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The paper proposes two computational methods (the so-called 
testing function methods) for robust D-stability analysis of quasi­
polynomials of the retarded type with linearly dependent coefficient 
perturbations. The first method (based on a necessary and sufficient 
condition) requires a priori knowledge of a particular set of quasi­
polynomials, named vertex quasi-polynomials. The second method, 
which is based on a sufficient and on a necessary conditions, does 
not require knowledge of the set of such quasi-polynomials and is 
simpler to apply. Moreover, on the basis of this method, the largest 
D-stability domain in the space of perturbed parameters for which 
the proposed sufficient condition is satisfied can be easily computed. 

1. Introduction 

Consider a linear time-delay system of the retarded type whose characteristic 
quasi-polynomial depends linearly on m uncertain physical parameters. The 
characteristic quasi-polynomial of such a system can be expressed in terms of 
deviations qk (k = 1, 2, . . . , m) of uncertain parameters from their nominal val­
ues, as follows 

where quasi-polynomials wk(s), k = 0, 1, .. . , m, are of the form 

n - 1 M 

wk(s) = a~0 sn + 2::>1 Ea~j exp(-shj)· (2) 
i=O j=O 

1 This work was supported by the State Committee for Scientific Research of Poland 
under Grant PB 3 0713 91 01. 



130 M. BUSLOWICZ 

We assume that all the coefficients a7j are rear with a~0 = 0 and 0 = h0 < 
h1 < ... < hM < oo. The quasi-polynomial wo(s) = w(s, 0) is the nominal 
quasi-polynomial corresponding to nominal values of uncertain parameters; q = 
[q1, q2, . . . , qm]T is the vector ofdeviations of uncertain parameters and 

Let assume that the coefficient of sn in w(s, q) is strictly positive· for all 
q E Q . 

As q varies over the prescribed bounding set Q, we obtain the family of 
quasi-polynomials 

W = {w(s,q): q E Q}. (4) 

The family ( 4) can be expressed as the convex hull of finitely many generating 
quasi-polynomials pl(s),p2(s) , ... ,PK(s), i.e. 

W = conv{p1(s),p2(s), ... ,PK(s)}, 

where 

Pi(s) = w(s, qi) , i = 1, 2, ... , K, K::; 2m , 

and qi = [qi, q~, ... , q~JT with 

q1 = bk or q1 = ck, k = 1, 2, ... , m. 

(5) 

(6) 

(7) 

Let D be the union of a finite number N of compact connected sub-regions 
Di in the compl~x plane with D i n Dj = 0, i = j. Obviously D lies in the open 
left-half plane. Moreover, according to Fu, Olbrot, Polis (1989), we assume 
that the region D satisfies the requirement that for any point X E ne (the 
complement of D) there exists a continuous path in ne connecting x to some 
point y with an arbitrarily large absolute value and with the real part larger 
than some prescribed number. Examples of such regions are given in Fu, Olbrot, 
Polis (1989). 

The quasi-polynomial of the retarded type, of the form (2), has an infinite 
number of roots located in the half plane R e[s] < a, where a is a finite real 
number (Bellman, Cooke 1963). 

Suppose that the nominal quasi-polynomial wo(s) has ni roots inside the 
separate sub-region Di, i = 1, 2, . . . , N, where ni is finite for Di lying in the 
"Strip a 1 < Re[s] < a 2 (a 1 and a2 are finite nonpositive real numbers) and 
infinite for Di with an unbounded negative real part, lying in the half plane 
Re[s] <a< 0 

DEFINITION 1.1 The perturbed quasi-polynomialw(s,q) oftheform {1) is called 
D-stable ~f for all q E Q it has in the separate sub-region Di (i = 1, 2, ... , N) 
the same number of roots (finite or infinite) as the nominal quasi-polynomial 

wo(s) = w(s, 0). 
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The D-stability problem of the polytopic family W of quasi-polynomials can 
be solved by applying the "Edge Theorem" given in Bartlett, Hollot, Lin (1988) 
and Fu, Barmish (1989) for the polytopic family of polynomials and extended 
by Fu, Olbrot, Polis (1989) for the D-stability of the polytope W of quasi­
polynomials. According to this theorem, W is D-stable if and only if all the 
exposed edges of W are D-stable. The exposed edges of the polytope (5) are of 

· the form 

Prk(s, .A) = (1 - .A)pr(s) + .Apk(s) , A E [0, 1], (8) 

where Pr(s) and Pk(s) are generating quasi-polynomials (vertices) of W, i.e. 
Pr(s) = w(s, qr) and Pk(s) = w(s, qk). Note that not all pairwise combinations 
of the vertices of W are necessarily the exposed edges. 

The D-stability problem of the edge polynomial (8) has been considered 
by many authors. They gave various methods for special cases of interest (see 
Ackermann, Barmish 1988; Bialas 1985 and Zeheb 1989, for example). These 
methods are not, however, useful in the D-stability analysis of the edge quasi­
polynomial since the quasi-polynomial usually has an infinite number of roots. 

An approach to checking the D-stability of the edge quasi-polynomial (8) 
was given in the paper of Fu, Olbrot, Polis (1989). From this paper and from 
Definition 1.1 we have the following lemma. 

Let f;(y), y E Yi, denote a parametric description of the boundary of the 
sub-region D;, i = 1, 2, .. . , N. 

LEMMA 1.1 The edge quasi-polynomial (8) is D-stable ~f and only if for all 
separate sub-regions D; (i = 1, 2, ... , N) the following conditions hold 

(i) the quasi-polynomialpr(s) is D-stable, i.e . the plot ofpr(f;(y))/wo(f;(y)), 
y E Yi, does not encircle the origin of the complex plane, 

(ii) the plot of Pk (f; (y)) / Pr (f; (y)), y E Yi , does not cross the nonpositive part 
of the real axis. 

The bounding set Q of the form (3) is a hyperrectangle in Rm. It has 2m 
vertices and m2m-l exposed edges. Hence, the polytope (5) has 2m vertices and 
m2m-l exposed edges in general. From this it follows that the Edge Theorem 
requires, in general, D-stability checks (on the basis of Lemma 1.1) of m2m- l 
edge quasi-polynomials of the form (8). This is a difficult problem when the 
number m of uncertain physical parameters is large. If, for example, m = 8 
then the number of edge quasi-polynomials, the D-stability of which must be 
checked, is 1024. To avoid this difficulty in the case of the polytopic family 
W of polynomials, in recent years various methods have been presented for D­
stability checking which do not require separate calculations for each exposed 
edge of W (see Barmish 1989; Barmish, Tempo 1991; Buslowicz 1993, 1994; and 
Cavallo, Celentano, De Maria 1991, for example) . 
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The method given in Barmish (1989) was generalized by Barmish, Shi (1989) 
to the considered class of quasi-polynomials. But this method, in which the so­
called testing function is constructed on the basis of two boundary sweeping 
functions, is not simple to apply. 

In this paper we give two computational methods for robust D-stability 
analysis of the perturbed quasi-polynomial (1) with the additional assumption 
on the set D introduced in Fu, Olbrot, Polis (1989). 

The first method, based on a necessary and sufficient condition, requires a 
priori knowledge of the set of 2m generating quasi-polynomials (6) of the poly­
topic family W. In the case when W is a polytope of polynomials, this method 
extends (with some modifications) the main result of Cavallo, Celentano, De 
Maria (1991) into the class of non-monic polynomials with linearly dependent 
coefficient perturbations. 

The second method is a generalization ofthe main result of Buslowicz (1994) 
to the class of the perturbed quasi-polynomials of the form (1). This method, 
which is based on a necessary and on a sufficient conditions, does not require a 
priori knowledge of the generating quasi-polynomials (6). Moreover, on applying 
the second method, we can easily find the largest D -stability domain in the space 
of perturbed parameters for which the proposed sufficient condition is satisfied. 

2. The main results 

Consider the separate sub-region Di whose boundary has a parametric descrip­
. tion fi(y), yE Yi. 

LEMMA 2.1 The perturbed quasi-polynomial ( 1) and the nominal quasi-polyno­
mial w0 ( s) have the same number of roots in the sub-region Di ~f and only ~f 
the polytope (convex polygon) 

(9) 

where 

(10) 

does not include the origin of the complex plane for all y E Yi. 

Proof. From Barmish, Shi (1989) it follows that quasi-polynomial w(s , q) 
of the form (1) has in the region Di the same number of roots as nominal 
quasi-polynomial w 0 (s) if and only if 

w(fi(y), q) = 0 for ally E Yi and all q E Q. 

The above condition is equivalent to 

w(fi(y), q) = 0 for ally E Yi and all q E Q, 
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where 

w(fi(y), q) = w(fi(y), q)/wo(fi(Y)). (11) 

From (11) and (1) fors= fi(y) we have 

w(fi(y), q) = 1 + qlwl(fi(Y)) + ... + qmwm(fi(Y)), (12) 

where 

wk(fi(y)) = wk(fi(Y))/wo(fi(y)), k = 1, 2, ... , m. (13) 

For any fixed q E Q and any fixed y E Y; the point w(fi(Y), q) lies in the 
convex polygon (9). Hence, w(fi(Y), q) = 0 for ally E Y; and all q E Q if and 
only if the polygon (9) does not include the origin of the complex plane for all 
y E Y;. This completes the proof. • 

From (12) and the definition (3) of the bounding set Q it follows that the 
point (1, 0) of the complex plane lies in the polytope (9) for any y E Y;. This 
means that a part of the polygon (9) always lies in the right-half plane. Hence, 
the convex polygon (9) does not include the origin of the complex plane if and 
only if a ll its exposed edges do not cross the nonpositive part of the real axis. 

For simplicity we may consider the set of all edges of the convex polygon (9) 
instead of the set of all exposed edges. 

Let lPr(fi(y)), Pk(fi(Y))] denote an edge ofPi(Y) (line segment in the complex 
plane with endpoints f>r(fi(Y)) and Pk(fi(Y))). This edge does not cross the 
nonpositive part of the real axis for all y E Yi if and only if 

I arg(f>r(fi(Y)))- arg(f>k(fi(y)))l < 1r, 'Vy E Y;, (14) 

where arg( s) E [ - 1r, 1r) denotes the main argument of the complex number s. 
From the above considerations we have the following lemma. 

LEMMA 2.2 The perturbed quasi-polynomial (1) has in the sub-region Di the 
same number of roots as the nominal quasi-polynomial wo ( s) ~f and only if the 
condition (14) holds for all r, k = 1, 2, ... , K, r > k. 

We now introduce the testing function Fi(y), associated with the separate 
sub-region Di, defined by 

(15) 

where for all fixed y E Y; 

cf;i(Y) = max{l arg(f>r(fi(Y)))-arg(pk(fi(Y)))I : r, k = 1, .. . , K; r > k }.(16) 

It is easy to see that the condition (14) is satisfied if and only if 

Fi(Y) > 0, 'Vy E Y;. (17) 

By considering all sub-regions Di (i = 1, 2, ... , N) of the region D we have 
the following theorem 
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THEOREM 2.1 The perturbed quasi-polynomial w(s, q) of the form (1) is D ­
stable ~f and only ~f the condition (11) holds for all separate sub-regions Di, 
i = 1,2, ... ,N. 

In the case of the polytopic family W of polynomials, Theorem 2.1 extends 
(with some modifications) the main result of Cavallo, Celentano, De Maria 
(1991) into the class of non-monic polynomials with linearly dependent coeffi­
cient perturbations. 

Computing the testing function Fi(Y) from the formulae (15) and (16) re­
quires knowledge of the generating quasi-polynomials (6) of the polytopic family 
W. Knowledge of the exposed edges of W is not required. Moreover, testing 
the condition (17) requires analysis of only one plot of Fi (y), whereas testing 
the condition (ii) of Lemma 1.1 requires analysis of m2m-l plots of the function 
Pk (.fi (y)) / Pr (fi (y)), y E Y;, corresponding to all the separate exposed edges of 
w. 

Now we give a simple computational method for D-stability analysis, which 
does not require a priori knowledge of the generating quasi-polynomials of the 
polytopic family W. 

It is easy to see that the convex polygon (9) does not include the origin of 
the complex plane for all y E Y; if it lies entirely in the open right-half plane, 
i.e. if 

Bi(Y) > 0, 'Vy E }i, (18) 

where 

(19) 

or, equivalently, 

Bi(Y) = min{Re[w(fi(Y), q)]: q E Q}, (20) 

where w(fi(y), q) has the form (12). 
Hence, the D-stability of the perturbed quasi-polynomial (1) can be checked 

by using the method given in Buslowicz (1994) for the polynomials with linearly 
dependent coefficient perturbations. 

Now we give a short description of this method with extension into the 
considered class of perturbed quasi-polynomials. 

The method of Buslowicz (1994) is based on the analysis, for all separate 
sub-regions Di, of the complex testing function Ti(y), where 

(21) 

and Bi(Y) is defined by (20). 
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The complex testing function Ti(y), associated with the separate sub-region 
Di, can be computed for all fixed y E Yi from the formula 

where 

if Re[wk(fi(Y)) ] ;:::: 0, 
if Re[wk(fi(Y)) ] < o 

(22) 

(23) 

Note that the complex testing function Ti(Y) is generated using only (m+ 1) 
quasi-polynomials wk(s ), k = 0, 1, . .. , m, of the perturbed quasi-polynomial (1), 
whereas generation of the real testing function Fi (y) requires a priori knowledge 
of the generating quasi-polynomials (6) of the polytopic family W. 

The plot of the complex testing function Ti (y) is piecewise continuous 
and smooth and it is composed of the pieces of the plots of Pk (fi (y)) = 
Pk(fi(y))/wo(fi(y)), where Pk(s) is the generating quasi-polynomial of the form 
(6) . 

By generalization of the main result of Buslowicz (1994) to the class of 
considered perturbed quasi-polynomials we have the following theorem. 

THEOREM 2.2 

1. If 
Bi(Y) = Re[Ti(Y)] > 0, '1:/y E Yi, (24) 

for all separate sub-regions Di, i = 1, 2, ... , N, then the perturbed quasi­
polynomial (1) is D-stable, 

2. ~f at least one plot of Ti (y), i = 1, 2, ... , N, crosses the nonpositive part 
of the real axis, then the perturbed quasi-polynomial (1) with bounding set 
Q of the form (3) is not D-stable, 

3. the largest bounding set Q, for which the condition (24) holds for all sub­
regions Di, i = 1, 2, ... , N, has the form 

where 

Q = {q E Rm: qk E (8bk,8ck), bk _::::: O,ck 2::0, k = 1,2, ... ,m}, (25) 

8 = min{81, 82, ... , 8N }, 
8i = 1/(1- ai), i = 1, 2, ... , N, 
ai = min{Bi(Y) = Re[Ti(Y)] : yE Yi}, 

(26) 
(27) 
(28) 

where Ti(Y) is computed from (22) and {23) with the bounding set Q of 
the form (3). 

Theorem 2.2 gives the computational method for the D-stability analysis of 
the perturbed quasi-polynomial (1). This method, which is essentially based on 
the sufficient condition (24), may be too conservative in some cases. However, 
the method remains attractive due to its simplicity. 
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3. Illustrative example 

In this section we apply the proposed methods to the D-stability analysis of a 
real life control system with delay (feedback control of a wind tunnel), provided 
in Fu, Olbrot, Polis (1989). The characteristic quasi-polynomial of this system 
has the form 

w(s,T,k) Ts3 + (6T + 1)s2 

+(13.75T + 6 + 1.82Te-0
·
1658 + 0.42Te-0

·
338 )s 

+13.75 + 1.82e-0 ·
1658 + (0.42- 1305k)e-0

·
338

, 

(29) 

where T E [0.739, 2.58], k E [-0.0144, -0.0029], with the nominal values To = 

1.964 and k 0 = -0.0117. 
All roots of the nominal quasi-polynomial w(s, To, ko) have a real part less 

than -1 (Fu, Olbrot, Polis 1989). 
We need to check if all the roots of the perturbed quasi-polynomial (30) have 

real parts less than -1, or equivalently, if this quasi-polynomial is D-stable, 
where 

D = {s: Re[s] < -1}. (30) 

The parametric description of the boundary of D has the form f(y) = -1 + 
jy, y E Y = R. Because the coefficients of the quasi-polynomial (30) are real 
and D is symmetric with respect to the real axis, we can restrict Y to the finite 
interval [O,yt]· 

Quasi-polynomial (30) can be rewritten in the form 

where 

and 

wo(s) 

w1(s) 

w2(s) 

(31) 

1.964s3 + 12.784s2 + (33.005 + 3.57448e-0
·
1658 

+0.82488e-0 ·338 )s + 13.75 + 1.82e-0 ·
1658 + 15.6885e-0 ·338 , 

s3 + 6s2 + (13.75 + 1.82e-0
·
1658 + 0.42e-0

·
338 )s, 

-1305e-0 ·338 

Q = {q E R2 : q1 E [-1.225, 0.616], q2 E [-0.0027, 0.0088]}. (32) 

Parameters q1 and q2 represent deviations of uncertain parameters T and k from 
their nominal values, respectively. 

On computing from (22) and (23) the complex testing function T(y), y E 
Y = [0, 5], we find that the plot of this function crosses the negative part of the 
real axis, namely T(O) = o+jO, where a= min{Re[T(y)]: yE Y} = Re[T(O)] = 
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Figure 1. Testing functions for quasi-polynomial (31) with bounding set (33) : 
a) complex testing function T(y}; b) real testing function F(y). 
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-1.1659. Hence, from condition 2 of Theorem 2.2 it follows that the perturbed 
quasi-polynomial (31) with bounding set Q of the form (32) is not D-stable. 
The .3ame result was obtained in Fu, Olbrot, Polis (1989) from the analysis, 
according to condition (ii) of Lemma 1.1, of four plots of Pk(f(y))/Pr(f(y)), 
corresponding to all the exposed edges of W . 

From the condition 3 of Theorem 2.2 it follows that the perturbed quasi­
polynomial (31) is D-stable for the bounding set Q o'f the form (25), where 
0 = 1/(1- a) = 0.441317 and h and ck (k = 1, 2) are as in (32). 

\V~ now consider the bounding set Q, obtained from (32) and (25) with 
5" .·:.~ __ . 4413, of the form 

Q = {q: ql E [-0.5406, 0.2718], q2 E [- 0.00119, 0.00388]}, (33) 

which corresponds to 

T E [1.4234, 2.2358], k E [-0.01289, -0.00782]. (34) 

The plots of the complex testing function T(y) and the real testing function 
F(y), y E Y = [0 , 5], corresponding to the bounding set (33), are shown in 
Figure 1. The straight lines on Figure la) denote the jumps of the plot T(y) 
from the plot Pk(f(y)) onto the plot Pi(f(y)) . Because min{Re[T(y)]: yE Y} = 

0.0007 from the condition 1 of Theorem 2.2 it follows that the perturbed quasi­
;.>olynomial (30) is D-stable for all values ofT and k from the ranges given in 
(34) . 

The above result also follows from Theorem 2.1 and the plot of the testing 
function F(y) shown in Figure lb). 

In Fu, Olbrot, Polis (1989) it was shown that the perturbed quasi-polynomial 
(30) is D-stable forTE [1.571, 2.357] and k E [-0.0144, -0.0088] which corre­
sponds to q1 E [- 0.393, 0.393] and q2 E [- 0.0027, 0.0029] in the quasi-polynomial 
(31). In such a case, on computing the testing functions T(y) and F(y) we obtain 
min{Re[T(y)]: y E Y} = Re[T(O)] = 0.039 and min{F(y): y E Y} = 1.5322. 
This means that the conditions of Theorems 2.1 and 2.2 are satisfied. 
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