set of
probabilistic transitions is divided into disjoint sub-sets. As the next definition
will formally show only the transition with the highest priority in a given priority
group can be fired, thus transitions belonging to the same group and having
lower priority will be able to fire only if transitions with larger priority will not
be enabled . This mechanism will prove to be useful in modelling schedulers.

Now a P /T system with a firing mechanism strictly defined can be intro­
duced . The enabling conditions and firing rule remain the same for extended
PPP / T system. The probability of execution of a particular transition under
given marking is now stated to be P R(t).

Definition 2.10 For all transitions in enabled set a firing probabili-ty function
is defined:

PR(t) :=

0 for other transitions

Where:
T~(t) := {t'l"t' = "}

Ts(t) := {t'IPgroup(t') = Pgroup(t) 1\ t' E TE}

Th = {t' lt' ET,, 1\ Pprio(t') = max(Pprio(Ts))}

And TE is a set of enabled transitions.

A firing probability of zero is assigned to priority transitions with priority lower
than the maximum priority in a given group. The probability of firing the tran­
sition with highest priority in a particular group is the same for all transitions
with maximum Pprio·

The above definition does not imply that for any run of an arbitrary net the
actual firing rates will match those defined above, this will be the case only in
a live net.

To summarise:

Probability: As was previously stated firing probability can be defined only
for transitions for which it would be meaningful (i.e . markirtg indepen­
dent). For a group of transitions having only one and common input place

•

Petri net model of a mobile robot 53

(such transitions are always simultaneously enabled), execution probabi­
lity will be assumed to be evenly distributed, unless otherwise indicated
in the graph description (see also the section on the simulator's graph
language).

Priority: It was stated that all transitions for which probability could not
be defined belong to some priority group in which conflicts are resolved
in favour of the transition with highest priority. By default , however, it
will be assumed that non-probabilistic transitions belong to one element
priority groups. Thus, only when a priority group and priority function
are explicitly written down is this mechanism in effect in practice. One
must take notice that creating real priority group will always lead to nets
which are not live . Time delays must be chosen carefully in such a net.

2.3. Classes of P /T nets

There is a lot of confusion in the literature regarding P /T net "taxonomy".
Generally, "Place/Transition Net" is a term used when referring to the widest .
possible class of nets. A "Petri net" is usually a P /T system devoid of "patholo­
gies' /.

By introducing certain limitations on functions describing a P /T net, par­
ticularly by constraining the F function various net classes are obtained. It was
shown how such essential properties as liveness and boundness can be proved
only for some types of nets with simplified topologies, and how increasing the
generality of a net makes analysis more difficult. The same issue of universality
vs. applicability of analytical methods will be brought forward in the section
on time/timed P /T nets.

Let us constrain the P /T model by introducing:

Definition 2.11 A Petri net is a P /T net for which:

J{ : s--+ CX)

and
't:/s E S{tisFt 1\ tFs} = 0

Thus in Petri nets the issue of contact will be dropped all together, and one
transition "loops" will not be permitted. Notice that the enable criterion for a
transition is now simpler, namely transition in a Petri net is enabled iff:

't:/s E S: W(s, t)::; M(s)

Now two very limited, but still important sub-classes of Petri nets are going
to be defined:

Definition 2.12 I; is said to be a marked graph (or a decision free net) iff:
I; is a Petri net and:

't:/sESI•sl=ls•l=l

54

Figure 2. Marked graph & state machine.

Definition 2.13 · ~ is said to be a state machine iff:
~ is a Petri net and:

Definition 2.14 ~ is a free choice net (FC) iff:
~ is a Petri net and:

Vs E S : Is" I > 1 => "(s") = {s}

Definition 2.15 ~ is an extended free choice (EFC) net iff:

G. BLINOWSKI

An EFC permits a place to 'share' more than one transition with other places
under the condition that if some transitions are shared all of them have to be
shared.

Definition 2.16 ~ is an extended simple net iff:

V s1 , s2 E S s! n s; -::j:. 0 => s! ~ s; V s; ~ s!
This class is the widest one which preserves liveness, after transition time delays
are introduced.

Example 2.2 Figure 2 shows the examples of marked graph and state machine
nets.

2.4. Modelling time in P /T-nets.

Petri net models with time assign a fixed duration to either:
• places - a condition is true for, or after a certain amount of time - see

Sifajis (1980).

Petri net model of a. mobile robot 55

• transitions - firing is not instantaneous, rather it takes some time to com­
plete - more precisely: a firing event is delayed by some amount of time
from the moment of enabling - see Merlin (1976).

It was demonstrated that these two approaches are, in fact, equivalent: it
is possible to transform the net with timed conditions into the one with timed
transitions while retaining the same behaviour. The second case associating
time with events seems more 'natural' and promising both in applicability
and in possibilities of extension. There are also various approaches to assigning
time to transitions: A transition can consume a token as soon as it becomes
enabled, but produces the output token after some delay of time, alternatively
we can assume that tokens remain in their input places whilst the transition is in
the process of 'delayed firing'. First model is more limited, but makes theoretical
reasoning and analysis easier. We are going to adopt the latter approach, since
our primary method of analysis is simulation. Note that the first type of a
transition can be modeled by a simple path of zero-time transition, followed by
a place, followed by a timed output transition. It will be also assumed that
when a token enters an input place of the already enabled transition it has to
wait until the firing completes and then re-enable the transition. This approach
is realistic - it assumes that events are atomic .

Generally, the nature of any timed transition model can be expressed by a
function : e : T----> R+ or e : T----> R+ X R+. e assigns a time duration or a
time interval to a transition, it can also depend on other variables: e.g. marking,
time or token value (in a P /T system with variable/value environments tied to
tokens). In a simplest possible model 8 : T' ----+ R + a fixed duration is assigned
to each transition from a subset T' ofT, firing is delayed by this amount of time.
This approach was developed by Ramchandani (1974) to study the performance
of supercomputer processor structures.

Merlin's Time Petri net (TPN), Merlin (1976), is a more general model:

An event will always occur between times r1 and r2 from the moment of enabling
(of course like in Ramchandani's model a transition can be disabled before
firing if the net is non deterministic). This model together with a subclass of
PN consisting of combination of marked-graph and state-machine classes was
successfully used by many researchers to analyse systems performance .

3. Modelling processes with Petri nets

3.1. The modelling tools

Let us bring together the modelling tools that have been presented so far: Petri
nets with time intervals assigned to transitions are going to be used. Further,
probability and priority functions have been introduced to influence the choice
of an event (i.e. transition) to execute.

56 G. BLINOWSKI

The model itself will be built from processes. A process will be regarded as a
black box, with most of the internal mechanisms concealed. A process behaviour
is given by describing its interactions with the environment. At the process level
of abstraction we are not concerned with any details of the actual algorithm
used inside the 'black box'. A given process will be described by its interactions
with the outside world, namely, by the input and output events. Events are
the fundamental, indivisible entities - quanta - of the model. Two types of
events are going to be distinguished : internal and common ones. An instance
of the internal event can appear only in one process, thus a process can engage
in its internal events whenever it is ready to do so, without any interaction
with the environment (other processes' events). Internal events either model
the execution of some computational procedure - to account for its execution
time, or represent a strictly nondeterministic choice of a process. In reality
such a choice reflects the decision taken by some data evaluation programme
(for example sensor integration module deciding that its local sensing device
is faulty). Common events are shared between (usually) two processes. They
model synchronisation of exchange of data. Again we are not concerned here
with the nature of this data. We might, however, be interested in such factors
as data packet length and communication channel speed to evaluate the time
duration of the communication event.

3.1.1. Time, resources and the underlying architecture

Our goal is to model execution of concurrent processes running on a certain type
of a parallel architecture. This ' target' architecture should provide the following
(a transputer system was intended as a platform for this particular project):

• Multiple processors.
• Message passing communication system.
• Some form of support for process scheduling.
• Full Scalability i.e. the number of processing elements in the system

should be transparent to application software. System's performance will
of course. be influenced by the number of processing elements.

It will not be assumed that the number of processing units is unbounded.
On the contrary, we are going to constrain the model in such a way that limited
number of processors, a 'processor pool', will have to cope with many parallel
tasks. To introduce this resource sharing mechanism, it must be assumed that
all temporal events fall into two basic classes: communication or computation
oriented, and further, that only the events from the latter class actually require
processor power.

Our resource scheduler is going to work on First Come, First Served basis,
possibly using priorities to choose from a number of tasks waiting for a processor.
By FCFS we understand that the scheduler is not preemptive.

Petri net model of a. mobile robot 57

Example 3.1 Figure 3 shows two processes Pl and P2 both performing some
processor-demanding computation - compute. Each one is able to engage in this
activity only if a processor - a token in R - is available. When the computation
is finished the resource is released, which is modeled by returning arcs from t 12 ,

t22 to R .

Pl

P2

Figure 3. Processor sharing.

If several computation modelling events are locked like this, the level of 'serial­
isation ' can be regulated by the number of tokens in the resource pool - thus it
is possible to study the behaviour of processor bottlenecks .

3.1.2. Semaphores

A mechanism identical to the one used in resource sharing is used in our model to
'lock' certain sections of the net in order to simulate a critical section guarded by
a semaphore. This is used in our case study, for example, in sensor integration
module: the operation of World Model Updating is performed on a database
which must be kept consistent.

3.2. Time, liveness and net classes

Remark 3.1 Timed Petri nets can have dead transitions, even when their non­
timed equivalent are live. This is a consequence of the fact that the Reachability
Graph of Timed Petri net can be smaller than RG of its non-timed equivalent.

A question arises: What conditions must a net meet in order to preserve
liveness after time is added? In the intuitive process- to- net translation proce­
dure described above Free Choice nets will be obtained if resource sharing is
not taken into account. If resource sharing is permitted, and further, multiple
resources per transition are permitted Simple Extended nets will be the result
of process- to- net translation .

Resource sharing involves adding extra places which model the resource pool,
and connecting them to a group of transitions modelling events whose execution

58 G. BLINOWSKI

~

requires resource acquisition. The same procedure is used to incorporate binary
semaphores, which are simply one token resource pools.

An important restriction that must be imposed on the whole class of transi­
tions involved in resource sharing is that groups of transitions sharing a parti­
cular resource have to be either disjoint, or be contained in some other resource
sharing group. In other words: it is prohibited for a resource group to "partially
share" another resource - see Figure 4.

Figure 4 . Illegal resource sharing. Process P3 cannot share R1 and R2 in this
configuration .

Now time can be introduced into Extended Simple nets - simply by assign­
ing time intervals/time delays of events to their respective transitions. The
remaining transitions will have a time delay approaching zero.

Theorem 3.1 (After Starke, 1989) Let "B = (S; T; F; W; M) be a live Petri
net with the following properties:

• 't:/s E S s• # 0 (every place has a post-transition).
• The net (S;T,·F) is Extended simple .
• 't:/s E S 't:/t , t' E s• W((s, t)) = W((s, t')) (All arcs emerging from one place

have the same weight)

Then, the timed net, with token holding transitions (S;T;F;W;M ;G) is live

for every 8 : T -+ N+.

Petri net model of a mobile roBot 59

4. A Petri net model of sensor communication in an AGV
- a case study

Introduction

A Petri net model of an intelligent mobile robot will be presented in this section.
The principles of modelling were explained in the previous section. Performance
of the model is going to be evaluated via computer simulation in order to obtain :

• Time-critical dependencies between various data-processing algorithm ti­
mes and vehicle reaction times.

• Estimation of the processing power needed to support critical time pa­
rameters .

• Choice of an optimal process scheduling method.
The presented AGV is based on the model of the layered architecture, which

is derived from the subsumption paradigm proposed by Brooks (1985). A
classical subsumption architecture consists of independently and concurrently
operating layers with access to robot's actuators. Lower layers can subsume the
operation of the higher ones when necessary, only one layer at a time actually
controlling the robot. For example the path planner will be located at a higher
level than the moving-obstacle avoidance layer , the latter being able to intervene
when an obstacle is detected , and return control to the path planner when the
AGV is safe : The main difference between standard subsumption architecture
and the one used here is the presence of inter-sensor communication in the latter.
This difference will be further underlined in next sections.

To fulfil all the 'universality ' requirements we have chosen to represent an
AGV as a network of logical sensors of the type previously described in Dijan,
Probert (1990). The sensor model had to be translated from CSP to Petri net
representation ; some nonessential features have been removed and the integra­
tion module has been redesigned.

4.1. The logical sensor and the subsumption architecture

The main characteristics of a Logical Sensor (LS) are:
• Unified interface - Different physical sensors present a unified interface,

a LS can be used at various layers of the robot architecture without the
need of its redesign.

• Integration through communication - sensors can communicate with each
other to establish a unified environmental model, furthermore such a
model can be integrated from incomplete or partial information.

The LS is also expected to be able to:
• Assess its own condition (for example to disconnect itselffrom the network

in case of malfunction).
• Employ a parallel design - thus it can. be implemented on several pro­

cessors .

•

60 G. BLINOWSKI

l from physical sensor

sensor
·interpretation

assertion test

from o ther

sensor sensor s

integration
toot her

sens ors

to robot

control

Figure 5. The logical sensor

4.1.1. The operation of a logical sensor

An LS produces an interpretation of the state of the its environment, it is
also able to integrate its own interpretation with the information received from
other sensors. Thus a high level implementation of a LS consists of two modules:
sensor interpretation and sensor integration- Figure 5.

Sensor interpretation: this module contains the actual physical sensor
device, it processes the signal received from environment and sends ~n assertion
of its interpretation of the surroundings to the integration module.

Sensor integration: updates an internal world model according to in­
put received from the sensor interpretation module and from the .other sensors ,
informs other sensors about its new assertions, produces feedback to the inter­
pretation part, interfaces directly to the robot control hardware.

Petri net model of a mobile robot 61

rea.dy...ok

STEST

Figure 6. The logical sensor: interpretation module. Transitions ready_ok and
ready_req appear twice: they are duplicated for the sake of clarity of the figure
and represent the same objects.

The operation of sensor interpretation module. The interpretation net ­
Figure 6 consists of four circuits each representing a single, independent process .
Each such circuit is PN invariant containing always exactly one token. The
position of the token represents process' current state. The HCTRL - Hardware
Control, DPROC - Data Processing, STEST- Self Test and WMCOMP ­
World Model Comparison circuits synchronise the transitions modelling message
and data passing between processes.

HCTRL process performs the actual measurement - emiLreflect transition,
passes raw data to DPROC through datastream, and c/)ccks whether it should
make a new measurement or perform a self-test - ready_ok, ready_req transition
choice.

DP ROC receives raw data from HCTRL and passes it to STEST and WM­
COMP processes by procdata and checkdata transitions respectively.

STEST synchronises with DPROC on transition procdata and waits for in­
t egration module to enable tesLreq or test_ok, subsequently enabling either
ready_req or ready_ok for HCTRL. This circuit is responsible for propagating
self-test requests from integrating part of the sensor, it will ensure that a faulty

62 G. BLINOWSKI

sinterp_tesLok

sin terp_test..req

Figure 7. The logical sensor: integration module.

sensor will not pass data to integration module.
WMCOMP outputs a hypothesis assertion based on physical sensor's data

checkdata to sensor integration module. We assume that assertion is a probabi­
listic function of checkdata, the actual description of this function is not relevant
here.

The operation of sensor integration module. This module - Figure 7 -
maintains the world model, WM. It services the requests from sensor interpreta­
tion and other sensors to access this data base. The requests will not necessarily
involve updating of the WM - for example sonar data can be matched against
other sensors map to perform a triangulation. They will nevertheless always re­
quire consistent data to operate upon, thus a database access cannot be shared.

Two circuits: WMUPI (World Model Update - Internal) and WMUPE
(World Model Update - External) model the . database operations. WMUPI
synchronises the transition assertion with the integration module, then it locks
the world model database - acquiring this resource through locki transition, per­
forms the update operation which takes Ttacki time units, releases the database -
1mlocki and communicates the update to other sensors map_to. Finally a verdict
concerning integration module proper functioning is issued - this is modeled by
non-deterministic transition choice: v_ok, v_req (currently it is assumed that the
sensor always provides correct readouts). WMUPE circuit synchronises with the
external sensors' map transitions and updates the internal db - locke, unlocke
sequence is identical to the one in WMUPI circuit .

Updating the world model uses considerable computing power - thus a pro­
cessor has to be allocated from the common pool in order to continue with the

Petri net model of a. mobile robot 63

update operation - locki, unlocki and locke, unlocke transition sequences handle
this global resource.

4.1.2. The layered architecture

The logical sensor model described above was designed to operate in a specific
type of a Layered or Subsumption architecture.

The architectures we propose to study differ considerably from the 'clas­
sical' layered model - they provide the means for inter-layer communication
(in an ordinary subsumption p,rchitecture integration takes place only in the
actuators). In fact the operation of this communication path is probably the
most important factor influencing the performance. Presence of a local world
model in each sensor is a second feature which a subsumption architectures lack
(Brooks explicitly denies the need for maintaining a world model, claiming that
the world is a best model of itself). Having underlined this difference of ap­
proaches it is suitable to mention that the trade offs between heavy inter-sensor
communication and sensor autonomy will be one of the most interesting aspects
of performance evaluation.

4.2. The AGV

Consider a simple mobile robot - Figure 8, being able to navigate in a known,
indoors environment. It is equipped with four clusters of sonars each with a 90°
view angle, and a 360° IR scanner. Sonars are mainly responsible for moving
and avoidance of unexpected obstacles, serving possibly a secondary purpose of
navigating. An IR scanner keeps track of the vehicle surroundings - in effect
locating the AGV on the map.

4.2.1. The sensor network

The corresponding LS network is shown in Figure 9 . Following communication
paths exist in the sensor network:

• Sonar to sonars - Since scan areas of two neighbouring sonar sensors over­
lap distance measurement data for common sections is exchanged. This
is a low bandwidth link.

• Sonars to IR - Distance data is passed to IR sensor, possibly to perform
additional triangulation computations, message length is insignificant, but
there is some computation involved in processing this data.

• IR to all sonars - Map segments are communicated via this link, the
bandwidth and necessary computations in sonar sensors are considerable.

A part of the network in larger detail is shown in Figure 10. The forksonar
- Figure 11 and forkir - Figure 11 processes are responsible for distributing
messages, thus reducing the load on sensors' integration modules. Each fork
process synchronises on sender's map_to transition and closes recipient's world
model update - external circuit with map_to_a, map_to_b, map_to_c transitions.

64 G. BLINOWSK I

I I
t- sonar 1

sonar 4 sonar 2
t--

@
;--

- -
IR

t-
sonar 3

f-

_l I ce

Figure 8. The AGV: Physical model.

Sonarl

IR scanner

Sonar 3

Figure 9. The AGV: Inter-sensor communication.

Petri net. model of a mobile robot 65

Sonarl Sonar2

interpretation interpretation

fork

IR scanner

Figure 10. The AGV: Part of the network showing sonar-to-sonar and sonar­
to-IR communication paths.

66 G. BLINOWSI< I

sonarl.sin teg_m ap_from_ir

Figure 11. Sonar (up) and IR (down) sensors' fork processes.

Petri net model of a. mobile robot 67

With four sensors trying to access IR sensors' database, each such operation
taking Tir_/ocke, communication bottleneck can occur. Therefore, some modi­
fications of this sensors' integration module have been introduced in order to
find whether an optimal communication scheme exists and the cycle tradeoffs
between IR and sonar sensors. Following variations of IR sensor have been
implemented:

• first-come- first-served database access
• priority in database access - IR sensor is privileged
All sensors share one common processor resource - GLOBPROC. Initial

number of tokens in this place regulates the amount of simultaneous world
model update operations.

4.2.2. Sample simulation results

Through the simulation of the token-game in the model described above we try
to:

• Extract timing information, i.e. find the average cycle times for integration
circuits- in efl'ect finding the rate at which commands are sent to actuators
by different layers.

• Find the optimal value for common resources, here, the number of proces­
sors.

• Investigate the speed tradeoffs between different sensors working in varied
communication schemes (with/ without message priorities) .

• Find the optimal process scheduling method.
The following values of time parameters were used in this model:

trans sonar IR
measure 5,15,30 100
datastream 0.01 0.1
procdata 0.01 0.1
check data 0.01 0.1
tesLok 0.0 0.0
tesLreq 0.0 0.0
assertion 1 1
map_to 1 20/5
external WM update 10 20
internal WM update 2-30 5-100

The firing time of the map_to transiti9n is calculated as follows: we assume
that IR sensor holds a map in the form of a 150 x 150 occupancy grid; this map
is propagated to forkir process - 150 x 150 x 8 bits through 10Mb/s datalink

68 G. BLINOWSKI

take 20ms to transmit. The map is divided into four segments in fork module
and propagated to sonars. It takes 5ms to transmit a quarter of the map.

Architecture with message priorities. In this configuration IR sensor has
a higher priority when updating its world model, which can be accessed by
sensors interpretation module whenever a free processor exists in a common
pool.

First the cycle time of sonar module - that is, an average time between
firings of emiLreflect transition, was measured as a function of the global num­
ber of processors allocated and the time of updating IR sensor's database -
T;,. _sintegJocki. The results are shown in Figure 12. For the number of pro­
cessors greater than one the cycle time of IR sensor is a linear function of
T;,._sintegJocki in this configuration, regardless of the number of processors -see
Figure 12. This is a direct consequence of IR sensor's priority in updating its
world model.

The cycle time of IR sensor is roughly equal to
Iir _sinterp_emiLref le et + Iir _sinteg _locki + Tsinteg...Jnap_to

in the priority configuration. The shortest possible cycle is :
max(T;,. _sinterp_emit_.ref le et, T;,. _sintcgJocki + Tsinte9 ...Jnap_to)

because interpretation and integration modules can operate concurrently, how­
ever, with forced priorities this two sub- modules will rather operate in serial:
sinterp_emiLreflect-+ sinterp_assertion-+ sinteg_locki-+ sinteg_unlocki-+
sinteg_map_to-+ sinterp_ready ... with no events overlapping in time.

In the second series of simulations the sonar cycle time was measured as
a function of the number of processors and the time of external update of IR
sensor 's database - T;,. _sintegJocke. The results are shown in Figure 13. The
cycle time of IR sensor was also measured - Figure 13, if more than 2 processors
are used it is almost constant - due to higher priority of internal world model
updaLr'~. For 1 and 2 processors a considerable increase of this interval can be
notic• • it can be concluded that with the present system configuration the
optimal number of processors is 3.

The simulations were repeated for different sonar emiLrefleC'l times : for fast
sonar measurement - 5ms and slow sonar measurement - 30ms, the results, very
similar to those obtained for 15ms measurement, proved that event times where
resource sharing occurs have the greatest influence on system's performance,
while the timing of other events is of lesser importance.

Architecture without message priorities. In this version the IR sensor
has no priority over sonar sensors in updating its own world model data base.

Comparing Figures 12 with 14 we can conclude that, generally both IR
and sonar sensors operate faster when no priorities are used. This is more
apparent for the sonar because it has now a fairer chance of accessing IR sensors'
database. The latter operates faster because its modules "desynchronise" -

Pt'tri net model of a mobile robot 69

various operations start to overlap in time.
Figure 15 shows that abandoning priorities is not always a correct choice:

for short Ti 1·_sinteg.Jocke times IR sensor considerably slowed down external lock
events coming from sonars.

4.3. Figure of Merit

To provide an universal judgment of a multisensor systems' performance we
propose to calculate a Figure of Merit based on individual sensor's throughput
and response time. Sensor's throughput can be expressed as:

Th = nl
6.t

where n is the number of data points collected and processed in time 6.t and I
is the information quantity in one data point . Throughput is scaled with figure
expressing the importance of minimising the response time. Figure of Merit ­
FM for an individual sensor is:

where t 0 is some desired maximum response time. FM for k sensors is therefore:

k
_ "'"'tandk

FM - ~ ----;s:t'2
i=l k

It must be noted that this is an approximation of system's performance, since
neither inner/inter sensor integration of data nor the quality of individual sen­
sor's decision is taken into account.

For the example system evaluated here FM is:

Sonar and IR parameters follow:

sonar IR
n 3 100

I[bits] 6 8

The application of the Figure of Merit will be discussed m the following
section.

70 G. BLINOWSK I

5. Discussion

System verification was the first of the goals of the modelling process. The
following conclusions can be drawn from the model design and computer expe­
riment phases:

• The very design stage provides valuable insights into system functioning,
deadlock/livelock and performance related issues.

• The simulation provides unlimited degree of insight into the dynamics of
the system. Statistical parameters such as average process time, average
synchronisation/resource wait time, average token flow are available on
demand.

• Detailed step-by-step analysis of the token game can reveal an unexpected
and/m: undesired behaviour of the system.

• A Petri net graph is easier to understand than a corresponding programme
written, for example, in CSP. Serious design flaws can be easily found at
the early stage of the simulation.

The main goal of the simulation stage was to obtain dependencies between
data-processing algorithms execution times and vehicles reaction times. As was
explained in section 3., sensor cycle time is equal to vehicle reaction time to an
event detected by a given sensor (as each logical sensor module tries to drive
the vehicle independently). Reaction times were determined -for both sonar
and IR sensors - as a function of time taken by sensors world model updating
algorithm. Each simulation was performed for 1 to 5 processor pool, and for
two types of process scheduling method. World model update event can be
triggered internally (i.e. by information coming from the interpretation module
of a particular sensor) or externally (by information coming from other sensors),
thus two types of updating events, with different execution times, were modeled.

Computer experiments showed that the most critical processing times were
associated with Ill sensors database updating algorithms. These processing
times influence not only the speed of operation of the IR sensor, but also the
speeds of all other sensors in the system - see Figures 12 to 14. This effect is
attributed to the central role that the IR sensor plays in the communication
structure. The influence of the scheduling method on reaction· times is signifi­
can t: higher priority given to IR. sensor (the most computa tion intensive one)
may result in heavy slowdown of other sensors.

It can be also concluded that the optimal number of processors in the system
is 3, larger processor pool gives only small improvement in the reaction times.
In certain cases a larger number of processors can cause a communication bot­
tleneck which slows down the system , see Figure 15.

Reaction times of individual sensors do not provide a full picture of systems
performance, that is why a Figure of Merit has been introduced. Figure of Merit
has been calculated for both scheduling models described above, and is plotted
in Figure 16 as a function of IR. sensors internal world model update time (the
most time consuming algorithm in the system) , and as a function of the number

Petri net model of a mobile robot 71

of available processors. A systematic, but not very significant improvement of
performance can be observed for the number of processors greater than two.

FM for a three - processor system for both scheduling methods has been
plotted on the same graph: Figure 17. We can conclude that the choice of a
scheduling method should depend on the speed of the algorithm used to pro­
cess and integrate data from IR sensor's measurements. For a slow (that is
significantly slower than equivalent sonar sensors algorithm) IR sensor database
updating algorithm, no priority scheduling should be chosen.

Topics which are worth further interest and research:
• The net model, and of course the simulator, can be augmented by vari­

ab le/expression mechanism by assigning expressions to transitions, bool­
ean guards to inhibit firings and vectors of variables to tokens, as was
shown in Golz, Reisig (1985) .

• The current model can be significantly expanded, for example a self-test
procedure was introduced but was not fully exploited in the simulation
stage. An implementation of a second processor pool servicing interpre­
tation modules and a model of a vision module is worth consideration.

• The Figure of Merit should take into account "behavioural quality", not
only data throughput and reaction times.

• The influence of environment on systems behaviour could be taken into
account.

6. Summary

A modelling strategy for parallel systems has been proposed. It was based on
the idea of processes able to exchange data and synchronise with other processes .
Petri nets with time, probability and priority were used as a modelling tool. It
was shown how process exclusion can be combined with timed events and still
preserve the liveness of the net.

A ' case study' application was presented. It was shown how a whole AGV
architecture can be implemented and simulated with a Petri Net model. The
design was based on a set of universal sensors able to exchange information with
each other and share common resources . Internally a sensor was represented
as a group of sequential, cyclic processes synchronising with each other the
information exchange events.

In the course of the simulation, system modules' reaction times were esti­
mated, most time-critical module was found, and its influence on the rest of the
system evaluated. Optimal number of processors was also determined . A Figure
of Merit, giving objective judgment about systems performance was proposed ,
and evaluated as a function of critical algorithm time, available processing power
and the scheduling method used.

72 G. BLINOWSI<I

Acknowledgment

I would like to express my gratitude to Dr. P. Probert from Univerity of Oxford
Robotics Research Group for guidance in this work.

References

BLINOWSKI G., PROBERT P.J. (1992) Petri Nets and Performance Evaluation
in Robotics. University of Oxford, Department of Engineering Science
Reports; Report No. OUEL 1843/92.

BROOKS R.A. (1 985) A layered intelligent system for a mobile robot. In: Third
Inll. Symp. Robotics Research.

DIJAN D., PROBERT P .J. (1 990) Case Study in Formal Specification for Dis­
tributed Sensor Integration. University of Oxford, Department of Engi­
neering Science Reports; Report No. OUEL 1844/90.

FREEDMAN P. (1990) Time, Petri Nets, and Robotics. IEEE Transactions on
Robotics and A utomotion, Vol. 7, No. 4, August 1990.

GoLTZ U., REISIG W. (1985) CSP-Programmes as Nets with Individual To­
kens. LNCS 188. Springer, Heidelberg, pp. 169-196.

HoARE C. (1985) Communicating Sequential Processes. Prentice Hall.
Hu H., LEONARD J., PROBERT P., BRADY M., DuRRANT-WHYTE H., RAo

B.S.Y. (1989) Sensor-based control of AGVs. lEE Computing and Con­
trol.

LAUTENBACH K . (1 987) Linear Algebraic Techniques for Place/Transition Nets .
LNCS 254 . Springer, Heidelberg, pp. 142-167.

MERCERON A. (1987) Fair Processes . LNCS 266, pp . 180- 195.
MERLIN P. (1 976) A methodology for design and implementation of commu­

nication protocols. Proc. IEEE Trans Commun., pp. 614-621.
RAMCHANDANI C . (197 4) Analysis of asynchronous concurrent systems by

Petri nets . Project MAC, TR-120, M.I.T., Cambridge, MA.
REISIG W. (1985) Petri Nets. An Introduction. Springer.
REISIG W . (1987) P lace/Transition Systems. LNCS 254. Springer, Heidel­

berg, pp. 142-167.
ScroMACHEN A., GROTZINGER S., NEMEC B., (1990) Petri Net- Based Em­

ulation for a Highly Concurrent Pick- and- Place Machine. IEEE Trans.
on Robotics and Automation. Vol. 6, No. 2, Apr 1990.

SIFAKIS J . (1980) Performance Evaluation of Systems using Nets, LNCS v. 84,
pp. 307- 319.

STARKE P.I-I. (1989) Some properties of Timed Nets under the earliest firing
rule. LNCS 424, pp. 418- 432 . Distributed Computing, Paris 1981, IEEE,
No. 81 CH 1591-7.

WANG F.Y. ET. AL (1991) A Petri-Net Coordination Model for an Intelligent
Mobile Robot. IEEE Trans. on Systems, Man and Cybernetics, Vol. 21,
No. 4.

Petri net model of a mobile robot

400

50 ·

o ~~--~----~--------------------0 20 40 60 80 100 120 140 160 180 200

550

500·

450 ·

400

350

250

200

150 ·

100

50

73

0 ~o --~20~~4"o~M~~M~c100--~1~20--1~~--~16~0 --1M---2~00

Figure 12. Left- Sonar sensor's cycle time as a function of T;r _sint eg_lo cki. Rigb L

- IR sensor's cycle time as a function of T;,._sinteg_locki. In this, and in all the
subsequent diagrams in this chapter, smooth line refers to a system with one
processor , line with hollow squares to 2 processor system, filled squares - 3, two
triangles - 4, hourglasses - 5.

350 450

400

350

300

250

200 ·

150

100·

50

0 ~0 ----~----~10----~,5-----2~0----~25----~~

Figure 13. Left - Sonar sensor's cycle time as a function ofT;r_sinteg_locke· Right
- IR sensor's cycle time as a function of T;r_sinteg_locke·

74 G. BLINOWSKI

300

:: ~/~-'\/'-_/V--/
300 -

100

50 -
50 -

0 o 20 40 60 eo 100 120 140 1so 1so 200

Figure 14. Left - No priority configuration: Sonar sensor's cycle time as a
function of T;r _sinteg_locki. Right - No priority configuration: IR sensor's cycle
time as a function of T;r_sint eg _lo cki ·

600

550

500-

450 -

400 -

350 -

300

250

200 -

150 -

100 -

50 -

0 +---------,---------.--------.---------,-------- ,,---------,-
0 5 1 0 15 20 25 30

Figure 15. No priority configuration: IR sensor's cycle time as a function of

T;r_sinteg_lockc ·

Petri n e t model of 1\. mobile robot 75

5000 5000·

4500

1000

0 0 20 40 60 80 100 120 140 160 180 200 0 ·~0 ~2~0--4~0--~60--~80~~,00~~,2~0~14~0~1.~0~,.~0~2~00

Figure 16. Figure of Merit for priority (left) and no priority (right) architectures
as a function of T;r_sinteg_locki·

5000

3000

2500

2000

1500

1000

500

0 -----.----.-----.-----.----.-----.-----.----.-----,-----,-
0 ~ ~ W M 100 1~ 1~ 1W 1M 200

Figure 17. Figure of Merit for 3 processor priority (dotted line) and no priority
architectures as a function of T;r _sinteg_locki.

	Bez nazwy

