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In the preceding parts of this paper, as well as in the present
one, a noisy duel is considered in which Player I has two kinds of
weapons: a gun with m bullets and a weapon which he can use when
he meets the opponet. Player II has a gun with n bullets. The cases
are solved n = 1 for any m,m = 0 for any n, and m < 20,n < 5.

In this part the cases m = 1,2, n = 5 are solved.

Part IV

1. Definitions and assumptions

Let us define the game which will be called the game (m, n). Two players, I and
IT fight a duel. They can move as they want. The maximum speed of Player I
is v1, the maximum speed of Player II is vy and it 1s assumed that vy > vy > 0.

Player I has two kinds of weapons: a gun with m bullets and a weapon which
he can use when distance between him and the opponent is zero. Player II has
only a gun with n bullets.

At the beginning of the duel the players are at distance 1 from each other.
Let P(s) be probability of succeeding (destroying the opponent) by Player I (IT)
when the distance between players is 1 — s. The function P(s) will be called
accuracy function. It is assumed that it is increasing and continuous in [0, 1],
has continuous second derivative in (0, 1) and that P(s) = 0for s <0, P(1) = 1.

1 Parts I, IT and III were published in Control and Cybernetics, vol 22, 1993, 2, pp.
69-103.
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It 1s also assumed that at s = 1 Player I succeeds surely by his short distance
weapon.

Player I gains 1 if only he succeeds, gains —1 if only Player II succeeds, and
gains 0 in the remaining cases. The duel is a zero-sum game.

It is assumed that duel is noisy - player hears every shot of his opponent.

As it will be seen from the sequel, without loss of generality we can suppose
that v; = 1 and that Player II is motionless. It is also assumed that at the
beginning of the duel Player I is at the point 0 and Player II is at the point 1.

In the sequel we assume that the reader knows the previous parts of the
paper.

Suppose now that the duel (m,n) begins when the distance between players
is1—a, 0 <a < 1. This duel will be denoted by (m,n), (a).

Moreover, suppose that between successive shots of the same player time
€ > 0 has to pass.

Futhermore, let (m,n), (a Ac,a); 0 < ¢ < €, be the duel in which Player I
has m bullets, Player II has n bullets, Player I is at the beginning of the duel
at a, Player IT is at 1, but if ¢ < € Player II can fire from the time (a) on and
Player I from the time (a) + ¢; (s) is the first time when Player I reached the
point s. If ¢ = £ the rule is the same with the only exception that Player II is
not allowed to fire (a).

Similarly we define the duel (m,n)(a,a Ac).

All other definitions and suppositions made for the duel (m, n) hold also for
above duels.

For definitions and notions concerning duels see Karlin (1959) and Trybula
(1993).

2. Duels (1,5)

Duel (1,5), (a).

Let us consider the duel in which Player I has 1 bullet, Player II has 5 bullets
and the game is beginning when Player I is at the point a.

Let Q(a) > Q(a1s) =2 0.91774. We define strategies ¢ and 7 of Players I and
II.

Strategy of Player I: Escape. If Player II has fired (say at a’) play optimally
the duel (1,4), (a/,a’ NE).

Strategy of Player II: Fire at (a) and play optimally the resulting duel.

“Play optimally” means: apply the strategy optimal in the limit.

Let v15(a) be a number defined as follows,

vis(a) = —P(a) + Q(a)v14(2, a)
_ -1+ Q(a) if Q(a) > Q(a1s),
=-1+00m + { —1+ (1 4+ v12)Q%*(a) if Q(a14) < Q(a) < Q(a13),

ws(o) = {21 T &) it Q(a) > Q(ara),
B 14 (1 +012)Q%(a) if Q(d14) < Q(a) < Q(a13);
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Q(s) = 1 — P(s),Q(a13) = 0.95572 (see Trybuta, 1993, part II); Q(d14) =
0.90920 (see Trybuta, 1993, part III), viy = 1= 4\/_ = 0.04633 (see Trybula,
1993, part II).

We prove that strategies £ and 7 are optimal in the limit and that the number
vis(a) defined in the above is the limit value of the game for a < dy5.

Suppose that Player IT fires at @’ < d14. For such a strategy (denote it by
7)) we obtain that the payoff function satisfies the condition

K(¢,9) 2 —P(a") + (1= P(d"))v1a(2, ) — k(¢) =
{—1 +Q*a’) = k(&) > —1+ Q*(a) — k(é), if Q(a) > Q(a13),

=14 (14+v12)Q3(a') — k(¢) > =1+
+(1 4 v12)Q3(a) — k(é), if Q(d14) < Q(a) < Q(ara),

where v14(2, a) is the limit value of the game for the duel (1,4), (a,a A ¢) and
k(¢) — 0if & — 0.
Suppose that Player II does not fire. For such a strategy 7 we have

o ~1+ Q%(a) it Q(a) > Qans),
f\<f:’7>—°>{—1+(1+v12>c93(a) if Qa14) < Q(a) < Q(ara).

Then

K(&,1) > vis(a) — k(€)

for any a such that Q(a) > Q(a1s) = 0.91774.
On the other hand, suppose that Player I fires after (a). For such a strategy
€ we obtain

K(f, n) < —P(a) + (1 — P(a))via(2,a) + k(€) = vis + k(€)

for Q(a) > Q(a14).
i) At the end, suppose that Player I fires at (a), together with Player II. For
such a strategy £ we have

K, n) < Q%a)vos(a)+ k(€)
—Q*(a)(1 — Q3(a)) + k(&).

Let a < @;3. Then we demand that
—Q*(a)(1 — Q*(a)) + k(€) < vis(a) + k(&) = —1+Q°(a) + k(¢)

what always holds for such a.
Let a13 < a < d14. In this case we demand that

—Q%(a)(1 — Q@) + k(&) < 1+ (1 +v12)Q°(a) + k(é)

1
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or

S(@) = @%(a) - (1 + 112)@%(a) — Q*(a) + 1 £0. (1

et

This function is decreasing in @ and is equal to zero for Q(a) = Q(a15) =
0.91774. Then, incquality holds for Q(a) > Q(ais).
This ends the proof of the assertion.

Duel (1,5), (a A c,a). Q(a) > Q(a14) = 0.90920.

We define strategies ¢ and n of Players I and II.

Strategy of Player I: Escape. If Player I has fired (say at a’) play optimally
the resulting duel (1,4), (a’,a’ Acy).

Strategy of Player II: Fire before (a) 4 ¢ and play optimally the resulting
duel.

Proof of limit optimality of strategies ¢ and n is the same as for duel
(1,5), (a), with the only exception that 1) is not considered here. Then the
bound Q(a) > Q(a;5) does not hold and we have

vis(l,a) = {_1 A if Q(a) > Q(ass),
P 1+ (1 4 v12)@3(a) if 0.90920 = Q(d14) < Q(a) < Q(éa1s).

Duel (1,5), (a,a Ac). Q(a) > Q(a1s) = 0.92409.

Strategy of Player I: Escape. If Player II has fired (say at a') play optimally
the resulting duel (1,4), (¢/, a’ A€).

Strategy of Player II: If Player I did not fire before, fire at (a) + ¢ and play
optimally the duel (1,4), (a/,a’ Acy), &' = (a) +c. If he has fired play optimally
the resulting duel.

The sign § denotes the time when Player I is at the point s (not necessarily
the first time, which is denoted by (s)).

Here also the proof is nearly the same as for the duel (1,5), (a). Here an
additional case has to be considered when Player I fires before (a) + ¢. For such
strategy € we have

K mn) < Pa)—=(1=Pa))(1 (1= P(1)")+k(E)

1 - 2Q(a) + Q%(a) + k(&).

Let a < d13. We demand that
1-2Q(a) + Q%(a) < 1+ Q*(a)

which is always satisfied for considered a since the multinomiai
S1(Q) = Q%(a) — Q*(a) — 2Q(a) +2

has one minimum for 0 < @ < 1 and $1(Q(a13)) = S51(0.95572) = —0.02748,
Si(1) =0.

Il
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Let a13 < a < dj4. We demand that

1-2Q(a) + Q%(a) < —1+ (1 4 v12)Q%(a)

or

9(Q) = Q%(a) — (1+ v12)Q%(a) — 2Q(a) +2 < 0.

This function is decreasing in @ and S»(Q(d15)) = 0. Hence, S2(Q(a)) <0
for a < dys.

Then strategies ¢ and n are optimal in the limit for a < @15, where Q(d;5) =
0.92409.

3. Results for the duels (1,5)

Let v15(1,a), vis(a), vis(2,a) be the limit values of the game for the duels
(1,5),(a A c,a); (1,5), (a); (1,5),(a,a A c), respectively. From the results of
previous section we have

vis(1,a) = { + Q*(a) %f Q(a) > Q(a13),
15(1, L+ (14 v12)@Q%a) if 0.90920 = Q(d14) < Q(a) < Q(a13),

vis(a) = { @) if Q(a) > Q(a13),
+ (14 v12)@%(a) if 0.91774= Q(ass) < Q(a) < Q(asa),

1)15(2 a) = { Qz(a) lf Q(a) Z Q(&l‘%),
) + (14 v12)@Q%(a) if 0.92409 = Q(d15) < Q(a) < Q(as3).

4. Duels (2,5)
Duel (2,5), (a)
Caskt 4.1 Q(a) > Q(ags) = 0.99804.

We define strategies ¢ and 7 of Players I and II.

Strategy of Player I: Iiscape. If Player IT has fired (say at a’) play optimally
the duel (2,4), (¢/,a’ AE).

Strategy of Player II: If Player I did not reach the point ays defined by (2)
further on and did not fire, do not fire neither. If he had reached this point and
did not fire, fire at {ass) and play optimally the resulting duel. If Player I had
fired before he reached the point ags (say at a’) play optimally the duel (1,5),
(@ NE,d).

We prove that for a < ays strategies € and 7 are optimal in the limit and
the limit value of the game is

Ugs(a) = 0
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Suppose that Player II fires at ¢’ < a. For such a strategy (denote it by 7)
we have

K@) 2 —P@)+(1— P(@))wa(2 a) - k(&)
= —14 (14 PX(a12))Q(d) — k(&) > k(o)
if
def

- = Q(ass) = 0.99804. @)

Q(a/) = 1+ Pg(dls)

Suppose that Player II does not fire. Then
K(& 1) =0.

On the other hand, suppose that Player I reaches the point ass and does not
fire before or at (ass). For such a strategy £ we have

K(€,m) < —P(azs)+ Q(azs)v24(2, azs) + k(€)
= =14 (14 P*(a13))Q(azs) + k(€) = k(é).

Suppose that Player I does not reach the point ass and does not fire. We have
K(En)=0.
Suppose that Player I fires at a’ < ays. We obtain for such a strategy £

K(€,m) P(a') + Q(a")vis(1, a') + k(é)
1-2Q(a") + Q%(a’) + k(€) < k(€).

The assertion is proved.

I IA

Duel (2, 5), (a)
CAsE 4.2

0.96894 = Q(a2s) < Q(a) < Q(azs) = 0.99804,
0.95105 2 Q(a24) < Q(a) < Q(dss) = 0.95302,
0.94671 = Q(&gs) S Q(a) S Q(El24)
We define strategies £ and 7 of Players I and II.
Strategy of Player I: Escape. If Player II has fired (say at a’) play optimally
the duel (2,4), (a/,a’ NE).

Strategy of Player I1: Fire at (a) and play optimally the resulting duel.
For constants a satisfying the above conditions we assume that

vas(a) = —P(a) + Q(a)vaa(2,a) =

[Tl Pemo i a0 > gl ‘)
14 (14 v3)Q%a)  if 0.93571= Q(aza) < Q(a) < Q(a24)
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We prove that for constants a specified in Case 4.2 strategies ¢ and n are
optimal in the limit and the limit value of the game is given by (3).
Suppose that Player II fires at a’ < as4. We obtain

K(¢&,1) —P(a’) + Q(a")v24(2, ') — k(€)

—P(a) + Q(a)v2a(2, a) — k(€) = vas(a) — k()

vV v

by (3).
Suppose that Player II does not fire. I'or such a strategy 7

{ 1+ (1+ P?(a13))Q(a) if Q(a) > Q(az2a),
K 7)) =0>< =14 (1+v23)Q%(a) if 0.93571 =
~ Q(a24) < Q(a) < Q(az4)

On the other hand, suppose that Player I fires at (a). For such a strategy é
we have

K(€,1) < Q*(a)v1a(a) + k(&)

_ { —Q*(a) + Q*(a) + k(é) if Q(a) > Q(ai3),
—Q%*(a) + (1 + v12)Q*(a) + k(€) if Q(a14) < Q(a) < Q(a13),

Q(a13) =2 0.95572 (see Trybula, 1993, part IT), Q(a14) == 0.89815 (see Trybula,
1993, part III).
1) Now, if 0.99804 = Q(ass) > Q(a) > Q(a23) we demand that
~Q*(a) + Q°(a) < 1+ (14 P*(413))Q(a)
or
5(Q) = @*(a) — @*(a) — (1 + P*(a13))Q(a) +1 < 0. (4)

This function is decreasing in @ and S(Q(a25)) = 0, Q(a2s) = 0.96894. Then
the inequality is satisfied for

0.96894 = Q(ass) < Q(a) < Q(azs) = 0.99804.

i) If 0.91105 = Q(a24) < Q(a) < Q(a13) = 0.95572 we demand that
—Q*(a) + (1 +v12)Q"(a) < —1+ (1+ P*(a13))Q(a)

or

S(Q) = (1 +v12)Q%(a) — Q%(a) — (1 + P*(a13))Q(a) +1 < 0. (5)
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This function has one minimum in [0.1], S(Q(d24)) = —0.00139, S(Q(a13)) =
0.00196. Then it has the root in the interval [Q(G24), @(d13)] which is equal
def
Q = Q(ass) =20.95302. Then the inequality holds for

0.95105 2 Q(azq) < Q(a) < Q(ass) = 0.95302.

§5i) TF 0.93571 2 Q(ds4) < Q(a) < Q(a24) = 0.95105 we demand that
—Q*(a) + (14 v12)Q%(a) < =14 (1 +v23)Q%(a)

or
S(Q) = (1 +v12)Q%(a) — (2 + v23)Q*(a) (6)

_|_
This function has the only root for Q(a) = Q(ass ) 2 (0.94671 and is positive
for Q(a) < Q(ass) and negative for Q(a) > Q(ass). Then the inequality holds
for

The assertion is proved.

Duel (2,5), (a)

CasE 4.3
0.95572 = Q(a13) < Q(a) < Q(azs) = 0.96894,
0.95302 = Q(d2s) < Q(a) < Q(a13) = 0.95572,
0.93571 = Q(dg4) < Q(a) < Q(ass) = 0.94671,

We define strategies ¢ and n of Players I and II.

Strategy of Player I: Tire at (a) and play optimally the resulting duel.

Strategy of Player II: Fire at (a) and play optimally the resulting duel.

We prove that for a defined in the above strategies £ and 7 are optimal in
the limit and that the value of the game is

vas(a) = Q*(a)vi4(a) (7)
- {”Q‘Q(a) + Q%(a) %f Q(a) > Q(ais),
—Q%(a) + (1 + v12)Q*(a) if 0.898152 Q(a14) < Q(a) < Q(a13).

Suppose that Player IT does not fire at (a). For such a strategy 7
K(&,1) > P(a) + Q(a)vis(a) — k(é)

1—2Q(a) + Q*(a) — k(€) >
_ Q%*(a) + Q*(a) — k() if Q(a) > Q(a13),
T ) 1-2Q(a) + (1 +v12)Q%(a) — k(€) >
—Q%a) + (1 +v12)Q*a) — k(é) if Q(aia) < Q(a) < Q(a13).
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Suppose that Player I does not fire at (a). For such a strategy ¢

K(€,m) < —P(a) + Q(a)v24(2, a) + k(€)
-1+ (1 e ’1)23)@2(61) + k(é)
= if 0.93571 = Q(an) < Q(a) < Q(a2s),
14 20(a) — 207(a) + (1 + )@ (a) + ()
if 0.91636 = Q(a24) < Q(a) < Q(dza).

1) Let
Q(a) > Q(a13) = 0.95572. (8)
We demand that
—1 + (1 + Pz(dlg)Q(a) S ~Q2(a) + QS(G)
Q°(a) — @*(a) — (1 + P*(a13))Q(a) +1 > 0.

The inequality is opposite (leaving out of account the case of equality) to
the inequality (4) and is satisfied for

Q(a) < Q(ags) = 0.96894. (9)
The conditions (8) and (9) give
(a) 0.95572 = Q(a13) < Q(ass) = 0.96894.
ii) Let
0.95105 = Q(d24) < Q(a) < Q(a13) = 0.95572. (10)
We demant that
—1+ (1+ P*(@13))Q(a) < —Q*(a) + (1 + v12)Q"(a)
or
(1+ v12)Q*(a) — @*(a) — (1 + P*(a13))Q(a) +1 > 0.
From (5) it follows that this inequality is satisfied for
Q(a) > Q(ass) = 0.905302. (11)
The conditions (10) and (11) give
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iii) Let
0.93571 = Q(a24) < Q(a) < Q(a24) = 0.95105. (12)
We demand that
—14 (14 v23)Q%(a) < —Q*(a) + (1 4+ v12)Q*(a)
From (6) it follows that this inequality is satisfied for
Q(a) < Q(azs) = 0.94671. (13)
The conditions (12) and (13) give
(c) 0.93571 = Q(a24) < Q(a) < Q(ans) = 0.94671.
iv) Let, at the end,
(d) 0.91636 2 Q(dz4) < Q(a) < Q(aa) = 0.93571.
We ask for
—1+2Q(a) — 2Q%(a) + (1 +v12)Q%(a) < —Q*(a) + (1 +v12)Q(a)
which is always satisfied.
Then, for constants specified in the cases (a)-(d) the strategies & and 7 are

optimal in the limit. The limit values of the game for particular cases are given
in Section 5.

Duel (2,5), (aAc,a)
Case 4.4 Q(a) > Q(azs) = 0.99804

Strategy of Player I: Escape. If Player II has fired (say at a’) play optimally
the resulting duel (2,4), (a’,a’ Acy).

Strategy of Player II: If Player I did not reach the point ass and did not
fire, do not fire, neither. If he had reached this point and did not fire, fire at
(ass) and play optimally the resulting duel. If Player I has fired at o’ < ass
play optimally the duel (1,5), (a’ A€, a’).

Proof of limit optimality of above strategies is omitted. It is easy to see that
in this case

1)25(1,(1) =0,

CasE 4.5 0.93571 = Q(az) < Q(a) < Q(ags) = 0.99804.
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Strategy of Player I: Escape. If Player II fires (say at a’) play optimally the
resulting duel (2,4), (a’,a’ A ¢1).

Strategy of Player II: Fire before (a) + ¢ and play optimally afterwards.

The proof of limit optimality of these strategies is omitted. Now

~1+ (1+ P*(a13))Q(a)

it 0.95105 2= Q(ass) < Q(a) < Q(ass) = 0.99804,
—1+ (1 + v23)Q%(a)

if 0.93571 = Q(a24) < Q(a) < Q(a24).

CASE 4.6 0.91636 = Q(d24) < Q(a) < Q(a4) = 0.93571.

ves(1,a) = (14)

Strategy of Player I: If Player II did not fire before, fire at (a) + ¢ and
play optimally the resulting duel. If he has fired (say at a’) play optimally the
resulting duel (2,4), (a’,d’ A c1).

Strategy of Player II: Fire before (a) + ¢ and play optimally afterwards.

We prove that for given constants a above strategies are optimal in the limit
and that the limit value of the game is

va5(1,a) = —1 + 2Q(a) — 2Q%*(a) + (1 + v12)Q%(a). (15)

Suppose that Player IT applies above strategy. Then for any strategy € of
Player 1

K(¢,m) < —P(a) + Q(a)vz4(2, a) + k(&)
= —142Q(a) —2Q%*(a) + (1 + v12)Q*(a) + k(&) = vas(1, a) — k(£).

v19 =2 0.04633 (see Trybula, 1993, part II).
On other hand, suppose that Player II fires before (a)+c. For such a strategy

Ui
K(&,9) > —P(a) + Q(a)v24(2, a) — k(€) = va5(1, @) — k().
If Player II fires after (a) + ¢ or does not fire at all
K(¢9) > P(a)+Q(a)vis(1,a) — k(é)
= 1-2Q(a) + (1 +v12)Q"(a) — k()
> —1+2Q(a) — 2Q%(a) + (1 + v12)Q"(a) — k(€)
for any a.

If, at the end, Player II fires at (a) + ¢

K9 > Q%a)via(a) — k() = —Q*(a) + (1 + v12)Q"(a) — k()
> —142Q(a) - 2Q%(a) + (1 + v12)Q"(a) — k(&).

The assertion is proved.
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Duel (2,5), (a,a Ac).
Case 4.7 Q(a) > Q(ass) = 0.99804

Strategy of Player I: Escape. If Player II has fired (say at a’) play optimally
the resulting duel (2,4), (a’,a’ A E). :

Strategy of Player II: If Player I did not reach the point ag5 and did not fire
do not fire, neither. If he had reached this point and did not fire, fire at (ass)
and play optimally the resulting duel. If Player 1 has fired at o’ < a5 play
optimally the resulting duel (1,5), (¢’ A ¢1,a’).

The proof that above strategies are optimal in the limit is omitted. We have,
similarly as for duel (2,5), (a)

U25(2, a) = (.
CasE 4.8 0.97465 = Q(alY) < Q(a) < Q(ays) = 0.99804.

We define strategies & and n of Players I and II.

Strategy of Player I: Escape. If Player II has fired (say at o) play optimally
the resulting duel (2,4), (a’, a’ A €).

Strategy of Player II: Fire at (a) + ¢ and play optimally afterwards.

Suppose that Player I applies the strategy & and Player IT applies a strategy
7. It is easy to prove that

K@) 2 =14 (14 P*(a1))Q(a) — k(é)
it 0.95105 = Q(a24) < Qa) < Q(azs) = 0.99804
(compare with the formulae (14) for the duel (2,5), (a)).

On the other hand, also comparing with the duel (2,5), (a) we obtain that
here comes in addition the case in which Player I fires before (a) + ¢. For such

a strategy € we have

K(,n) < Pla)+ Qa)vis(1,a) + k(€)
1 —2Q(a) + Q°(a) + k(&)
—14 (14 P?(a13))Q(a) + k(&)

IN

if
S(Q) = Q3(a) — (3 + P*(a13))Q(a) + 2 < 0.

This function is decreasing in @ and S(Q(aM)) = 0 for Q(alM)) =2 0.97465.
Then the inequality holds for @ > Q(a(!)) and strategies ¢ and n are optimal
in the limit for a specified in Case 4.8. We also have that

’U25(2, a) =—-1+4+ (1 + P2(&13))Q(a).

Cask 4.9 0.91636 = Q(a24) < Q(a) < Q(alY) = 0.97645.
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Strategy of Player I: Fire before (a) 4+ ¢ and play optimally the resulting

duel.

Strategy of Player IT: If Player I did not fire before, fire at (a) 4+ ¢ and play

optimally the resulting duel.

The above strategies are optimal in the limit for given a and the limit value

of the game is

’U25(2, (1) =

{ 1 —2Q(a) + Q*(a) if Q(a1s) <Qa)<Q
1-2Q(a) + (1 +v12)Q%(a) if Q(az) < Q(a) < Q(a

The proof is omitted.

5. Results for the duels (2,5).

'()25(1, (1) =

v25(a) =

1)25(2, (1) =

For the duels with arbitrary movements see Trybula (1990-1991, 1993a).

0 if Q(a) > Q(azs) = 0.99804,
~1+(1+ P*(a13))Q(a)

if 0.95105 = Q(a24) < Q(a) < Q(azs),
-1 + (1 + U23)Q2((1)
—142Q(a) — 2Q%*a) + (1 + v12)Q*(a)

i 0.91636 ~ Q(dze) < Q(a) < Q(ara).

0 if Q(a) > Q(aas),
—1+ (14 P*(a13))Q(a)

if 0.96894 = Q(ass) < Q(a) < Q(ass),
—Q%(a) + Q*(a)

if 0.95572 = Q(a13) < Q(a) < Q(azs),
—Q%*(a) + (14 v12)Q*(a)

if 0.95302 = Q(a25) < Q(a) < Q(d13),
~1+ (14 P*(a13))Q(a)

if Q(aa4) < Q(a) < Q(azs),
—1 4+ (14 v23)Q%(a)

if 0.94671 = Q(azs) < Q(a) < Q(aza),

~Q%(a) + (1 +v12)Q"(a)
if Q(az24) < Q(a) < Q(azs).
0 if Q(a) > Q(ass),

=1+ (14 P?(d13))Q(a)

if 0.97465 = Q(a%y) < Q(a) < Q(azs),
1 - 2Q(a) + Q*(a)

if Qa1s) < Q(a) < Q(a%y),
1—2Q(a) + (1 +v12)Q"(a)

if Q(az24) < Q(a) < Q(ar3).
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For noisy duels see Fox and Kimeldorf (1969), Karlin (1959), Trybuta (1992,
1990-1991, 1993b). '

For other duels see Cegielski (1986a;b), Kimeldorf (1983), Orlowski and
Radzik (1985a;b), Restrepo (1957), Styszyniski (1974), Teraoka (1979).

Part V

1. Reference

The present part V constitutes the sequel to parts I, IT and III published in
Control and Cybernetics, vol. 22, 1993 No 3, and part IV, in this issue. The
definitions and assumptions necessary for the consideration herein contained
can be found in these previous parts. F'or more basic definitions and notions the
reader is refered to Karlin (1959).

2. Duels (3,5)
Duel (3,5),(a)

Case 2.1 Q(a) > Q(ass) = 0.95288.

We define strategies & and n of Players I and II.

Strategy of Player I. Go ahead and if Player II did not fire before, fire
with an absolutely continuous probability distribution (ACPD) in the interval
({ass), (ass) + «(e)) and play optimally the resulting duel. If Player II has fired
(say at a’) play optimally the duel (2,5),(a’ A€, a).

Strategy of Player II: If Player I had not reached the point ags and did not
fire, do not fire, neither. If he reached the point ass and did not fire, fire at
(ass) and play optimally the resulting duel. If he had fired before he reached
ass (say at a’) play optimally the duel (2,5),(a’ A€, a’).

The sign (s) denotes the first time when Player I reached the point s.

“Play optimally” means apply a strategy optimal in the limit.

The ACPD is chosen to make strategy ¢ e-optimal in limit-the values of ¢
are chosen for particular values of €.

Let v3s and ass be the numbers satisfying the equations

P(ass) + Q(ass)vas(1, ass) (16)
= —P(ass) + Q(ass)vaa

where Q(a) = 1 — P(a); va4, v25(1, ags) are the limit values of the games (3,4),
(2,5), {ass A ¢, ass), respectively.

VU35
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Let
0.95105 = Q(a24) < Q(ass) < Q(azs) = 0.99804.
Tor these ass
vas(1, ass) = =1+ (14 P*(a13))Q(ass),
where P(a13) = 0.04428. Then from (16) we obtain
(14 P?(a13))Q%(aas) — (3 4 v34)Q(ass) +2 =0
which gives
Q(ass) = 0.95288, vs5 = 0.00400. (17)

We prove that strategies £ and n are optimal in the limit and that the limit
value of the game is vss given in the above.

Suppose that Player II fires at @’ < ass. For such a strategy (denote it by
7) we have

K(&n) > —P(a)+Q(a")vsa — k(é)
> —P(ass)+ Q(ass)vas — k(€) = vas — k(€)
where K (-, ) is the expected gain of Player I and k(€) — 0 if € — 0.
Suppose that Player II does not fire before (ags). For such a strategy 7
K(&,1) > P(ass) + Q(ass)vas(1, azs) — k(€) = vas — k(€).
Then

K(&,1) > vss — k()

for any strategy 7 of Player II.
On the other hand, if Player I fires at @’ < ags we obtain for such a strategy

£
K(&,m) < P(a) + Q(a')vzs(1,a') + k(é)

1—Q(a) +k(é) if Qa)> Q(azs)=20.99804,
{ 1-2Q(a') + (1 + P*(a13))Q%(a') + k(€)

if  0.95105 2 Q(a24) < Q(a) < Q(azs).

It is easy to prove that in both cases

K(€,1m) < vss + k(é).

Suppose that Player I does not fire before or at (ass). For such a strategy é

K(€,n) < —Plass) + Q(ass)vsa + k(€) = vas + k(€).
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Suppose that Player I fires at (ags). In this case

K€1) < Q%ass)vaa(ass) + k(€)
= Q*(ass)P*(@13) + k(€) < vas + k(é).

At the end, suppose that Player I does not reach the point ags and does not
fire. We have

I{(é,ﬂ) =i ()i & V35.
The assertion is proved.
Case 2.2 0.94812 = Q(ass) < Q(a) < Q(ass) = 0.95288.

We define strategies ¢ and 7 of Players I and II.

Strategy of Player I: If Player II did not fire before, fire with an ACPD in
the interval ({a), (a) + «(€)) and play optimally the resulting duel. If he has
fired (say at a’) play optimally the duel (2,4), (a’,a’ A ).

Strategy of Player IT: Tire at (a) and play optimally the resulting duel.

We prove that strategies ¢ and n are optimal in the limit and that the value
of the game is

vas(a) = =14 (14 v34)Q(a)
Suppose that Player IT fires after (a) 4+ a(e). For such a strategy 7 we have

K(&,1) > P(a) + Q(a)vas(1, a) — k(€)
1—2Q(a) + (1 + P%(d13))Q*(a) — k(&)
if  0.95105 22 Q(ag4) < Q(a) < Q(ass),
1—2Q(a) + (1 + v12)Q%(a) — k(&)
it 0.93571 = Q(az4) < Q(a) < Q(aza).

Consider the subcases:
i) 1—2Q(a) + (14 P*(a13))Q@%(a) > —1 + (1 + v34)Q(a).
From Case 2.1 it follows that it is satisfied for

Q(a) < Q(azs) = 0.95288.

11) 1— QQ((Z) + (1 -+ U23)Q3(CL) Z —1 -+ (1 + v34)Q(a)

S(Q) = (1 +v23)Q%(a) — (3 + v34)Q(a) + 2 > 0.

This function is positive for @ < @(d@z4). Then the inequality always holds
for Q(aza) < Q(a) < Q(a24).
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On the other hand, suppose that Player I also fires at (a). For such a strategy
¢ we have

K(€,1) < Q*(a)vaa(a) + k(é)
PHa15)@%(a) + k(€ il Q(a) > Q(da),
= —Q%a) + (1 +v23)Q%(a) + k(é)
if 0.91636 2 Q(ize) < Q(a) < Q(za).
Consider the subcases
I) PE(dls)QZ(G) < -1+ (1 + 1)34)Q(a)‘
This inequality always holds for Q(a) > Q(as4).
i) —Q*(a) + (14 v23)Q°(a) < =1+ (1 + v34)Q(a)
or

S(@) = (1+v25)Q*(a) — Q*(a) + (1 + v34)Q(a) + 1 < 0.

This function is negative for @ > Q(ags) = 0.94812.
This ends the proof of the assertion.

CasE 2.3 0.91636 = Q(é24) < Q(a) < Q(ass) = 0.94812.

We define strategies £ and 7 of Players I and II.

Strategy of Player I: Fire at (a) and play optimally the resulting duel.
Strategy of Player II: Fire at (a) and play optimally the resulting duel.
We prove that now

v3s(a) = Q*(a)vaa(a) = —Q*(a)+(1+v23)Q%(a) if Q(d24) < Q(a) < Q(ass).(18)
Suppose that Player IT does not fire at (a). For such a strategy 7 we have

K(&,1) > P(a) + g(a)vas(1, @) — k(€)
1 — 2Q(a) + (1 —|— 'Uzg)Qs(Cl) — k‘(é)
if 0.93571 = Q(&zz.}) S Q(a) S Q(&24),
1—2Q(a) +2Q%(a) — 2Q°(a) + (1 + v12)Q°(a) — k(é)
if 091636 = Q(a24) < Q(a) < Q(aza).
Consider the subcases:
i) 1—2Q(a) + (14 v23)Q3(a) > —Q%*(a) 4 (1 + v23)Q(a).
This inequality is satisfied for any a.
i) 1 —2Q(a) + 2Q%(a) + (1 +v12)Q%(a) > —Q%(a) + (1 + v23)Q*(a)

S(Q) = (14 v12)Q°%(a) — (3 + v23)Q%(a) + 3Q*(a) — 2Q(a) +1 > 0.

This multinomial is decreasing for @ € (Q(d24), @(az4)) and S(Q(a24)) =
5(0.93571) = 0.00413. Then the inequality holds for @ belonging to this inter-

val.
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On the other hand, suppose that Player I does not fire at (a). We have for
such a strategy é

K(,m) < —P(a)+Q(a)vss + k(¢)
< —Q%a) + (1 + v23)Q%(a) + k(&).

From 2.2 it follows that it holds for Q(a) < Q(ass) =2 0.94812.
Then for given constants a strategies & and n are optimal in the limit and
the limit value of the game is given by (18).

Duel (3,5), (a Ac,a)

We define optimal in the limit strategies for particular cases.
Cask 2.4 Q(a) > Q(ass) = 0.95288.

Strategy of Player I: Go ahead and if Player IT did not fire before, fire with an
ACPD in the interval ((ass), (ass) 4+ a(¢)) and play optimally the resulting duel.
If Player IT has fired (say at a’) play optimally the resulting duel (2,5), (a’ A
Ci, a’).

Strategy of Player II: If Player I did not reach the point ags and did not fire,
do not fire also. If he reached the point asgs and did not fire, fire at (ass) and
play optimally the resulting duel. If he fired before he reached ass (say at a’)
play optimally the duel (2,5), (¢’ A€, a’).

Now

1)35(1, a) =—1++ (1 =+ v34)Q(a35) =~ (.00400.
The proof is the same as for the duel (3,5), (a).
CasE 2.5 0.93571 = Q(dz4) < Q(a) < Q(ass) = 0.95288.
Strategy of Player I: If Player II did not fire before, fire with an ACPD in
the interval ((a) + ¢, (a) + ¢+ «(€)) and play optimally the resulting duel. If he
has fired (say at a’) play optimally the obtained duel (2,4), (a’,a’ A c1).

Strategy of Player II: Fire before (a) + ¢ and play optimally the duel (3,4).
We have now

vas(1,a) = =1 4+ (1 + v34)Q(a).

The proof of limit optimality of above strategies is omitted.

CasE 2.6 0.91636 = Q(dn4) < Q(a) < Q(aza) = 0.93571.
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Strategy of Player I: Fire at (a) + ¢ and play optimally the resulting duel.
Strategy of Player II: Fire before (a) + ¢ and play optimally the resulting
duel.

Now also

vas(1,a) = =1 + (1 4 v34)Q(a)

and the proof of limit optimality is omitted as well.
Duel (3,5), (a,a Ac)
Cask 2.7 Q(a) > Q(azs) = 0.95288.

Optimal in the limit strategies of Player I and II are the same as for the duel
(3,5), (a) and the limit value of the game is the same.

CASE 2.8 0.91636 = Q(d24) < Q(a) < Q(ass) =2 0.95288.

Optimal in the limit strategies of Player I and II are:

Strategy of Player I: Fire before (a) + ¢ and play optimally the resulting
duel.

Strategy of Player II: If Player I did not fire before fire at (a) + ¢ and play
optimally the resulting duel. If he has fired (say at a’) play optimally the duel
(2,5), (' A1, a').

We have

vss5(2,a) = P(a) + Q(a)vas(1, a)

1—2Q(a) + (1 + P*(a13))Q*(a)

if  Q(a24) < Q(a) < Q(ass),
1 —2Q(a) + (14 v23)Q%(a)

if 0.93571 = Q(dz4) S Q(a) S Q(&24),
1-2Q(a) +2Q%(a) — 2Q°(a) + (1 + v12)Q°(a)

The proof is omitted.

3. Results for the duels (3,5)

-1+ (1 + 1)34)@(0.35) =~ (0.00400
’()35(1, Cl) = if Q(a) P Q(a35) =~ ().95288,

-1 + (1 + 1)34)@(61) if 0.91636 = Q(d24) S Q((Z) S Q(ags),

—1 4+ (1 + v34)Q(ass) if Q(a) > Q(ass),
1)35((1) =< -1+ (]. -+ v34)Q(a) if 0.94812 = Q(&35) < Q((I) A Q(a35),
—Qz(a) + (1 + Ugs)QB(a) if 0.91636 = Q(d24) < Q(a) < Q(&35),
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=14 (1 +v34)Q(ass) if Q(a) > Q(ass),
1—2Q(a) + (1 + P?*(a13))Q%a) :

if 0.95105 = Q(ad24) < Q(a) < Q(ass),
vss(2,a) = { 1 —2Q(a) + (1 4 v23)Q%(a)

if 0.93571 2 Q(aa4) < Q(a) < Q(a24),
1 —2Q(a) + 2Q°(a) — 2Q°%(a) + (1 + v12)Q°(a)

if 0.91636 = Q(d24) < Q(a) < Q(aza),

v12 22 0.04633, vo3 = 0.05354, vaq4 =2 0.05365, P(a;3) = 0.04428.

4. Duels (4,5) and (5,5)

Duel (4,5), (a). Q(a) > Q(ass) = 0.91791.

We define strategies € and n of Players I and II.

Strategy of Player I: Go ahead and if Player II did not fire, fire with an
ACPD in the interval ({ass), (ass) + (€)) and play optimally the resulting duel.
If he has fired play optimally the duel (4,4).

Strategy of Player II: If Player I did not reach the point a45 and did not fire,
do not fire, neither. If he has reached a45 and did not fire, fire at (a45) and play
optimally the duel (4,4). If Player I had fired (say at a’) before he reached the
point aqs play optimally the duel (3,5), (a’ A€, a’).

We determine the constant vss and a4s from the equations

vas = Plass) + Q(aas)vas(1, ass) (19)
= —P(aas) + Q(ass5)vaa.

Let
0.91636 2 Q(d24) < Q(ass) < Q(ass) = 0.95288.
For this ays
v35(1, ass) = —1 4 (1 4 v34)Q(aas)
and we obtain from (19)
(14 v34)Q?%(aas) — (3 + vaa)Q(ass) = 0
what gives
Q(aas) = 0.91791, vas = 0.05195. (20)

We prove that for this aqs strategies ¢ and 7 are optimal in the limit if
a < a4 and the limit value of the game is vas.
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Suppose that Player II fires at a’ < ass. For this strategy (denote it by 7)
we have

K1) > —P(d)+Q(a)vas — k(é)
> —P(ass) + Q(ass)vaa — k(€) = vas — k(€).
Suppose that Player II does not fire before (as5) + (). We obtain for such a
strategy 7
K(&,1) > P(ass) + Q(ass)vas(1, ass) — k(€) = vas — k(&)

for properly chosen a(e).
On the other hand, suppose that Player I fires at a’ < a4 (strategy é) We
have

K(&,n) < P(a') + Q(a')vss(1,a') + k(é)
{ 1—(1—vs5)Q(a’) if Q(a) > Q(ass) = 0.95288,

1-— 2Q(a’) -+ (1 + v34)Q2(a')
If 091791 = Q(a45) S Q(a') S Q(a35).

It 1s easy to prove that in both cases

K(€,1) < vgs = 0.051195.

Suppose that Player I does not fire before or at (a45) but reaches the point
a4s. For such a strategy &

K(€,1) < —P(aas) + Q(ass)vas + k() = vas + k(&).
Suppose that Player I fires at aqs. In this case

K@) < Q%ass)+k(é)
0.04521 + k(&) < vas + k(€).

R

The assertion is proved.

It is easy to see that if a < ays the same strategies ¢ and 7 are optimal in
the limit for the duels (4,5), (a A¢,a) and (4,5), (a,aAc). Then we shall denote
these duels together with (4,5), (a) simply by (4,5).

Duel (5,5), (a). Q(a) > Q(ass) = 0.92082.

Strategy of Player I: Go ahead and if Player II did not fire before, fire with
an ACPD in the interval ((ass), (ass) + a(€)) and play optimally the duel (4, 5).
If he has fired play optimally the duel (5,4).

Strategy of Player II: If Player I did not fire before, fire at (ass) and play
optimally the resulting duel (5,4) or (4,4). If he has fired play optimally the
duel (4,5).
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Now we have

2
- ~0.92082, 21
Qass) 2 + vs4 + V45 (21)
vss = —1-+ (1 + v54)Q(a55) =~ (.12701

since vsq = 0.22392 (see Section 5.).
The proof of limit optimality of above strategies and the formulae (21) is
omitted.

5. Duels (m,n), m < n.

Duel (m,n), (a). Q(a) > Q(amn)-

At the end, let us consider the duel in which Player I has m bullets, Player
II has n bullets, m > n > 1, and the game is beginning when a < a,,,. Let us
define strategies ¢ and 7 of Players I and II.

CASE 5.1

Strategy of Player I: Go ahead and if Player II did not fire before, fire with
an ACPD in the interval ((amn), (@mn) + a(€)) and play optimally the duel
(m — 1,n). If Player II has fired, play optimally the duel (m,n —1).

Strategy of Player IT: If Player I did not fire before, fire at (am,) (i.e. when
Player I reaches the point a,,,) and play optimally the resulting duel (m,n—1)
or (m—1,n—1). If Player I has fired play otimally the duel (m—1,n). If Player
I did not reach the point a,,, and did not fire do not fire, neither.

Let, for a < amn

def
Vpnn (@) = Ymn = P(@mn) + Q(@mn)Vm-1,n (22)
= _P(amn) <+ Q(amn)vm,n—l,

for vs1, van, m < m, n < n, given.
From (22) we obtain

2
Q(amn) 2 + Umn—1 = Um-1,n '
Umn = -1+ (1 = vm,n—l)Q(amn)) (23)

for vis1, vaa, m <m, n < n, given'
We prove that if

n<bm>n>1, (24)

Q’Z(amn)vm—l,n—l < VUmn, (25)
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Qlawn) > Qoan-1) Hawn) > Qlen-14) (26)
forall m > n > 1, m < m, n < n then strategies ¢ and n are optimal in the
limit and vy, given by (23) is the limit value of the game.

Suppose that Player II fires before (a,,). For such strategy 7 we have

K1) > —P(d)+Q(a)vmn-1— k()
> —P(amn) + Q(amn)vm,n—l - k(é) = Umn — k(é)

if Amn < Amn—1-
Suppose that Player II fires after (amn) + a(¢). With properly chosen «(e)
for given € we have

K(€,1) > P(amn) + Q(amn)vm—1,n — k(€) = vmn — k(€)

if apn < Am—1,n-
On the other hand, if Player I fires at a’ before {(a,,,) (strategy f) we obtain

P(a")+ Q(a")vm—1,n + k(€)
P(amn) + Q(amn)'vm—l,n + k(é) = Umn + k’(é)

K(n) <
<

if Amn < Am—1,n-
If Player I does not fire at (am,y) or before we have

A’(é, 77) < _P(amn) + Q(amn)vm,n—l =+ k(é) = Umn + k(é)

if Amn < Am—1,n-
If Player I fires at (a;,,) then

[\’(él 77) S Q2(amn)v77l—1,n—1 + k(é) S vn'[,n + k(é)
by assumptions (25) and (26), since also
Amn < Amn—1 < Am—1,n—1-

At the end, suppose that Player I does not reach the point a,,, and does
not fire. For such a strategy & we obtain

I\’(é) T/) =0 < vmn
since by (22)
U = L — (1 - vm—l,n)Q(amn) >0

for m > n, n < 5 because vy, > 0 for n < 5, v > 0 for m < 5 and then
Um—1n > 0 for m > n, n <5 by inductive argument with respect to m.
Moreover v,,; can be determined for any m (see Trybuta, 1993b, part I) and
Unn are determined for n < 5 (see Trybula, 1993b, parts I-1IT) then vy, can be
determined for all natural m, n satisfying the condition (24).
This ends the proof of the assertion.
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CASE 5.2

Strategy of Player I: Go ahead and if Player II did not fire before, fire at (amn)
and play optimally the resulting duel (m — 1,n) or (m — 1,n — 1). If he fired
play optimally the duel (m,n — 1).

Strategy of Player II: If Player I did not fire before, fire with an ACPD in
the interval ((amn), (@mn) + @(€)) and play optimally the duel (m,n — 1). If he
has fired play optimally the duel (m — 1, n). If Player I did not reach the point
amn and did not fire do not fire, neither.

These strategies are optimal in the limit if, besides (24) and (25), the con-
dition

QZ(amn)vm—l,n—l > Umn (27)

holds and for these (m, n) the formulae (23) hold as well. The proof is omitted.

It is easy to see that if @ < a,,, then the same strategies are optimal in the
limit for the duels (m, n), (a Ac,a) and (m,n), (a,aAc). We denote these duels
together with the duel (m,n), (a) simply by (m,n).

Now we present the tables of the values vy, and Q(amn), m > n, m < 20,
n < 5, computed on the basis of Trybuta (1993b), part I, obtained values vy,
Q(amm), m < 5 and formulae (23). By asterisks we denote these (m,n) for
which inequality (25) holds.

m. o Umi Q(aml) VUm2 Q(amz) Um3 Q(amﬂ)
2 0.50000 0.75000

3 0.60000 0.80000 0.34604 0.84128

4  0.66667 0.83333 0.43639 0.86184 0.26997 0.88414
5 0.71429 0.85714 0.50515 0.87801 0.34678 0.89478
6 0.75000 0.87500 0.55913 0.89093 0.40948 0.90402
7 0.77778 0.88889 0.60257 0.90145 0.46147 0.91195
8 0.80000 0.90000 0.63828 0.91016 0.50521 0.91878
9 0.81818 0.90909 0.66813 0.91747 0.54248 0.92468
10 0.83333 0.91667 0.69345 0.92370 0.57459 0.92981
11 0.84615 0.92308 0.71520 0.92907 0.60254 0.93432
12 0.85714 0.92857 0.73407 0.93373 0.62706 0.93829
13 0.86667 0.93333 0.75061 0.93782 0.64876 0.94182
14 0.87500 0.93750 0.76521 0.94144 0.66808 0.94498
15 0.88235 0.94118 0.77820 0.94467 0.68541 0.94782
16 0.88889 0.94444 0.78983 0.94756 0.70102 0.95038
17 0.89474 0.94737 0.80031 0.95016 0.71516 0.95270
18 0.90000 0.95000 0.80979 0.952562 0.72803 0.95482
19 0.90476 0.95238 0.81841 0.95467 0.73978 0.95676
20 0.90909 0.95455 0.82629 0.95663 0.75057 0.95854
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Um4 Q(am4) Ums Q(amS)
0.22392« 0.90875

0.28981  0.91510 0.19272+« 0.92473
0.34595  0.92095 0.25017« 0.92884
0.39419  0.92624 0.30054 0.93283
0.43601  0.93097 0.34491  0.93656
10 047256  0.93520 0.38421  0.94001
11 0.50474 0.93898 0.41921  0.94316
12 0.53329  0.94236 0.45055  0.94604
13 0.55876  0.945642 0.47875  0.94867
14 0.58163  0.94817 0.50425 0.95108
15 0.60227  0.95067 0.52741  0.95328
16 0.62098  0.95295 0.54853  0.95531
17 0.63803  0.95503 0.56787  0.95717
18 0.65361  0.95694 0.58563  0.95889
19 0.66792  0.95869 0.60201  0.96048
20 0.68110 0.96031 0.61715 0.96196

@CO\]CDWS

The duels considered in Trybula (1993b), in the preceding part, in this vol-
ume, and in the present part may be treated as mathematical idealization of
real duels. For example, the duel (m,n) can be a model for the duel in which
Player I has m missiles and some machine guns or hands-grenades (short dis-
tance weapon) and Player II has only n missiles.

Noisy duels are considered in Berzin (1983), Fox and Kimeldorf (1969),
Karlin (1959), Kimeldorf (1983), Teraoka (1976), Trybula (1992, 1990-1991),
Trybuta (1993b).

For other duels see Cegielski (1986), Cegielski (1986), Orlowski and Radzik
(1985a;b), Radzik (1988), Restrepo (1957), Styszyriski (1974), Teraoka (1979),
Trybuta (1990), Yanovskaya (1969).
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