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Petri nets are now widely used in both theoretical analysis and 
practical modeling of concurrent systems. The practical use of Petri 
nets is strongly dependent upon the existence of adequate computer 
tools - helping the user to handle all the details of a large and 
complex description. For Petri nets one needs editors as well as 
analysis programs. Graphical work stations provide an opportunity 
to work directly with the graphical representations of Petri nets . 

This paper describes the integrated graphical Petri net tools (in 
the following called PN-tools) for construction of nets (also hierar­
chical nets) , as well as modification and analysis. PN-tools allows 
us to work with different classes of Petri nets. Several analysis tools 
are available for each of these classes. PN-tools is running on IBM 
PC microcomputers under MS-DOS operating system. 
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1. Informal introduction to Petri nets 

Petri nets, Petri (1966), are a promising tool for describing and studying in­
formation processing systems that are characterized as being concurrent, asyn­
chronous, nondeterministic, distributed, parallel, and/or stochastic. 

Petri nets have been proposed for a very wide variety of applications, Brauer , 
Reisig, Rozenberg (1987a, 1987b), Jensen, Rozenberg (1991), Murata (1989), 
Peterson (1981), Proc. Int. Workshop Timed Petri Nets (1985, 1987), Reisig 
(1985), Voss, Genrich, Rozenberg (1987). 

The use of computer aided tools is a necessity for practical applications of 
Petri nets . Most Petri net research groups have their own software packages 
and tools to assist the drawing, analysis, and/or simulation of various applica­
t ions. T he papers by Feldbrugge (1986, 1990), Feldbrugge, Jensen (1987, 1991) 
provide a good overview of typical Petri net tools . Some of these tools and their 
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applications are discussed in details in Billington, Wheeler, Wilbur-Ham (1988), 
Chiola (1985), Jensen et al. (1990), and Starke (1985). 

The rest of this paper consists of the following topics. First Petri nets are 
introduced by means of a small example and an informal definition of their 
structure, behaviour and extensions is presented. Then we describe the hierar­
chical Petri nets. Next we discuss how to analyse Petri nets, how to support 
them by various computer tools, and we also describe shortly an implementation 
environment: Finally, some conclusions concerning, in particular, future plans 
for PN-tools are presented. 

1.1. A simple example of Petri net 

The Petri net, Reisig (1985), presented in Figure 1 describes a system of reader 
and writer processes of an operating system. There is a set of places (drawn 
as circles) and a set of transitions (drawn as rectangles). The places and their 
tokens represent states, while the transitions represent state changes. However, 
each place may contain several tokens. 

Now let us take a closer view of the Petri net in this figure. It consists of 
two different parts: the net structure and the net inscriptions. 

The net structure is a directed graph with two kinds of nodes, places and 
transitions, interconnected by arcs~ in such a way that each arc connects two 
different kinds of nodes (i.e. a place and a transition) . Such a graph is called a 
bipartite directed graph. 

Each net inscription is attached to a place, transition or arc. In Figure 1 
places have two different kinds of inscriptions: names and initial markings 
(which define initial states of Petri nets), while transitions and arcs only have one 
kind of inscription: names and arc weights, respectively. All net inscriptions 
are positioned next to the corresponding net element, markings are represented 
by dots (or cardinals), and can be thought to reside in the places of a Petri net, 
while arc weights are represented as cardinals. The arc weight '1' is omitted. 

Names of nodes have no formal meaning. They can be omitted and one 
can use the same name for several nodes (although this may create confusion). 
Names are used in the feedback information from PN-tools to the user, e.g. in 
the textual representations of a net . To make the feedback unambiguous, it is 
recommended to keep names unique, but this is not enforced. In this paper we 
use the capital letters for names of nodes. As explained above each place must 
have an initial marking and this determines tokens which may reside on that 
place. By convention we omit initial markings which are equal zero. 

1.2. Dynamic behaviour of Petri nets 

One of the most important properties of Petri nets is that they have a well­
defined semantics which defines the behaviour of the system. The ideas behind 



PN-tool s : env iro nment for the des ign and analys is of Petri nets 201 

PO: in.t:~oclive processes 

P 1: proce:sses "Which are ready 

to read 

P2: reodlng proce:s:~es 

P3: processes "Which eare ready 

t.o wrlt.e 

P4: wrtt.inJiil: processes 

P:'>: synchronization 

Figure 1. A system of reader and writer processes of an operating system 

the semantics, we shall demonstrate by means of Figure 2 - which contains one 
of the transitions from Figure 1. 

At first, we check whether the transition is enabled in current marking. 
This is done by evaluating all the input arc weights: In the present case the 
two arc weights are equal to 1 and k, respectively. Thus we conclude that the 
transition is enabled - because each the input places contains a sufficient number 
of tokens which the corresponding arc weight evaluates (one token on P3 and k 
tokens on P5) . When a transition is enabled it may occur and it then removes 
tokens from its input places and adds tokens to its output places. The number 
of removed/added tokens are determined by the value of the corresponding arc 
weights. An occurrence of the transition removes one token from the place P3, 
removes k tokens from P5 and adds one token to P4. 

A distribution of tokens (on places) is called a marking. The initial mark­
ing is the marking determined by the initial state of a system. Now we can ask 
whether a transition T4 is enabled in a given marking M - and when this is the 
case we can speak about the marking M' which is reached by the occurrence 
of T4 in M. It should be noticed that several transitions may be enabled in the 
same marking. In that case there are two different possibilities: Either there 
are enough tokens (so that each transition can get its own share) or there are 
too few tokens (so that several transitions have to compete for the same input 
tokens). In the first case the transitions are said to be concurrently enabled. 
They can occur in the same step and they each remove their own input tokens 
and produce their own output tokens. In the second case the transitions are 
said to be in conflict with each other and they cannot occur in the same step. 

In the initial marking of Figure 1 we observe that the transition, for example, 
TO is concurrently enabled with T3. This means that we can have a step where 
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Figure 2. A transition from the system of reader and writer processes 

both TO and T3 occur. When it occurs a token is moved from PO to P1 and 
a token from PO to P3. It should be noticed that the effect of this step is the 
same as when the two transitions occur after each other in an arbitrary order. 

For more information about Petri nets see Peterson (1981), Reisig (1985), 
or Starke (1990). 

1.3. Extensions of Petri nets 

In this section, we give the examples of extensions to the Petri net model which 
have been implemented in our PN-tools. The simplest extension to Petri nets 
are inhibitor arcs (lA-nets), Hack (1975). An inhibitor arc leads from a place 
P to a transition T and inhibits the firing ofT if the token load of P is not less 
than its multiplicity w. If w > 1, then, additionally, an ordinary arc from P to 
T with multiplicity less than w is allowed. 

Figure 3 shows the net with inhibitor arc. Note that the inhibitor arc (P1,T1) 
is identified by a small circle at one end. Thus in the Petri net of Figure 3, 
transition T1 can fire only if there is a token in P2 and P3 and zero tokens in 
Pl. 

Petri nets with inhibitor arcs are intuitively the most direct approach to 
increasing the modeling power of Petri nets. All other extensions to Petri nets 
which are defined in this section are in fact equivalent to Petri nets with inhibitor 
arcs. 

Another extension of Petri nets are the so-called self-modifying, nets (SM­
nets) introduced by Valk (1978) . . The only difference to PT-nets is that the 
multiplicity of an arc f can be the name P of a place. In this case, the multiplicity 
of the arc f changes with the marking of the place P. At the given marking M 
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Figure 3. An example of a net with inhibitor arc 
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Figure 4. Using priorities to test if the marking of a place P is zero or nonzero. 
Transition Tl has priority over transition T2 

the multiplicity off equals M(P), hence it is modified by the firing of transitions. 
Petri nets with priorities (P-nets) have been suggested by Hack (1975). 

Priorities can be associated with the transition such that if T and T' are both 
enabled, then the transition with the highest priority will fire first. 

In the case of priorities, we can easily test if a place P is zero. This is 
shown in Figure 4. If we put a token into place P = O? and define the priority of 
transition Tl to be higher than the priority of transition T2, then we will get a 
token in one of the two places at the right depending on the marking of place P. 
This results from the fact that transition Tl can fire only if it is enabled, and 
it is enabled only if place P has a token. If Tl cannot fire because P is empty, 
then, and only then, will transition T2 fire. 

1.4. Hierarchical Petri nets 

In this small section we give some recommendations for hierarchical nets - the 
use of which makes it possible to relate a number of individual nets t o each 
other in a formal way (i.e. in a way which has a well-defined semantics and thus 
allows formal analysis). 

The basic idea behind hierarchical Petri nets is to allow the modeller to 
construct a large model by combining a number of small nets into a larger net. 
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It is also possible to translate a hierarchical Petri nets into a non-hierarchical 
Petri net. This means that the theoretical modeling powers of these two classes 
of nets are the same. However, from a practical point of view, the net classes 
have very different properties. To cope with large systems we need to develop 
strong structuring and abstraction concepts. 

Section 3.3.2 describes some Petri net tool to support the construction and 
analysis of hierarchical Petri nets built upon work by Valette (1978). 

2. Analysis of Petri nets 

The methods for analysing Petri nets can be roughly divided into several cate­
gories: analysis by means of simulation, study of reachability set, transformation 
by homomorphism, and invariants. The most straightforward kind of analysis 
is simulation - which is very useful for the understanding and debugging of a 
system, in particular in the design phase and the early validation phases. There 
are, however, also more formal kinds of analysis- by which it is possible to prove 
that a given system has a set of desired properties (e.g. absence of deadlock, 
the possibility to return to the initial state, and an upper bound on the number 
of tokens). This chapter contains a brief introduction to the main ideas behind 
the most important analysis methods and it contains references to papers in 
which the technical details of these methods can be found. 

2.1. Analysis by means of simulation 

Simulation can be supported by a computer too or it can be totally manual (e.g. 
performed on a blackboard or in the head of the modeller). Simulation can reveal 
errors, but in practice never be sufficient to prove the correctness of a system. 
Simulation is often used in the design phases and the early investigation of a 
system design (while the more formal analysis methods are used for the final 
validation of the design). In Section 3.4 we give a detailed description of an 
existing graphical Petri net simulator. 

2.2. Analysis by means of reachability graphs 

The basic idea behind reachability graphs is to construct a graph which contains 
a node for each reachable state and an arc for each possible change of state. Ob­
viously such a graph may, even for small Petri nets, become very large - 11· 1 

sometimes infinite. Thus it is necessary to construct and analyse the gr<~ :-' : 
using automated methods - it is desirable to develop techniques which mak" 
it possible to work with reduced reachability graphs without losing too n · 
information. One of the possibilities is reduction by means of covering marK­
ings. This method looks for transition sequences leading from a system state to 
a larger system state (one with additional tokens) and the method guarantees 
that the reduced reachability graph always becomes finite. The method has, 
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however, some drawbacks. First of all it only gives a reduction for unbounded 
systems (and most practical systems are bounded). Secondly, so much informa­
tion is lost by the reduction that several important properties (e.g. liveness and 
reachability) are no longer decidable. For more information see Finkel (1990) 
and Karp, Miller (1969). 

A reachability graph can be used to prove properties about the modelled 
system. For bounded systems a large number of questions can be answered. 
Deadlocks, mutual exclusion, reachability and marking bounds can be decided 
by a simple search through the nodes of the reachability graph, while liveness 
and home markings can be decided by constructing and inspecting the strongly 
connected components. 

As described above, the reachability graph method can be totally automated 
- and this means that the modeller can use the method, and interpret the results, 
without having much knowledge about the underlying mathematics. In Section 
3.5.2 we describe some Petri net tool to support the calculation and analysis of 
reachability graphs. 

2.3. Analysis by means of invariants 

Invariant analysis allows logical properties of Petri nets to be investigated in 
a formal way. There are two dual classes of invariants. A place invariant (P­
invariant) characterises the conservation of a weighted set of tokens, while a 
transition invariant (T -invariant) characterises a set of transition sequences hav­
ing no effect, i.e. with identical start and end markings. 

The main advantages of invariant analysis are the low computational com­
plexity (in particular, compared to the method of reachability graphs described 
in Section 2.2) and easy parametrization with respect to system parameters 
(through the definition of different initial markings). 

The main drawback is the difficulty to automate the interpretation of in­
variants and the incompleteness (in the sense that it is usually only possible to 
calculate either necessary or sufficient conditions, for a given property). 

It is desirable to be able to make an automatic computation of invariants. 
This can be done by solving a matrix equation. The matrix equation can be 
solved by standard Gauss elimination. It is sufficient to find a basis from which 
all invariants can be constructed (as linear combinations). By means of invari­
ants it is possible to investigate many different kinds of system properties, e.g. 
deadlocks, mutual exclusion and marking bounds. For more details about the 
calculation of invariants, see Memmi, Vautherin (1987). Above, we have dis­
cussed how to calculate invariants by solving a matrix equation. The problem 
is, however, often of a different nature - because we already have a set of vectors 
and just want to verify that these are invariants. This task is much easier and 
it can be done totally automatically. 

As described above, transition invariants are the duals of place invariants. 
Transition invariants can be calculated in a similar way as place invariants. 
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Transition invariants are found by solving a matrix equation (obtained by trans­
posing the matrix used to find place invariants). Each transition invariant is 
a solution to the matrix equation. The opposite is, however, not always true. 
Transition invariants are used for similar purposes as place invariants (i.e. to 
investigate the behavioural properties of Petri nets). 

In Section 3.7.2 we describe some Petri net tools to support the computation 
and the analysis of invariants. 

2.4. Analysis by means of reductions 

Petri nets can also be analysed by means of reductions. The basic idea be­
hind this method is to modify a Petri net - without changing a selected set 
of properties, e.g. liveness, marking bounds, deadlocks and reachability. The 
modification of the net is performed by means of a set of transformations rules 
and may be carried out manually, automatically or interactively. In the latter 
case the strategy is decided by a person, while the detailed computations and 
checks are made by a computer. 

The purpose of the transformation is to obtain a small and simple net for 
which it is easy to investigate the given properties. A serious problem with 
reduction methods is that they often are non-constructive (because the absence 
of a property in the reduced net, usually, does not tell much about why the 
original net does not have the property. An exception is the reduction method 
to calculate place or transition invariants, mentioned in Section 2.3. In this 
case it is, from the reduced net, possible to determine a set of the invariants for 
the original net - and this means that the analysis results can be interpreted in 
terms of the original net. In Section 3.6 a Petri net tool to support the execution 
of net reduction based on transformation rules developed by Berthelot (1987) 
is described. 

2.5. Other methods of analysis 

For ordinary Petri nets several kinds of analysis methods are known. One of the 
methods uses structural properties, it means properties which can be formulated 
without considering the behaviour (i.e. transition sequences) of Petri net to 
deduce behavioural properties. For more information see Best (1987). 

In Section 3.5.1 we describe a Petri net tool to support the analysis of struc­
tural properties, which is implemented on the basis of the method as mentioned 
above. 

3. Computer tools for the users of Petri nets 

3.1. Why do we need computer tools for Petri nets? 

The practical use of Petri nets is strongly dependent upon the existence of ade­
quate computer tools- helping the user to handle all the details of a large and 
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complex description. For Petri nets one needs editors (supporting construction 
and modification of Petri nets) as well as analysis programs (supporting dif­
ferent analysis methods), Jensen (1987). Graphical work stations provide an 
opportunity to work directly with graphical representations of Petri nets (and 
reachability graphs). The most important advantages of using computerized 
Petri net tools are, Jensen (1987): 

• the possibility to obtain better results, 
• the possibility to create faster results, 
• the possibility to make interactive presentations of the analysis results, 
• the possibility of 'hiding' technical aspects of the Petri net theory inside 

the tools, 
• the possibility of producing fast results of good quality- without requiring 

too deep knowledge of the Petri net theory. 

Furthermore it is important to be able to use Petri nets together with other 
specification/implementation languages. 

3.2. Which tools do we have in PN-tools? 

This section contains a general characteristic of PN-tools. As mentioned above, 
our integrated computer system PN-tools may be used to help the system de­
signer in proving the correctness of his design. PN-tools consists of four logical 
parts: 

1. EDITOR/SIMULATOR is a window-based graphical and textual edi­
tor/simulator for entering, exiting, constructing, simulating, and editing 
Petri nets. 

2. ANALYSER is a set of programs by means of which basic structural 
and dynamic properties (see Reisig (1985), Starke (1990)) of nets can be 
checked. The results of such analysis allow to detect syntactic (sometimes 
even semantic) design errors. 
For certain subclasses of PT-nets the structural properties can be used to 
deduce dynamic properties. 

3. REDUCER is a program to reduce the size of a net (and of its reachability 
graph) preserving liveness and boundedness. The use of such program 
is necessary if the storage capacity of a given computer system is not 
sufficient to analyse a given net. Reduced nets are thus made accessible 
for treatment by ANALYSER. 

4. VERIFIER is a subset of programs which calculate the invariants and 
other structural information (e.g. state machine components) from a given 
net which reflect certain structural properties of the modelled system. 
Invariant analysis can be done by computing generator sets of all P-IT­
invariants and of all nonnegative invariants. Vectors can be tested for 
invariant properties. 
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3.3. Editors 

To be able to work with practical applications of Petri nets - in an effective 
way - the user needs all the tools mentioned above. In particular, for Petri 
nets there is a need for tools supporting construction of nets, as well as mod­
ification. Graphical work stations provide the opportunity to work - not only 
with textual representations of Petri nets- but also directly with the graphical 
representations. 

This section describes the textual Petri net editor (TPN-editor) and the 
graphical Petri net editor (GPN-editor) belonging to our PN-tools. 

Generally, these editors are a computer aid developed for creation, manip­
ulation and simulation of Petri nets. They are based on place/transition nets, 
self-modifying nets, priority nets, and nets with inhibitor arcs. 

3.3.1. Textual Petri net editor 

The user needs textual editors to be able to construct and modify Petri nets, 
working directly with their mathematical representation. This representation 
can be expressed by flow relations, incidence matrices, functions, etc. 

The TPN-editor is a program belonging to the part EDITOR/ SIMULA­
TOR. This program realizes Petri nets the size of which is only restricted by 
the main storage capacity of the given computer. It allows the user to construct, 
combine, refine, modify and syntactically check Petri nets and their extensions 
considered in this paper. The nets can be read-in from a file or the terminal. 
The generated nets can be stored in files. 

The TPN-editor enables us, in particular, to execute the following opera-
tions: 

• reading a net from a file; 
• deleting the places or transitions; 
• deleting the arcs; 
• changing a net number; 
• changing multiplicities; 
• output of a net to the terminal; 
• writing a net to a file; 
• changing a marking; 
• changing a place number or a transition number; 
• raising all the place numbers (transition numbers respectively) by a span 

(to make two place/transition sets disjoint); 
• gluing together two nets at their common transitions; 
• merging two nets by merging common nodes and arcs; 
• refining nodes by nets. 

Moreover, the TPN-editor has many of the facilities provided by normal 
word processing systems. 
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3.3.2. Graphical Petri net editor 

General information A nice aspect of Petri nets is the fact that they can be 
graphically represented and that one can visualize the states reached during an 
execution. From users' experience a graphical editor is an absolute necessity if 
people are to effectively use Petri nets. Increasingly, graphic description tech­
niques play a significant role in the fields of analysis, system specification, and 
documentation. However, creation of graphics is quite expensive without rele­
vant computer support and proves very inflexible in the case of modifications. 
Moreover it seems natural to use a dialogue, which is close to the operations 
performed, if the net was drawn by hand on a piece of paper. 

A Petri net constructed by means of the GPN-editor is called a PN-graph 
and it consists of several types of graphical objects. In this paper, the word 
graph denotes the mathematical concept of a graph (i.e. a structure which 
consists of a set of nodes interconnected by a set of edges). Each object is either 
a node, a connector (between two nodes) or a description (i.e. a subordinate 
of another object). Places and transitions are nodes, arcs are connectors, while 
all the net inscriptions are descriptions. In addition to the PN-objects (e.g. 
places, transitions, arcs and net inscriptions), which are formal parts of the 
model there may also be auxiliary objects which have no formal meaning but 
play the role of comments. 

It is possible for the user to determine, in great detail, how he wants the 
PN-graph to look. One of the most attracting features of Petri nets is the very 
appealing graphical representation. In the GPN-editor each object has its own 
set of attributes which determine e.g. the position, shape, size and line colour. 
When a new object is constructed the attributes are determined by a set of 
defaults (each object type has its own set of defaults). At any time the user 
can change one or more attributes for each individual object. All options in the 
GPN-editor have defaults and these can be changed by the user. 

The GPN-editor supports hierarchical Petri nets (for the moment it supports 
substitution transitions and places in the sense ofValette (1978)) and this means 
that each PN-graph can contain a number of pages. Each page is displayed in 
its own screen. The page objects can be moved and modified in exactly the 
same way as other types objects, and this means that the user can determine 
how the page hierarchy looks. 

The hierarchies in a PN-graph can be constructed in many different ways ­
ranging from a pure top-down approach to a pure bottom-up: Part of a page 
can by a single editor operation be moved to a new subpage: The user selects 
the nodes to be moved and invokes the operation, then the editor checks the 
legality of the selection, creates the new page, moves the subnet, and creates a 
hierarchy inscription for it. 

There is also an editor operation to turn an existing node into a supernode 
(by relating it to a new page). The user invokes the operation, then the editor 
makes the hierarchy page active and enters a mode in which the user, by means 
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of the mouse or the keyboard, can construct the desired subpage. To destroy 
the hierarchical relationship between a supernode and a subpage the user simply 
deletes the corresponding page. 

The user works with a high-resolution raster graphical screen and a mouse. 
For the moment PN-tools has been implemented on IBM PC machines- and 
they can easily be moved to other machines running DOS (e.g. Apollo 700 work 
stations). It is recommended, but not necessary, to have a large colour screen. 
The PN-graph under construction can be seen in a number of screens (where it 
looks as close as possible to the final output obtained by a printer or a plotter). 
The editor is menu driven and has self-explanatory option names. The user 
moves and resizes the objects by direct manipulation - i.e. by means of the 
mouse (instead of typing coordinates and object identification numbers on the 
keyboard). This also applies to the pages which can be opened, closed, scrolled, 
scaled and deleted. When the user deletes a page connector the corresponding 
hierarchical relationship is destroyed (and thus the corresponding supernodes 
become ordinary nodes). 

One important difference between the GPN-editor and many other drawing 
programs is the possibility to work with layers (groups) of objects. This means 
that the user is able to select a set of objects and simultaneously change the 
attributes, delete the objects, copy them, or move them. The user can select 
layers in many different ways (e.g. by dragging the mouse over a rectangular 
area or by pressing a key while he points to a sequence of objects). The GPN­
editor allows the user to perform operations on layers in exactly the same way as 
they can be performed on individual objects (there are only very few operations 
which do not make sense for layers)- and this has the same effect as when the 
corresponding operation is performed on each layer member one at time. All 
members of a layer have to belong to the same page. 

In the design of the GPN-editor it has been important for us to make it as 
flexible as possible. As described above, this means that it is possible to con­
struct PN-graphs which look very differently. However, it also means that each 
graph can be created in many different ways. One example of this principle is 
the variety of ways in which the page hierarchy can be construct ed. Another 
example is the fact that the GPN-editor allows the user to construct various 
objects in many different orders: Some users prefer first to construct the net 
structure (i.e . the places, transitions and arcs). Later they add the net inscrip­
tions . Other users prefer to create templates. Then they create the graph by 
copying the appropriate templates to the desired positions and modifying the 
text (if necessary). Finally, most users work in a way which is a mixture of the 
possibilities described above. We think that this kind of flexibility - where the 
user controls the detailed planning of the editing process - is extremely impor­
tant for a good tool. Thus the GPN-editor has been designed to allow most 
operations to be performed in several different ways. 

A PN-graph contains several different kinds of information and this means 
tL ··' '! ,, .ndividual pagPc~ ·.·ery easily become cluttered. To avoid this the user 
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is allowed to make some information invisible (without changing the semantics 
of the objects to which that information are attached). As an example the user 
may hide the capacities of all places. 

It should be noticed that the generality of the GPN-editor means that the 
user can create various graphs, diagrams, and it also is possible to produce bad 
nets. We do not believe it is sensible to try to construct a tool which makes it 
impossible to produce such objects. Such a tool will, in our opinion, inevitably 
be far too rigid and inflexible. However, we do of course believe that the tool 
should make it easy for the user to make good nets. 

There are many other facilities in the GPN-editor: operations to open, close, 
save and print graphs. It is also the intention to allow the user to save part of 
a graph and later load it into another graph. In this way it will be possible to 
create libraries of reusable submodels. There is an operation to check the syntax 
of the PN-graph, see further on, operations which assist the user to select the 
object, move objects to another positions (on the same page), change object 
size, merge a group of nodes into a single node, duplicate a node (by using the 
command on a group of nodes, it is possible to get a subnet which is identical 
to an existing subnet), hide and show objects and change the graphical layering 
of the objects, operations to redraw the page hierarchy -when this has become 
too cluttered, operations to select groups, and other ones which make it easy to 
create arcs with right angles and vertical/horizontal segments. 

Any operation preserves the syntactical correctness of the net. For instance, 
deleting a place a lso deletes the adjacent arcs. The nets can be output in a terse 
text format, a verbose text format suitable for careful checking, and graphically. 

The GPN-editor can be used at many different skill levels. Casual and novice 
users only have to learn and apply a rather small subset of total facilities. The 
more frequent and experienced users gradually learn how to use the editor more 
efficiently: All the more commonly used commands can be invoked by means of 
key shortcuts. 

Finally, it should be mentioned that the GPN-editor is designed to work with 
large PN-graphs - i.e. graphs the size of which is practically only restricted by 
the main storage capacity of the given computer. 

In particular, the GPN-editor has the following main editor functions (cf. 
Jensen (1987): 

• add, delete place, transition and arc, 
o edit marking and capacity of places, 
• create nodes with refinements, i.,e. they may be made to represent a subnet 

(thus, a net may be structured hierarchically by the user), 
• rescale nodes, 
• name places and transitions, 
• reposition nodes (if a node is repositioned, all its arcs are automatically 

adjusted too), 
• add, delete and reposition text comments, 
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• associate text comment with places, transitions, arcs and the net, 
• move, copy, delete, save, load subparts of the net, 
• rotate and symmetry subparts of the net, 
• rescale the entire net or a subnet (this changes both the view and the final 

product), 
• merge subnets into single net, 
• refine net nodes, 
• create, modify and draw net layers, 
• set up attributes of net layers, 
• name and select views of the net, 
• redraw the net, 
• produce output at different quality and speed (it also is possible to output 

only part of a net), 
• use grid for aligning items, 
• save/load file to/from disk, 
• construct the different textual representations of a net. 

Syntax check The GPN-editor is syntax directed- in the sense that it rec­
ognizes the structure of Petri nets and prevents the user from making many 
kinds of syntax errors. This is done by means of a large number of built-in 
syntax restrictions. All the built-in restrictions deal with the net structure and 
hierarchical relationships. As examples, it is impossible to make an arc between 
two transitions (or between two places), and to create an illegal structure in the 
substitution hierarchy. These restrictions are necessary in order to guarantee 
that the PN-graph has a well-defined semantics- and thus they must be fulfilled 
before a simulation (and other kinds of behavioural analysis) is performed. 

All the net structure checking is done by the GPN-editor and it is the error 
messages of this editor which is presented to the user. These messages are easy 
to understand and use Petri net terminology. 

The GPN-editor allows the user to give each page, transition and place a 
name (i.e. a text string) and a number. It should, however, be understood 
that these names have no semantic meaning. Names are used in the feedback 
information from the editor to the user. To make this information unambiguous 
it is recommended to keep names unique. Many users have a large number of 
transitions and places with an empty name (and this is no problem, as long as 
the current net is not used in making a simulation). 

The possibility of performing an automatic syntax check means that the user 
has a much better chance of getting a consistent and error-free PN-graph. This 
is very useful - also in situations where the user is not interested in making a 
simulation (or other kinds of machine assisted behavioural analysis). 
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3.4. Graphical Petri net simulator 

The GPN-editor and the graphical Petri net simulator (the GPN-simulator) are 
two different parts of the same program and they are closely integrated with 
each other. The GPN-simulator is able to work with large Petri nets, e.g. Petri 
nets with 25 screens of a monitor. 

The GPN-simulator, during the execution of a simulation step, goes through 
three different phases: First it makes a selection (according to a choice of a 
strategy) between enabled transitions, then it removes and adds tokens at the 
input/output places of the occurring transitions, and finally it calculates the 
new enabling. 

The user must be able to follow the on-going simulation - and it is obvious 
that no screen (or set of screens) will be able simultaneously to display all page 
instances of a large model. Like the editor, the GPN-simulator uses a screen for 
each hierarchy page and on this screen the simulator displays the subnet of one 
of the corresponding hierarchy page. 

When the transitions (a transition) occur(s) the simulator automatically 
displays the corresponding page screen (if necessary), brings it on top of the 
subnet, and scrolls the screen so that the transition(s) becomes (become) visible. 
The user can, however, tell that he does not want to observe all page hierarchies. 
In that case the simulator still executes the transitions of the non-observed page 
hierarchies but this cannot be seen by the user. The user can also work in this 
way that he asks the simulator to pause after each simulation step. At each 
breakpoint the user can investigate the system state (and decide whether he 
wants to continue or cancel the remaining part of the simulation). 

It is possible to perform both manual and automatic simulations. In 
a manual simulation the simulator calculates and displays the enabling, the 
user chooses the occurrence transitions to be executed and finally the simulator 
calculates the effect of the chosen step. During the construction of a step, the 
simulator assists the user in many different ways, e.g. the simulator always shows 
the current enabling (and updates it each time a new occurrence transition is 
added/removed at the step). In an automatic simulation the simulator chooses 
among the enabled occurrence transitions like by means of a random number 
generator. It is possible to specify how large each step should be: It may contain 
a single occurrence transition or as many as possible. 

The user can, at any time during a simulation, change between manual and 
automatic simulation. It is usual to apply more of manual simulation modes 
early in a project (e.g. when a design is being created and investigated) while 
the automatic modes are more used in the later phases (e.g. when the design 
is being validated) . There are many other facilities in the GPN-simulator: An 
operation that proposes a step (which can be inspected and modified by the 
user before it is executed); operations to return to the initial marking of the PN­
graph and to change the current marking of an arbitrary place (this means t hat 
it often is possible to continue a simulation in the case where a minor modelling 
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error is encountered); an op-eration to save system states. Moreover, the earlier 
comments about different skill levels and a consistent and self-explanatory user 
interface also apply to the GPN-simulator. 

Finally, it should be mentioned that many modellers use simulation during 
the construction of PN-graphs. It is thus very important that it is reasonably 
fast to shift between the editor and the simulator (and that it is possible to 
simulate selected parts of a large model) . 

3. 5. Analysers 

The proof of the correctness of a system specification in a Petri net based lan­
guage usually is d'one in twosubsteps. First, the underlying net is analysed with 
respect to basic dynamic and structural properties such as safeness, bounded­
ness, liveness, conflicts, resetability, deadlock and livelock avoidance, holding of 
facts and the resetability or coverability of certain (wanted or unwanted) states, 
moreover, some structural properties such as coverability by invariants or special 
type subnets (like strongly connected state machines) are tested. Next, using 
the results of such an analysis the correctness of the complete model is verified. 
It appears, that it is rather difficult, if not impossible, to do this in a systematic 
way. But, the more information has been collected and the more design errors 
have been detected during the analysis and simulation of the underlying Petri 
net, the easier the second substep is to carry out. 

This part of PN-tools is to analyse Petri nets with respect to the structural 
and dynamic properties. 

3.5.1. Structure checking and liveness 

For testing structural properties from which, in case of ordinary Petri nets, 
liveness properties follow, the modules APROPE, ALVDTP and ASMCTE are 
available. 

If one is given an unknown net, using the program APROPE one can ob­
tain information on elementary net properties such as: the number of places 
(transitions), the minimal (maximal) number of the net nodes, as well as the 
maximal entrance (exit) degree of the net nodes. One can check basic structural 
properties. Additionally, it is tested, whether the read-in net considered as an 
undirected graph, is connected. 

If a net is an ordinary one the program ALVDTP checks first whether it 
is a state machine, a free-choice net, an extended free-choice, and an extended 
simple net. These properties are related with the liveness via the deadlock­
trap-property (see Reisig, 1985). Then the minimal deadlocks are computed. If 
there exists a dean deadlock, the net is not live. Next, the possible conclusion 
connected with the liveness of a net follows: 

1. If a given net is an extended simple net and the deadlock-trap-property 
holds, then a net is live Holt, et al. (197 4). 
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2. If a given net is an extended free-choice and the deadlock-trap-property 
does not hold, then a net is not live Commoner, (1972). 

3. If for a given net the deadlock-trap-property holds, then no dead marking 
can be reached. 

Moreover, the m<;>dule ALVDTP checks whether the net is a state machine 
decomposable (which implies that it is bounded under any initial marking) and, 
in this case, whether it is a state machine allocable (from which we can conclude 
that it admits a live marking). If the net is a state machine allocable the initial 
marking is examined whether it marks any strongly connected state-machine 
component, in this case, the net is live. 

The module ASMCTE decides whether a given net is a state machine cov­
erable, i.e. coverable by components which are state machines. 

3.5.2. Reachability graph analysis 

In the modules described above possible conclusions to the dynamic properties 
are drawn from the structural properties on the basis of an initial marking. 
If there are no information for such conclusions, we have to investigate the 
reachability graph. 

The module ACGDTM computes the coverability graph, Karp, Miller (1969), 
which is identical with the reachability graph in the case of a bounded net. There 
by, this module provides full information on the boundedness and coverability 
properties of a given net. Besides, ACGDTM shows the dead transitions and 
markings. 

The module AREACT tests a marking which has to be initially input from 
the terminal for reachability. If a given marking is reachable, then a correspond­
ing path is output. 

Liveness, conflicts and resetability of bounded Petri nets can be examined by 
using the module ALCTRE. First, this module builds the reachability graph. 
If a dead marking is found, ALCTRE ends with a corresponding indication, 
otherwise it is checked whether there are the dead transitions. If no dead mark­
ings can be reached, the resetability is tested. If a net is not resetable, a list 
of nonresetable markings is output. Then, the module checks at each reachable 
marking at which several transitions have concession whether one of these tran­
sitions takes the concession of another upon firing. The obtained conflicts are 
printed in a table. 

The module ARGRTE computes the reachability graph for bounded nets. 
It also lists the dead transitions at an initial marking as well as dead markings. 
The module writes the reachability graph to a file whereby dead markings and 
dead transitions are indexed. 

If a given net is not bounded, the number of an unbounded place is output . 
The module APRIOR treats the priority nets. The priorities are requested 

in the beginning and can be read from the terminal. This module works (under 
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the priority firing rule) like ARGRTE. The test for boundedness is omitted, 
because this property is undecidable for the priority nets. 

3.6. Reducer 

The module REDUC can be used to reduce the size of the given net, so that it 
becomes analysable by modules from ANALYSER subsystem, and it can be used 
to find an equivalent small net with known properties. This module implements 
the most essential local reduction steps known from the literature, e.g. 

• merging of nodes which share all predecessors and successors, 
• fusion of equivalent places, 
• reduction of different kinds of place/transition chains. 

Various reduction steps of a net are offered in the menu of the program 
REDUC. 

3.7. Verifiers 

This subsystem provides tools for the verification of Petri net models. By ver­
ification we mean the proof that certain desired system properties hold in the 
Petri net model. 

The verification method is as follows. First, we compute a basis for the 
space of all (nonnegative) place (transition) invariants. Next, from this we can 
derive information on boundedness, liveness and livelock properties, moreover, 
in general invariants have an interpretation in terms of the modeled system 
which can be useful for its verification. It is worth to reflect that several con­
clusions derived from invariants are related only to nonnegative invariants (e.g. 
net coverability by P-invariants) . 

This subsystem consists of the modules VCOMPO, VINALL, and VINTES. 

3.7.1. Components of a net 

If a net model is generated by synchronizing subnets modeling e.g. sequential 
subprocesses, then the investigation whether all subprocesses participate in the 
total process and whether they enter it structurally (as a component) is part of 
the verification of the total system. This verification problem is supported by 
VCOMPO. 

3.7.2. Computation of invariants 

A basis for the set of all place (transition) invariants is computed by the module 
VINALL. The set of all invariants is the set of vectors generated by arbitrary 
linear combinations from the computed set . This module also computes a basis 
for the set of nonnegative place (transition) invariants. Correspondingly, the set 
of all nonnegative invariants is the set of vectors that can be generated from the 
computed set by means of linear combinations with nonnegative coefficients. 
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A system of generators for the set of nonnegative subinvariants (surinvari­
ants) of places and transitions, respectively, can also be computed by the module 
VINALL. In this case, too, the set of all invariants of the type considered is the 
set of vectors that can be generated by linear combinations with nonnegative 
coefficients. In order to save time, the set computed here might be not mini­
mal. On the other hand, restriction of storage may lead to doing without the 
completeness of the computed set ( coverable invariants are deleted). However, 
in this case each of the invariants being of interest is coverable by one of the 
invariants that can be generated from the computed set. 

3.7.3. Invariant test 

The module VINTES permits to check the properties of place and transition 
vectors, respectively. It shows whether the vector investigated is an invariant, a 
subinvariant or a surinvariant. Moreover, it can be tested which values the single 
equations yield for this vector. The process of computation of these equations 
is written out. 

First, for a given net to be read-in it has to be indicated. Then the user can 
select whether place or transition vectors will be tested. As for VINALL the 
incidence matrix (at a transition vector) and its transposed matrix (at a place 
vector), respectively, is built up. 

3.8. Extensions to the net analysing modules 

When working with our Petri net analyser (PN-analyser) we have found it dif­
ficult to model complex systems with PT-nets, because the nets are often large 
and it is not quite easy to see all the interactions between the nodes of the net. 
Due to that we have found it necessary to use extended nets for our modeling 
purposes; but then we need an analyser for those nets. 

The fastest way to construct an analyser is to use existing programs as much 
as possible. Therefore our first step to enable the analysis of extended nets is 
to translate them into PT-nets and to use our PN-analyser. All we need is an 
automatic extended Petri net- to the Petri net translator (the PN-translator). 
The PN-translator is implemented first for : self-modifying nets, priority nets, 
nets with inhibitor arcs and some subclass of PT-nets. The PN-translator has 
the following tasks: 

• it forms aPT-net corresponding to a given SM-net (IA-net, P-net), 
• it maps the initial marking of the SM-net (IA-net, P-net) into a marking 

of the PT-net, 
• it maps a marking of the PT-net (e.g. a deadlock marking found by the 

PN-analyser) into a marking of the SM-net (IA-net, P-net). 

Using the PN-translator and the PN-analyser will be only a temporary way 
in analysing extended nets (SM-nets, lA-nets, P-nets). But it will be a reality 
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very soon. And after that we can concentrate on implementing an extended 
analyser. 

4. Implementation environment 

PN-tools has been developed under a DOS environment running on IBM PC 
computers. The access to the particular programs can take place from PN-tools 
level. The interaction between the user and the system PN-tools consists only 
of the selection of commands in menus. To each net, we associate the graphic 
representation, two textual representations and several textual files which in­
clude an addition information about a given net; these all files are managed 
in a directory whose name is created in an installation stage of PN-tools. For 
monochromatic graphics the Hercules card is proposed. If colour graphics are 
to be used, then SVGA is preferred. Black and white graphics hardcopy can 
be obtained using e.g. STAR printer. It is also possible to use e.g. ROLAND 
plotter as terminal for obtaining colour graphics hard copy. Moreover, this yields 
much better typographical quality. 

5. Future plans for PN-tools 

5.1. Extensions of PN-tools 

The GPN-editor/-simulator is being extended to handle timed Petri nets, the 
extension of ordinary (classical) Petri nets making it easy to describe systems 
which are time-driven. It will then be possible to use the same net model to 
analyse both logical correctness and time performance of a system. 

The implementation of timed Petri nets will be finished during the second 
half of 1995. Later we will also extend the GPN-editor to allow the user to 
construct and modify Petri nets by means of a set of behaviour preserving 
transformation rules (for more information see Berthelot (1987)) . We will also 
extend the GPN-simulator to handle code segments written in languages such 
as: Pascal and C++ and we will extend the GPN-editor/-simulator to handle 
the other hierarchy constructs and different extensions of Petri nets (e.g. FIFO­
nets, timed and high-level Petri nets). 

5.2. Additional PN-tools 

Additional Petri net tool will be created to support reachability graph analysis. 
The tool will construct in a graphical mode reachability graphs for Petri nets 
and their extensions considered in this paper. It will also assist the user in the 
analysis of the constructed graphs . As described in Section 2.2, a large number of 
system properties can be automatically determined from the reachability graph 
(by inspection of individual markings and from strongly connected components). 
There is, however, also a need to develop more complex search systems by which 
the user can perform an interactive inspection of a large reachability graph. The 
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Petri net reachability graph tool will be able to handle Petri nets mentioned 
above and it will be tightly integrated into the existing PN-tools. It will e.g. be 
possible to ask the GPN-simulator to execute an occurrence sequence which is 
found in the reachability graph - or as the reachability graph analyser to search 
for markings which are identical to or larger than the current marking of the 
GPN-simulator. 

To keep the size of reachability graphs manageable it will be necessary to 
create reachability graphs for selected parts of a large model. The first version 
of the reachability graph tool will be available during 1995. It is, however, 
obvious that this, among other things, will depend upon the priority given to 
the improvement of the new reachability graph tool (and other extensions of 
existing PN-tools). 

Finally we want to develop PN-tools to support reduction and translation 
methods and the analysis of special subclasses and/or extensions of Petri net 
- e.g. as described in Starke (1987). Such tools have, however, lower priority 
than those described above. 

6. Conclusions 

We have presented PN-tools, collecting some of the different kinds of computer 
tools which are needed in the Petri net area. These tools support the user in 
construction of nets (also hierarchical nets), as well as modification and analysis 
in a natural and effective way. Moreover, PN-tools provides the opportunity to 
work not only with textual representations of Petri nets but also directly with 
graphical representations. 

The main point of PN-tools is its extensibility: it is easy to connect other 
tools to the system. PN-tools allows to describe and analyse different kinds 
of nets, owing to a flexible textual and graphical representation of the nets. 
Integrating several tools for designing nets, checking structural and dynamic 
properties, etc., PN-tools provides an environment for design and verification of 
nets. 

There is a large number of different groups who work with the development 
of Petri net tools. However, many of the tools are still research prototypes. 
Only few tools handle many kinds of nets and very few handle hierarchical nets. 
For use in industrial environments, there are only few tools that are powerful 
enough, sufficiently robust, and have the necessary documentation and support. 

It seems that our system presented in the paper is a professional tool which 
is well maintained and offers a stable platform for extensions. 

By using PN-tools, organizations and management consultants obtain a 
method and a tool with which operational procedures and organizational struc­
tures· can be analysed quickly and described in a presentable way. 

Analysts, .system designers and everyone who, in the framework of project 
development, has to describe coherently and vividly complex procedures of sys­
tem engineering on the basis of a theoretical method, are able to carry out their 
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cask in a more economical and time-saving way. 
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