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In this paper, accurate solutions of coupled, variable coefficients 
Riccati equations arising in differential games are constructed. First, 
the existence interval is predeterminated, then a discrete numerical 
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numerical solution with a prefixed accuracy is constructed. Results 
are illustrated with an example. 
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1. Introduction 

Let us consider a two-player linear quadratic differential game defined by 

where x(t) E Rn and, fori = 1, 2, ui(t) E Rr;. The cost function associated 
with player i is 

where x f = x(t1 ); i = 1, 2 and all matrices are symmetric and Rii, i = 1, 2 are 
positive definite. The open-loop Nash controls must satisfy, Starr, Ho (1969) 

ui = -Ri/ B'{ Ki(t)iJ!(t, O)xo; i = 1, 2 

with K 1 ( t) and K 2 ( t) satisfying the coupled Riccati type differential equations 

K~ -Q1 - AT K 1 - K1A + K1S\K1 + K1S2K2; K1(tf) = Klf (1) 

K~ - Q2 - AT K2 - K2A + K2S2K2 + K2S1K1; K2(tf) = K2f 



118 L . .J 6 D AR, B. PONSODA, R. COM P ANY 

wherein 

CJJ t(t , 0) = (A-t SiKi) CJJ(t, 0); CJJ(t, t) =I, 

and I denotes the identity matrix. 
The coupled Riccati equations are generally difficult to solve. Numerical 

approximate solutions are givenin Cruz, Chen (1971), and an iterative algorithm 
has recently been proposed in J6dar, Abou-Kandil (1988). For a particular case, 
an analytic solution may be found as in Abou-Kandil, Bertrand (1986). The 
aim of this paper is to devise continuous numerical solutions and error bound of 
coupled Riccati matrix systems of the type (1), where Ki(t), Kif, Si(t), Qi(t) for 
i = 1, 2, and A(t) are twice continuously differentiable cnxn valued functions . 

The system (1) may be written in the following rectangular Riccati type 
furm -

W1(t) 

W(t1) 

where 

C(t) - D(t)W(t)- W(t)A(t) - W(t)B(t)W(t) 

Wf 

( ) [ 
· ] D ( ) [ AT ( t) On x n ] 

B t S1(t) : S2(t) ; t = Onxn AT(t) ; 

C(t) = [ ~~m J ; w(t) = [ ~~~~j J ; w1 = [ ~~; J E c2nxn 

(2) 

The nonautonomous Riccati differential equation (2) seems to have received 
little numerical treatment in the literature, especially for the study of accuracy 
and error bounds. Moreover, those studies which have been done are devoted . 
almost exclusively to the autonomous case, in spite of the fact that many real 
systems are nonautonomous. Some exceptions can be found in Dieci (1992); 
J6dar, Abou-Kandil (1988); Kunkel, Mehrmann (1990); Kenney, Leipnik (1985); 
Oshman, Bar-Itzhack (1984), but in both cases no error bounds in terms of the 
data are given. 

From Reid (1972), the solution of (2) is given by 

W(t) = V(t)U-1(t) = [02nxni2nx2n]Z(t){[InxnOnx2n]Z(t)} - l (3) 

where 

Z1(t) [ 
~t(t) ] = S(t) [ ~(t) ] = S(t)Z(t) 
V1(t) V(t) 

(4) 

[ 
I ] E c3nxn . S(t) = [ A(t) B(t) ] E c3nx3n; 

Wf ' C(t) -D(t) 
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with W(t) given by (3) defined in an the interval where U(t) is invertible. If we 
write 

t = t(s) = t1- s; 0 =to :::; s :::; tf 

and 

Y(s) Z(tJ- s) = Z(t); S(s) = S(tf- s) = S(t) 

U(s) U(tJ- s) = U(t); V(s) = V(t1 - s) = V(t) 

then, equation (4) takes the form 

Yt(s) = - S(s)Y(s); Y(O) = Yo = [ IWjn ] E c3nXn (5) 

The paper is organized as follows. In the next section, an existence inter­
val for problem (2) is determined in terms of the data. Then, we construct a 
discrete numerical solution of equation (5) in a net of points where the solution 
is defined, and error bounds are obtained. Given an admissible error E > 0, 
and interpolating the discrete numerical solution using linear B-spline matrix 
functions, we determine a continuous numerical solution, in the predetermined 
interval, whose error is smaller than E, uniformly in the existence domain. Fi­
nally, an illustrative example is presented. 

If C is a matrix in cpxq, we denote by [[C [[ the 2-norm, defined as the square 
root of the maximum eigenvalue of eH C, where eH denotes the conjugate 
transpose of C. From Golub, van Loan (1983) it follows that 

(6) 

If P and Q are matrices in crxr and P is invertible, then from the Banach 
lemma, Golub, van Loan (1983), if [[P - Q[[ < [[P-1 [[-I, one gets the invertibi­
lity of Q and [[P- 1 - Q- 1 [[ < [[ P- 1 [[ [[Q- 1 [[[[P- Q[[ . Taking into account the 
inequality IIQ- 1 [[ :::;_ IIQ- 1 - p - 1 11 + [[P- 1 [[, we can write 

(7) 

2. Discrete numerical solution using one-step matrix me­
thods 

We begin this section with a lemma which extends Theorem 1 of J6dar 
(1992), and determine an existence interval for the solution W(t) of (2) as well 
as an upper bound of u- 1 (t) in such interval, where U(t) = [ I 0 ] Y(t), and 
Y(t) is the solution of (5). 
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LEMMA 2.1 Let qo = max{ll [ A(t) B(t) ) 11; 0 ::; t ::; tf }, ko 
max{IIS(t)ll; 0::; t::; tf }, and 8::; tf be a positive number satisfying 

(8) 

Then the local solution W(t) of problem (2) is defined by (3) in [0, 8]. Fur­
thermore, ~f Y(t) is the solution of (5) then U(t) = [ I 0 ] Y(t) is invertible 
in [0, 8], and 

Proof. Since U(O) = I, from the Perturbation lemma Ortega, Rheinboldt 
(1972), U(t) is invertible if IIU(t)- Ill < 1. Note that 

and 

Y(t)- Y(O) = lt Yt(r)dr = -lt S(r)Y(r)dr, 

U(t)- I U(t)- U(O) = [ I 0 ) (Y(t)- Y(O)) = 

-lt [ A(r) B(r) ] Y(r)dr 

Taking norms, and from the definition of q0 , it follows that 

IIU(t)- Ill::; tqomax{IIY(r)ll; 0::; r::; t} 

From Flett (1980), the solution Y(t) of (5) satisfies 

IIY(t)ll ::; 11 [ ~~ ] 11 exp(8ko); 0::; t::; tr 

Using (10) and (11), if we select a positive number 8::; tr such that 

8q0 exp(8ko) 11 [ ~~ ] 11 < 1, 

(10) 

(11) 

(12) 

then U(t) is invertible in 0 ::; t ::; 8. Taking logarithms in (12) one gets the 
inequality (8) and the invertibility of U(t) in 0 ::; t ::; 8. Note that 

Ut(t) = [ I 0 ) Yt(t) =- [ I 0 ) S(t)Y(t) =- [ A(t) B(t) ) Y(t) 

and using norms for 0 ::; t ::; 8, (11) implies that 

IIUt(t)ll ::; q0 exp(8qo) 11 [ ~~ ] 11; 0::; t::; 8 
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Finally, from Freedman (1969) and from (12) one concludes (9). • 
Let us consider the one-step matrix method defined by 

' 
Yn+l- Yn = h{B1fn+l + Bofn}; Bo + B1 =I (13) 

where Bo, B1 are matrices in cr xr and Yn and fn = j(tn, Yn) belong to crxr 
and tn = nh E [0, 8], h > 0, 0 S n S N- 1, N = 8jh. Definition (13) is 
associated to the problem 

Yt(t) = f(t , Y(t)); Y(O) = Yo E cr xq; 0 S t S 8 (14) 

where j : [0, 8] X c rx q ---> cr xq is bounded, continuous, and satisfies the 
Lipschitz condition 

llf(t, P) - j(t, Q)ll < LIIP- Qll (15) 

to guarantee the existence of a unique continuously differentiable matrix func­
tion Y(t), a solution of (14), Flett (1980) . By J6dar, Ponsoda (1993), this 
method is zero-stable and consistent, and the global discretization error at tn 

(16) 

where Y(tn), is the theoretical exact solution at the net of points tn . Further­
more Yn the numerical solution obtained by application of the method (13), 
satisfies 

(17) 

where Lis the Lipschitz constant defined by (15), tnnh, N = 8/h, and 

(18) 

where 

In addition 

(19) 

if we assume that the method (13) is of order p , i.e. 

1 1 
Co=C1=0;Cs=-I-( )'Bl;s = 2,3, . . . s! s - 1 . 

see J6dar, Ponsoda (1993). 
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Now, applying method (13), with B 0 = B 1 = I/2, t"o the problem (5), yields 

(20) 

where Y0 = [ ~~ ] ; tn = nh, 0:::; n:::; N -1, N = b/h, b is defined by Lemma 

2.1 and S(t) is given by (4)-(5). Note that in this case we have C1 = C2 = 0 
and C3 = -I /12 . Thus, (20) defines a method of order p = 2. The constants 
appearing in (18)-(19) take the values 

G = IIC3II = 1/12, B* = IIBoll + IIBI!I = 1, 
r* = (1- hL/2)-1 

(21) 

where k0 , defined by Lemma 2.1, is the Lipschitz constant provided in the 
initial value problem (5), and D ~ max{IIY(3l(t)il; 0 :::; t:::; b}. Note that the 
theoretical solution Y(t) of (5) satisfies 

y(2l(t) = -St(t)Y(t) + S 2 (t)Y(t), (22) 

y(3l(t) = -S(2l(t)Y(t) + 2St(t)S(t)Y(t) + S(t)St(t)Y(t)- S3(t)Y(t) 

Let us denote by k1 and k2 the positive constants defined by 

ki = max{IIS(il(t)il; 0:::; t:::; b}; i = 1, 2, (23) 

then, from (11), (22) and (23), it follows that 

max{IIY(3l(t)il; 0:::; t:::; b}:::; exp(bko) 11 [ ~~ ] 11 {k5 + 3klko + kz} (24) 

Note that, selecting h < 1/ k0 , the constant f* defined by (21) satisfies 
T* < 2, and taking into account (17), (21), (24), the discretization error en 
defined by (16) takes the form 

llenll :::; Ill ~~ ] 11 h~n exp(bko){k5 + 3klko + kz} exp(2tnko) (25) 

0:::; n:::; N; N = b/h 

Solving (20), it is easy to show that 

Yo ~ [ ~~ l ; Yn ~ ll { (I+ ~S(tn-;)) _, (r- ~S(tn-;-,))} Y~26) 
1:::; n:::; N 
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The matrices Yn given by (26) are well defined because, for h < 2/ko, and 
from the perturbation lemma, (I+ ~S(tn-j)) are invertible for 0 ~ j ~ n- 1. 
Taking the block componets of Yn, we can write 

Un = [ I 0 ] Yn; Vn = [ 0 I ] Yn; n 2: 1; Uo =I; Vo = Wt (27) 

Let us denote by { un} and { v11 } the matrix sequences defined by 

un = U(tn) - Un = [ I 0 ] {Y(tn) - Yn} 

vn = V(tn) - Vn = [ 0 I ] {Y(tn)- Yn} 

where Yn is given by (26). Taking norms in (28), it follows that 

Select a step-size h for which 

(28) 

(29) 

h < { 6(1- M b) exp( -3bko) [11 [ J,1 lll (kJ + 3k,ko +k,)8 r' r' (30) 

where M is defined by (9). From (25), (29) and (9), if h satisfies (30), then 

llunll = IIU(tn)- Unll :::; 1-Mb:::; IIU-1(t)ll - 1 ; 0:::; n :::; N, (31) 

From (31) and the perturbation lemma, invertibility of Un follows. From 
(27) we therefore have that 

is a numerical approximation of the theoretical value W(tn) of the exact solution 
of (2) at tn = nh, 0 :::; n :::; N, N = bjh. 

3. Construction of continuous numerical solutions of a 
prescribed accuracy 

The corresponding linear B-spline matrix functions which interpolate the se­
quences Un, Vn defined by (27)-(28) in the interval [0 , b] take the form, Jodar, 
Ponsoda (1993) 

Su(t) h- 1{(tn+l - tn)Un + (t - tn)Un+d = [ I 0 ] Sy(t); (~3) 

tn :::; t :::; tn+l 

Sv(t) h- 1 {(tn+l- tn)Vn + (t- tn)Vn+I} = [ 0 I ] Sy(t); (34) 

tn ~ t ~ tn+l 
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where 

Ty(t) 

with 

N-1 N-1 

L Y(tn+1)B1n(t); Sy(t) = L Yn+1B1n(t); 
n=-1 n=-1 

for tn ::::; t ::::; tn+ 1 

for tn+1 ::=:; t ::=:; tn+2 

(35) 

(36) 

and Y(tn) is the theoretical value of the solution of (5) and Yn is given by (26). 
By Jodar, Ponsoda (1993), if 0 = t 0 ::::; t::::; tN = Nh = 8, we have 

rh2 

max IIY(t) - Ty(t)ll ::::; - max IIY(2)(t)ll 
O::;t:$6 8 09:'08 

(37) 

and 

(38) 

where, from (6), r = n..J3 because Y(t) are C 3nxn valued function. 
Note that form the expression for Y(2)(t) it follows that 

Then, from (25), (9), (37) and (38), (39), 

IIU(t) - Su(t)ll ::::; IIU(t) - Tu(t)ll + IITu(t)- Su(t)ll 

< h
2 

exp(8ko) 11 [ Jr
1 

] 11 (40) 

{ i(k6 + k1) + ~ exp(28ko){k~ + 3k1ko + k2 }} = h2
1 

Let M be defined by (9) and let h0 be the positive number defined by 

{ 
1 }1/2 

h0 = 2(1 - Mo)r- 1 ( 41) 

From (40) and (9), and provided h < ha, 

1 1 
IIU(t)- Su(t)ll ~ 2(1- M8) ~ 211U- 1 (t)11-\ 0 ~ t ~ 8 (42) 
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Thus given an admissible error E, taking h < min { h0 , klo, 1} such that 

(51) 

then from (49), we conclude that W(t) defined by (43) is an approximate solution 
of problem (2), whose error is uniformly upper bounded byE in all the interval 
[0, b]. Hence, the following main result has been proved: 

THEOREM 3.1 With the above notation, let E > 0 and let 8 and M be the 
constants defined by Lemma 2.1. Let h be a positive number such that N h = 8, 

h < min { ho, ~o, 1} and (51) is satisfied. Let Un and Vn be the matrix sequences 

defined by (32) , where Yn is given by (26). Then W(t) defined by (43) in the 
interval tn = nh :::; t :::; tn+l = (n + 1)h, for 0 :::; n :::; N- 1, is a continuous 
approximate solution of problem (2), whose error is un~formly upper bounded by 
E in [0, 8] . 

Example. Let us consider the coupled Riccati system (1) where 

1 2 1 2 
A(t) = -2t f2x2i Q1(t) = 2t f2x2 

1 2 [ 2 Q2(t) = 2t 0 0] 1 2 [2 1 ;S1(t) = 2t 1 1 ] 2 1 ; S2(t) = t I2x2 

t E [0, 1]; r = \f'3n2 = 2.J3; Wt = 0 

Then 

[ A(t) s 1 (t) S 2(t) l S(t) Ql(t) - AT(t) 0 
Q2(t) 0 -AT (t) 

- 1 0 2 1 2 0 
0 - 1 1 1 0 2 

t2 1 0 1 0 0 0 
2 0 1 0 1 0 0 

2 0 0 0 1 0 
0 1 0 0 0 1 

t2 
S(t) = 2 s; S'(t) = tS; sC2l(t) = S 

Note that 

11 [ :f ] 11 = 1; 11 [ ~1 0 2 1 2 ~ ] 11 = 3.442978652 - 1 1 1 0 
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hence from ( 42) and the perturbation lemma Ortega, Rheinboldt (1972), the 
invertibility of Su(t) is assured for all tin the interval [0, 8]. 

Expressions (3) and (32) provide the analytical approximate solution of prob­
lem (2) in [0, 8], defined by 

W(t) = Sv(t)S[/(t) = 
= {(tn+l- t)Vn + (t- tn)Vn+l}{(tn+l- t)Un + (t- tn)Un+l} -l (43) 

tn ::::; t::::; tn+l 

where Sv(t) and Su(t) are defined by (33)-(36). In order to compute the error 
of W(t), write 

W(t)- W(t) = V(t)U-1(t)- Sv(t)S[/(t) = 
= [V(t)- Sv(t)]U- 1(t) + V(t)[U-1(t)- S(l1(t)]- (44) 

- [vt- Svt][U- 1(t)- S(l1(t)] 

In a way analogous to the comments preceding (39)-(40), it is easy to show 
that for h < h0 and for 0 ::::; t ::::; 8, 

IIV(t)- Sv(t)ii ::::; 1h2 (45) 

where 1 is defined by ( 40). From (12) and the relationship V(t) = [ 0 I ] Y(t), 
it follows that 

IIV(t) ll ::::; exp(8ko) 11 [ :, ] 11; 0::::; t::::; 8 (46) 

Let h0 be defined by (41), if h < ho, then (42) implies the invertibility of 
Su(t) in all the interval [0 , 8], and from (7) we can write 

IIU-1(t)- S(l1(t)ll 

::::; (1-IIU-1(t)IIIIU(t)- Su(t)II)-1IIU-1(t)II 2 IIU(t) - Su(t) ii (47) 

::::; 2IIU-1(t)II 2 IIU(t)- Su(t)ii 

Now using (9), (40) and (47), it follows that 

(48) 

where 1 is defined by (40). Taking into account (9) and (44)-(48), if 0 ::::; t::::; 8 
and h < min(ho , 1/ko), 

IIW(t) - W(t)ll ::::; a1h2 + a2h4
, for 0::::; t::::; 8 (49) 

where 

1(1- M8)-1 { 1 + 2(1- M8)-1 exp(8ko) 11 [ :, ] 11} (50) 

2(1- M8)-2
1

2 
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IIBII = 3.487108559 

1 
ko = 2IISII = 1.74355428; K1 = K2 = IIBII = 3.487108559 

qo = ~ 11 [ -;
1 ~1 i ~ ~ ~ ] 11 = 1.721489326 

We choose 15 such that 

0 < 15 s; 1 and bko + ln(/5) < -ln ( q0 11 [ ~~ ] 11) 

1.74355428/5 + ln(/5) < -0.5431898034 

We can take 15 = 0.325, and then 

M= qo exp(bko) 11 [ ~ ] 11 = 3.0033887936 

"Y = 12.99447389; h0 = 0.1862361999; h < min(l, h0 , 1/ko) < h0 

and ai, i = 1, 2 given by (50), takes the values 

a 2 = 132854.2695; a1 = 930 .8402212 

I N (Number of knots) I h ( stepsize) I E (Error) 

10 0.0325 1.131420718 
20 0.01625 0.25550637918 
50 0.0065 0.03956515252 

100 0.00325 0.00984682191 
500 0.00065 0.0003933037 

1000 0.000325 0.00009832148 
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