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In the paper we present an algorithm for computing reliability 
of complex systems which is a junction of the top-down, bottom-up 
and Poincare algorithms. Our algorithm consists of two steps: first 
we code the reliability structure of the system in a convenient form 
and then we compute reliability using this new form. The algorithm 
is especially oriented on systems whose structure is constant in time, 
but the reliability of components changes or is not exactly known. 
As the mathematical tool we use the relation theory and all obtained 
results are formally proved. The algorithms are written in a formal 
Pascal-like language. A simple example is presented. 
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1. Introduction 

The problem of reliability evaluation of complex systems is one of the basic 
problems in reliability theory. In last few decades several important algorithms 
for evaluating system reliability have been developed. Various approaches are 
used but the most important ones are: cut set - path set technique and fault tree 
analysis (FTA). Constructing reliability structure for complex two-state system 
with two-state components is easier and more efficient if the system structure 
is presented with the help of fault t rees. On the other hand, the cut set - path 
set approach is more general. 

Even though much work has been done in developing methods to deter­
mine reliability of complex systems: Abraham (1979); Aggarwal, Misra, Gupta 
(1975); Barlow (1984); Beichelt, Spross (1987a;b); Bennetts (1975); Hariri, Rag­
havendra (1987); Jensen, Bellmore (1969); Jiang (1985); Locks (1985!t;b;1978); 
Page, Perry (1986;1988); Schneeweiss (1985); Torrey (1988), there is a lack of 

1 Part of this research was carried out when the first author was supported by the State 
Committee for Scientific Research, Poland, under grant number KBN 33118 91 02. 
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efficient, fast procedures. The focus of this paper is on the theoretical aspects of 
some new, very practical method of analyzing the system reliability structure. 
We present here an algorithm which is a junction of several known methods (the 
top-down, bottom-up and Poincare algorithms) and some new approaches. The 
main idea of the algorithm consists in obtaining a convenient form of reliability 
structure of a system which enables quick evaluations of reliability factors and 
characteristics. Our algorithm consists of two steps: first we code the reliability 
structure of the system in a convenient form and then we compute reliability 
using this form. The main advantage of the developed method is the distinction 
between two problems: determining the structure and reliability evaluation. In 
a case of computing the reliability of a system for various number of values of 
component reliabilities the first step of the algorithm is executed only once. For 
second and next combinations of reliability data the first step is omitted, so 
computations are quick. The relation theory is a mathematical tool which we 
use to present our method. All obtained results are formally proved. The algo­
rithm is written in a formal Pascal-like language - an extension of Pascal with 
the formal mathematical operations. A simple example illustrates the devel­
oped method. The algorithm presented in this paper has been found as a very 
efficient one and its computer realization supported by user friendly software 
solutions makes this method a useful analytical tool. 

2. Mathematical foundations of structure analysis of reli-
ability systems 

Start with the following definitions: by the notion reliability system we under­
stand the couple (X, F), where X is the set of system components and F is the 
structure function: 

F: 2x -> {0, 1}, where 2x is the set of all functions 
x : X -> {0, 1}. Obviously we assume that the set X is finite and denote 

X = {1, .. . , N}. Denote by P(Y) a set of all subsets of some set Y. The 
function F is determined by any of the following sets: 

cut set, <I>= {0 = p E P(X): F(cjJ- 1 (p)) = 0} 

and 

path set, W = {0 = p E P(X) : F(1j;-1 (p)) = 1}, 

where cfi(x) = {k E X : x(k) = 0} and 1/J(x) = {k E X : x(k) = 1} for any 
x E 2x are so called cut and path, respectively. Functions cP and 1/J : 2x -> P(X) 
are invertible, so definitions of <I> and W are correct. 

Obviously, cfi(x) = X\ 1/J(x) for any x E 2x and cjJ - 1 (p) = 1-1/J-1 (p) for any 
p E P(X). The representation of the system structure as cut sets or path sets 
is more convenient then the matrix representation. This representation can be 
even simplified if we restrict to the case of coherent strztctures, i.e. when the 



A method of rel iabi lity analys is of complex equ ipmen t 187 

structure function is monotonic: F(x) :S: F(y) if x(n)::; y(n) for any nE X. In 
this case the structure can be represented as 

minimalcut set <I>min = {rE <I>: q n r = q for any q E <I> and r = q} or 

minimal path set Wmin = {r E \]! : q n r = q for any q E \]! and r = q}. 

For coherent structures the function F is determined by any of the sets <I>min 
and W m in, i. e.: 

F(x) = 0 iff there exists a q E <I>min such that q <;;; cp(x), 

F(x) = 1 iff there exists a q E Wmin such that q <;;; 'lj;(x) . 

In this paper we accept the following assumptions: 

AssuMPTION 2.1 The system (X, F) is coherent i.e. F(x) :S: (y) ~f x :S: y, 

AssuMPTION 2.2 The system (X, F) is nondegenerated i.e. X E cp and X E 'l1 
(the sets of paths and cuts are both nonempty). 

AssuMPTION 2.3 All elements are important, i .e . .for any x E X , there exists 
a p E <Pmin such that F( cp- 1 (p \ { x})) = 1. 

Let ~ : D --+ 2x be a multidimensional random variable describing the 
reliability state of all system components. Assume that all the components are 
independent, i.e. ~(1), .. . , ~(N) are independent random variables with values 
in {0, 1}. 

Denote Q(n) = Pr(~(n) = 0) for any nE X and Q(X) Pr(F(O = 0). There 
exist simple formulas for computing system reliability, provided we know the set 
of minimal cuts (paths): 

THEOREM 2.1 (Poincare .formulas) The .following .formulas hold: 

Q(X) = _ L {( -J )card(T) IT Q(n)}, (1) 
nE UT 

1- Q(X) ~ - L {( - 1)card(T) IT (1- Q(n))}, (2) 
nE UT 

where UT = upETP· 

These formulas are only apparently easy. For larger systems they are not to 
be computed even for big computers. We often use approximations of (1) and 
(2): 

Q(x) ~ .z=riT Q(n)J (3) 
pE<l> nEp 
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and 

1- Q(X) ~ L)Il (1- Q(n))]. (4) 
pEW nEp 

The following inequality holds: 

1- L[IT (1 ~ Q(n))]:::; Q(X):::; L[IT Q(n)]. (5) 
pEW nEp pE<l> nEp 

There exist particular reliability structures for which reliability can be com­
puted easily. Especially important are: 
a. Parallel structure: 

Q(X) = Q(1). Q(2) ..... Q(N). (6) 

b. Series structure: 

1 - Q(X) = [1 - Q(1)] . [1 - Q(2)] . .. .. [1 - Q(N)]. (7) 

The formulas (6) and (7) are obviously less complex than formulas (1) and 
(2). In fact there exist many parallel and series subsystems inside actual sys­
tems. The problem is to identify parallel and series subsystems, provided there 
is given the structure function, what is equivalent to the sets of minimal cuts and 
minimal paths. The algorithm, described below, is devoted to such a problem. 

The aim of this Section is to formulate some set-theoretical relations, being 
a mathematical basis of further formulated algorithms. We use the theory of 
equivalence relations. Recall that R <;;; X 2 is an equivalence relation iff: 

xRx for any x E X, 

if xRy then yRx for any x, yE X, 

if xRy and yRz then xRz. 

Define the following relations: 

(8) 

(9) 

(10) 

RELATION 2.1 ~ - "the same parallel block": k ~ l iff, there exists a sequence 
po, ... , Pn E Wmin such, that Pi E Pi-1 = 0 fori = 1, 2, ... , n and k E Po and 
lE Pn· 

RELATION 2.2 ll - "the same series block": kIll iff, there exists a sequence 
p0 , ... , Pn E <I>min such, that Pi E Pi-1 = 0 fori = 1, 2, .. . , n and k E Po and 
lE Pn· 

LEMMA 2.1 The relations ll and ~ are equivalence relations. • 
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Recall that for any equivalence relation R we c~n define the following sets: 

[n]R ={mE X: mRn} 

and 

X/R = {p E P(X): p = [n]R for some n E X}. 

The following theorem holds: 

THEOREM 2.2 

F('if;- 1 (p)) = minzEx;uF('if;-1 (p n Z)), 

for any 0 = p E P(X). 

Proof of Theorem 2.2. 

(11) 

(12) 

(13) 

(14) 

Notice that k, l E <Pmin implies that k II l. Hence for any p E <Pmin there 
exists a Z E X/II such that p <:;;; Z. F(cp- 1 (r)) = 0 iff there exists apE <Pmin 

such that p <:;;; r. Therefore F(cp- 1 (r)) = 0 iff there exist both apE <Pmin and 
Z E X/II such that p <:;;; Z n r. . 

Hence F(cp- 1 (r )) = minzEX/IIF(cp- 1 (r n Z )). 
Proof of the second statement of the theorem is identical by duality. • 

COROLLARY 2.1 Let (~(1) ,~ (2) , ... ,~(N)) be independent random variables 
with values in { 0, 1}. Then 

Pr(F(O = 0) = IT Pr(F(cp- 1 (Z ) · ~) = 0) , (15) 
ZEX/"" 

Pr(F(O = 1) = IT Pr(F('if;-1 (Z) · ~) = 1) , (16) 
ZEX/ll 

where (x · y)(n) = x (n) · y(n) for any x,y E 2x and n E X . • 
In T heorem 2.2 we have proved that t o compute reliability of the system 

(X, F ) it suffices to divide this system into parallel (series) blocks, to compute 
reliability of any of these blocks and to use standard formula for reliability of 
parallel (series) system. Here the parallel (series) subblocks form new compo­
nents. 

We can also identify parallel and series components inside t he actual block. 
Introduce notations: 
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RELATION 2.3 11 - "parallel components" 
n 11 m if! {p E cl>min : n E p} = {p E cl>min : m E p} for any n, m E X . 

RELATION 2.4 j_ - "series components" 
n j_ m if! {p E Wmin: nE p} = {p E Wmin : mE p} for any n,m EX. 

RELATION 2.5 xj liE 2X/II -parallel reduced reliability component, 
xj 11: X/ 11--+ {0, 1} is defined by 

xj 11 (p) = max{x(k): k E p} for any x E 2x and p EX/ 11. (17) 

RELATION 2.6 xj _l_E 2X/ J.. - series reduced reliability component, 
xj _1_: X/ _1_--+ {0, 1} is defined by 

xj j_ (p) = min{x(k): k E p} for any x E 2x andp EX/ j_. (18) 

RELATION 2.7 FR: 2X/R--+ {0, 1} -reduced reliability structure function, 
FR(Y) = F(yR) for any y E 2X/R and RE {11, _1_}, where yR(k) = y([k]R) 

for any yE 2X/R, k EX and RE {11, _1_}, 

The following theorem holds: 

THEOREM 2.3 

FJ..(xj _1_) = F(x), 

F11(xj 11) = F(x), 

for any x E 2x. 

Proof of Theorem 3. 
By definition FJ.. (x/ _1_) = F((x/ _i)J..) and F11(x/ 11) = F((x/ 11)11). 
Notice that: 

(x/ _i)J..::; x::; (x/ 11)11, 

cp((x/ _i)J..) ;2 cp(x) ;2 cp((x/ 11)11) and 

'lj;((xj _i)J..) <:;; 'lj;(x) <:;; 1/J((x/ 11) 11), 

1/J((x/ _i)J..) = {k EX: x(l) = 1 for any lE [k]J..} , 

cp((xj 11)11) = {k EX: x(l) = 0 for any lE [kli!}. 

(19) 

(20) 

F((xj _i)J..) = 1 iff there exists a p E Wmin such that p <:;;; cp((x/ _i)J..) and 
F((x/ 11)11) = 0 iff there exists apE cl>min such that p <:;; 1/J((x/ 11)11). 
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By definition [kli! <;;; p if k E p E <I>min and analogously [k]..L <;;; p if k E p E 

\!!m in· 

Therefore for any p E <I>min, if k E p <;;; '!f;(x) then [k]..L <;;; '!f;(x) and k E 

'!f;((x/ _i)_l_). Thus if p <;;; '!f;(x) then p <;;; '1/J((x/ _i)j_). By the same argument 
for any p E <I>min, p <;;; cfJ((x/ 11)11) if p <;;; cfJ(x). Since cfJ((x/ 1[)11) <;;; cjJ(x) and 
'1/J((x/ _i)_l_) <;;; '1/J(x), 

F_1_(x / _i) = F(x) = F 11 (x/ 11) . 

• 
In Theorem 2.3 we have proved that the system whose structure is modified 

by merging parallel or series components has the same reliability. Notice the 
following obvious properties: 

PROPOSITION 2 .1 

1. [k]..L n [k]ll = {k} for any k EX, 
2. [k] "" U [k]u =X for any k EX. • 
To illustrate the defined relations consider a system described by the follow­

ing minimal path and cut sets: 
X = {1 ,2,3,4, 5, 6}. 
Path sets: {1, 3, 5, 6}; {1, 4, 5, 6}; {2, 3, 5, 6}; {2, 4, 5, 6}. 
Cut sets: {1 , 2}; {3, 4}; {5}; {6} . 

Checking properties of the relations U, ~, 11 and _l, we get that: 

n ~ m for any n, m E X; 

1 u 2, 3 u 4, 5 u 5, 6 u 6; 

1 11 2, 3 11 4; 

5 _l 6. 

(21) 

(22) 

(23) 

" (24) 

From (21)-(24) we conclude that the system (X, F) has the following struc­
ture: 

3. Two algorithms 

In this Section two algorithms are presented which enable the analysis of re­
liability structure of complex systems and computing its reliability. The first 
algorithm is used for simplifying the system reliability structure by dividing 
the system components into separate blocks and/ or merging parallel and series 
components inside nondecomposable subsystems. The second one computes re­
liability of the system on the basis of results obtained from the first algorithm. 
It should be strongly marked that all discussions in both algorithms are based 
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Figure 1. Structure of the system (X, F). 

on the principal assumption that the reliability structure of the system is defined 
only by set of minimal cuts or/ and set of minimal paths, without any additional 
information. 

These algorithms are formulated here in a Pascal-like language enlarged by 
finite operation as sums and intersections. All array elements are written An 
instead of A[n]. The notation 

for q E V do operation!; 

means: make operation operation! for any element q of the set V. 
To simplify and condense the algorithms let us introduce the following ad­

ditional notations: 

.C0 (Y, T) = {pET : p s;; Y} for any Y E P(X) and T s;; P(X) 

.C1 (Y, T) = {p E P(Y): there exists a q E T such that p = q n Y} for any 
Y E P(X) and T s;; P(X) 

K(T, U) = {0 = p E P(X): there exist an r E T and a q E U such that p = qnr} 
for any T, U s;; P(X) 

B (Y, T) = { ( k, l) E Y 2 : {p E T : k E p} = {p E T : l E p}} for any T s;; P (Y) 
W(T) = {(k, l) E X 2 : there exist two sequences k = ko, ... , kn = l E X and 

Pl,···,Pn ET such that {kn-l,kn} s;; Pi fori= 1,2, ... ,n}, for any 
T s;; P(X) 

H ( k) probability that the component k is in state of functioning 
H(X, F) probability that the system (X, F) is in state of functioning 
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ALGDRITHM1 - simplifying the system structure 

Input data : X, <Prnin, Wmin 
Output data : V, J, K, M 

193 

{Step 1 - dividing the system into parallel and series subsystems} 
begin 

end 

<l?o := <Pm in; 
Wo := Wmin; 
k := 1; 
IND :=.true.; 
W1 := X/W(1Jimin); 
<1?1 := K(WI , <l?o)min; 
1Ji1 := K(WI, 1Jio)min; 
repeat 

k := k + 1; 
IND := .not.IND 
if IND then Wk := X / W(<I?k- I) 

else Wk := X / W(1Jik - l); 
end if 
<l?k := K(Wk, <l?k-l)min ; 
1Jik := K(Wk, \[lk-l)min; 

until wk = wk- 1; 
]( := k -1; 
J := .not.IND 
V := WK 

{Step 2 - reducing the system by merging parallel and series 
elements} 
begin 

k := 1; 
IND :=.false.; 
B1 := B(X, Wmin); 
X1 := (X/ B1)*; 
<1?1 := £1 (XI,<!? J( )min; 
1Ji1 := .Co(XI, 1JiK)min; 
repeat 

k := k + 1; 
IND := .not.IND; 
if IND then 

begin 

end 

Bk := B(Xk- 1, <l?k- I); 
i := 1; j := 0 
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end 

else 
begin 

end 
end if 

Bk := B(Xk-1 , Wk-1); 
i := 0; j := 1 

Xk := (Xk-I/ Bk)*; 
<f>k := £ i (Xk , <I>k-1)min; 
Wk := .Cj(Xk , Wk-1)min; 

until Xk-1 = Xk; 
M:= k-1; 

J. KARPIN'SKI , D. Gf\TA REK 

ALGORITHM 2 - computing system reliability 

Input data: V, J, K, M-- output data of ALGORITHM1 - and H(k). 
Output data: H(X) . 
{Step 1 - computing reliability of parallel and series blocks in 
nondecomposable subsystems} 
begin 

end 

I ND :=.false. 
for k := 1 to M do 

for nE Xk do 
begin 

end; 
endfor; 

if IND then H(n) := 1- TizE[n]nk-J (1 - H(l)) 

else H(n) := TizE[[n]Bk-t H(l); 

endif; 

IND = .not.IN D 
endfor; 

{Step 2 - computing ·reliability of all nondecomposable subsystems 
by Poincare formula} 
begin 

for k := K downto 1 do 
begin 

for q E Wk do 
begin 

end; 

end; 
endfor; 

/:::. := £1 (q , Wk)min ; 
H(q) := I:;£;;6. {( -1 )card(T)+l I:;pET[f1nEp H(n)]}; 
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endfor; 
end; 
{Step 3 - computing the system reliability} 
begin 

IND := J; 
for k := K- 1 downto 1 do 

begin 
IND := .not.IND; 
for p E Wk do 

begin 
if IND then 
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H(p) := 1 - IT E W· (1 - H(q)) 
q k+l 

end 
endfor; 

end 
endfor; 

H(X) := H(W1) 
end. 

4. Example 

qc;;.p 
else 

H(p) := IT E w (H(q)) 
q k+l 

qc;;.p 
endif; 

Consider the system with structure as in Figure 2: 

Min-cuts: 
{1,3} 
{2,3} 
{4} 
{5,7} 
{6,7} 
{5,8,9} 
{6,8,9} 
{7,8,9} 

Min-paths: 
{1,2,4,5,6,7} 
{3,4,5,6,7} 
{1,2,4,5,6,8} 
{1,2,4,5,6,9} 
{3,4,5,6,8} 
{3,4,5,6,9} 
{1,2,4,7,8} 
{1,2,4,7,9} 
{3,4,7,8} 
{3,4,7,9} 

Results of ALGORITHM! 
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Step 1 

Levell 
lil2U3 
4U4 
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~~·! 
~~ ---G- ;_ 

~~~ 
,··~ 

! ····-···················-···-·-·-·-·-·····-·-··· 
k-out--oi-n 

Figure 2. Reliability structure 

---> Block A= {1, 2, 3}, 
---> 

5U6U7U8U9 ---> 

Block B = { 4 }- !-component, 
nondecomposable, 

Block C = {5, 6, 7, 8, 9}. 

Level2 
1:::::;2 
3:::::;3 

5:::::;6:::::;7:::::;8:::::;9 

---> 
---> 

---> 

Block Al = {1, 2}, 
Block A2 = {3}- !-component, 

nondecomposable, 
Block Cl = {5, 6, 7, 8, 9} - 5-component, 

nondecom posable. 

Step 2-splining parallel and series components in the subsystem C. 

5 ..l 6---> 5/ ..l, 8 11 9 ---> 8/ 11 . 

5. Conclusions 

We have described theoretical aspects of a method of analyzing the system reli­
ability structure. The most important advantage of this method is its generality 
which enables to analyze all coherent structure although there is no significant 
gain for the systems with simple reliability structures. The reliability structure 
of an analyzed system is coded only once and next evaluations for the system 
with different data are essentially accelerated. In the paper we use the Poincare 
formula for explaining the principles of the algorithms for evaluating reliability 
of the nondecomposable subsystems. In practical implementation one can use 
any method, for example, the pivotal decomposition. 

Practically this method has been implemented in the computer program 
RACE (Reliability Analysis of Complex Equipment) which enables determining 
various reliability factors of complex systems. In RACE the system structure is 
entered into the computer with the help of fault trees and then paths and cuts 
are determined by using the improved standard methods. 
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RACE is a language independent (one can create an own native language 
version), menu driven, user friendly professional program, very useful for reli­
ability researchers, constructors and scientists. It has also significant didactic 
values. This program was used for estimating reliability of nuclear power plant, 
aircrafts and some telecommunication equipment. There are very good expeti­
ences with practical application of algorithms presented in this paper. 

The demo version of RACE is available from the first author. 
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