
Control and Cybernetics

vol. 24 (1995) No. 2

PN-tools: environment for the design and analysis of
Petri nets

by

Zbigniew Suraj

Institute of Mathematics
Pedagogical University

Rejtana 16a, 35-310 Rzesz6w
Poland

Petri nets are now widely used in both theoretical analysis and
practical modeling of concurrent systems. The practical use of Petri
nets is strongly dependent upon the existence of adequate computer
tools - helping the user to handle all the details of a large and
complex description. For Petri nets one needs editors as well as
analysis programs. Graphical work stations provide an opportunity
to work directly with the graphical representations of Petri nets .

This paper describes the integrated graphical Petri net tools (in
the following called PN-tools) for construction of nets (also hierar­
chical nets) , as well as modification and analysis. PN-tools allows
us to work with different classes of Petri nets. Several analysis tools
are available for each of these classes. PN-tools is running on IBM
PC microcomputers under MS-DOS operating system.

Keywords: Petri net tools, computer based tools

1. Informal introduction to Petri nets

Petri nets, Petri (1966), are a promising tool for describing and studying in­
formation processing systems that are characterized as being concurrent, asyn­
chronous, nondeterministic, distributed, parallel, and/or stochastic.

Petri nets have been proposed for a very wide variety of applications, Brauer ,
Reisig, Rozenberg (1987a, 1987b), Jensen, Rozenberg (1991), Murata (1989),
Peterson (1981), Proc. Int. Workshop Timed Petri Nets (1985, 1987), Reisig
(1985), Voss, Genrich, Rozenberg (1987).

The use of computer aided tools is a necessity for practical applications of
Petri nets . Most Petri net research groups have their own software packages
and tools to assist the drawing, analysis, and/or simulation of various applica­
t ions. T he papers by Feldbrugge (1986, 1990), Feldbrugge, Jensen (1987, 1991)
provide a good overview of typical Petri net tools . Some of these tools and their

200 7. . SURA.!

applications are discussed in details in Billington, Wheeler, Wilbur-Ham (1988),
Chiola (1985), Jensen et al. (1990), and Starke (1985).

The rest of this paper consists of the following topics. First Petri nets are
introduced by means of a small example and an informal definition of their
structure, behaviour and extensions is presented. Then we describe the hierar­
chical Petri nets. Next we discuss how to analyse Petri nets, how to support
them by various computer tools, and we also describe shortly an implementation
environment: Finally, some conclusions concerning, in particular, future plans
for PN-tools are presented.

1.1. A simple example of Petri net

The Petri net, Reisig (1985), presented in Figure 1 describes a system of reader
and writer processes of an operating system. There is a set of places (drawn
as circles) and a set of transitions (drawn as rectangles). The places and their
tokens represent states, while the transitions represent state changes. However,
each place may contain several tokens.

Now let us take a closer view of the Petri net in this figure. It consists of
two different parts: the net structure and the net inscriptions.

The net structure is a directed graph with two kinds of nodes, places and
transitions, interconnected by arcs~ in such a way that each arc connects two
different kinds of nodes (i.e. a place and a transition) . Such a graph is called a
bipartite directed graph.

Each net inscription is attached to a place, transition or arc. In Figure 1
places have two different kinds of inscriptions: names and initial markings
(which define initial states of Petri nets), while transitions and arcs only have one
kind of inscription: names and arc weights, respectively. All net inscriptions
are positioned next to the corresponding net element, markings are represented
by dots (or cardinals), and can be thought to reside in the places of a Petri net,
while arc weights are represented as cardinals. The arc weight '1' is omitted.

Names of nodes have no formal meaning. They can be omitted and one
can use the same name for several nodes (although this may create confusion).
Names are used in the feedback information from PN-tools to the user, e.g. in
the textual representations of a net . To make the feedback unambiguous, it is
recommended to keep names unique, but this is not enforced. In this paper we
use the capital letters for names of nodes. As explained above each place must
have an initial marking and this determines tokens which may reside on that
place. By convention we omit initial markings which are equal zero.

1.2. Dynamic behaviour of Petri nets

One of the most important properties of Petri nets is that they have a well­
defined semantics which defines the behaviour of the system. The ideas behind

PN-tool s : env iro nment for the des ign and analys is of Petri nets 201

PO: in.t:~oclive processes

P 1: proce:sses "Which are ready

to read

P2: reodlng proce:s:~es

P3: processes "Which eare ready

t.o wrlt.e

P4: wrtt.inJiil: processes

P:'>: synchronization

Figure 1. A system of reader and writer processes of an operating system

the semantics, we shall demonstrate by means of Figure 2 - which contains one
of the transitions from Figure 1.

At first, we check whether the transition is enabled in current marking.
This is done by evaluating all the input arc weights: In the present case the
two arc weights are equal to 1 and k, respectively. Thus we conclude that the
transition is enabled - because each the input places contains a sufficient number
of tokens which the corresponding arc weight evaluates (one token on P3 and k
tokens on P5) . When a transition is enabled it may occur and it then removes
tokens from its input places and adds tokens to its output places. The number
of removed/added tokens are determined by the value of the corresponding arc
weights. An occurrence of the transition removes one token from the place P3,
removes k tokens from P5 and adds one token to P4.

A distribution of tokens (on places) is called a marking. The initial mark­
ing is the marking determined by the initial state of a system. Now we can ask
whether a transition T4 is enabled in a given marking M - and when this is the
case we can speak about the marking M' which is reached by the occurrence
of T4 in M. It should be noticed that several transitions may be enabled in the
same marking. In that case there are two different possibilities: Either there
are enough tokens (so that each transition can get its own share) or there are
too few tokens (so that several transitions have to compete for the same input
tokens). In the first case the transitions are said to be concurrently enabled.
They can occur in the same step and they each remove their own input tokens
and produce their own output tokens. In the second case the transitions are
said to be in conflict with each other and they cannot occur in the same step.

In the initial marking of Figure 1 we observe that the transition, for example,
TO is concurrently enabled with T3. This means that we can have a step where

202 Z. SURA.J

P5 P4

k

T4·

Figure 2. A transition from the system of reader and writer processes

both TO and T3 occur. When it occurs a token is moved from PO to P1 and
a token from PO to P3. It should be noticed that the effect of this step is the
same as when the two transitions occur after each other in an arbitrary order.

For more information about Petri nets see Peterson (1981), Reisig (1985),
or Starke (1990).

1.3. Extensions of Petri nets

In this section, we give the examples of extensions to the Petri net model which
have been implemented in our PN-tools. The simplest extension to Petri nets
are inhibitor arcs (lA-nets), Hack (1975). An inhibitor arc leads from a place
P to a transition T and inhibits the firing ofT if the token load of P is not less
than its multiplicity w. If w > 1, then, additionally, an ordinary arc from P to
T with multiplicity less than w is allowed.

Figure 3 shows the net with inhibitor arc. Note that the inhibitor arc (P1,T1)
is identified by a small circle at one end. Thus in the Petri net of Figure 3,
transition T1 can fire only if there is a token in P2 and P3 and zero tokens in
Pl.

Petri nets with inhibitor arcs are intuitively the most direct approach to
increasing the modeling power of Petri nets. All other extensions to Petri nets
which are defined in this section are in fact equivalent to Petri nets with inhibitor
arcs.

Another extension of Petri nets are the so-called self-modifying, nets (SM­
nets) introduced by Valk (1978) . . The only difference to PT-nets is that the
multiplicity of an arc f can be the name P of a place. In this case, the multiplicity
of the arc f changes with the marking of the place P. At the given marking M

PN-tools : envi ['o nmcnt fo [' t h e design a nd analy s i s o f Petri nets 203

Tl P3

Figure 3. An example of a net with inhibitor arc

Place P

Is empty

Place P
p

i5 not empty

Tl

Figure 4. Using priorities to test if the marking of a place P is zero or nonzero.
Transition Tl has priority over transition T2

the multiplicity off equals M(P), hence it is modified by the firing of transitions.
Petri nets with priorities (P-nets) have been suggested by Hack (1975).

Priorities can be associated with the transition such that if T and T' are both
enabled, then the transition with the highest priority will fire first.

In the case of priorities, we can easily test if a place P is zero. This is
shown in Figure 4. If we put a token into place P = O? and define the priority of
transition Tl to be higher than the priority of transition T2, then we will get a
token in one of the two places at the right depending on the marking of place P.
This results from the fact that transition Tl can fire only if it is enabled, and
it is enabled only if place P has a token. If Tl cannot fire because P is empty,
then, and only then, will transition T2 fire.

1.4. Hierarchical Petri nets

In this small section we give some recommendations for hierarchical nets - the
use of which makes it possible to relate a number of individual nets t o each
other in a formal way (i.e. in a way which has a well-defined semantics and thus
allows formal analysis).

The basic idea behind hierarchical Petri nets is to allow the modeller to
construct a large model by combining a number of small nets into a larger net.

204 Z. SURA.l

It is also possible to translate a hierarchical Petri nets into a non-hierarchical
Petri net. This means that the theoretical modeling powers of these two classes
of nets are the same. However, from a practical point of view, the net classes
have very different properties. To cope with large systems we need to develop
strong structuring and abstraction concepts.

Section 3.3.2 describes some Petri net tool to support the construction and
analysis of hierarchical Petri nets built upon work by Valette (1978).

2. Analysis of Petri nets

The methods for analysing Petri nets can be roughly divided into several cate­
gories: analysis by means of simulation, study of reachability set, transformation
by homomorphism, and invariants. The most straightforward kind of analysis
is simulation - which is very useful for the understanding and debugging of a
system, in particular in the design phase and the early validation phases. There
are, however, also more formal kinds of analysis- by which it is possible to prove
that a given system has a set of desired properties (e.g. absence of deadlock,
the possibility to return to the initial state, and an upper bound on the number
of tokens). This chapter contains a brief introduction to the main ideas behind
the most important analysis methods and it contains references to papers in
which the technical details of these methods can be found.

2.1. Analysis by means of simulation

Simulation can be supported by a computer too or it can be totally manual (e.g.
performed on a blackboard or in the head of the modeller). Simulation can reveal
errors, but in practice never be sufficient to prove the correctness of a system.
Simulation is often used in the design phases and the early investigation of a
system design (while the more formal analysis methods are used for the final
validation of the design). In Section 3.4 we give a detailed description of an
existing graphical Petri net simulator.

2.2. Analysis by means of reachability graphs

The basic idea behind reachability graphs is to construct a graph which contains
a node for each reachable state and an arc for each possible change of state. Ob­
viously such a graph may, even for small Petri nets, become very large - 11· 1

sometimes infinite. Thus it is necessary to construct and analyse the gr<~ :-' :
using automated methods - it is desirable to develop techniques which mak"
it possible to work with reduced reachability graphs without losing too n ·
information. One of the possibilities is reduction by means of covering marK­
ings. This method looks for transition sequences leading from a system state to
a larger system state (one with additional tokens) and the method guarantees
that the reduced reachability graph always becomes finite. The method has,

PN-t.ool ::; : cnvironntcnt for t.hc des ign and il.llnlysi s of Petri nets 205

however, some drawbacks. First of all it only gives a reduction for unbounded
systems (and most practical systems are bounded). Secondly, so much informa­
tion is lost by the reduction that several important properties (e.g. liveness and
reachability) are no longer decidable. For more information see Finkel (1990)
and Karp, Miller (1969).

A reachability graph can be used to prove properties about the modelled
system. For bounded systems a large number of questions can be answered.
Deadlocks, mutual exclusion, reachability and marking bounds can be decided
by a simple search through the nodes of the reachability graph, while liveness
and home markings can be decided by constructing and inspecting the strongly
connected components.

As described above, the reachability graph method can be totally automated
- and this means that the modeller can use the method, and interpret the results,
without having much knowledge about the underlying mathematics. In Section
3.5.2 we describe some Petri net tool to support the calculation and analysis of
reachability graphs.

2.3. Analysis by means of invariants

Invariant analysis allows logical properties of Petri nets to be investigated in
a formal way. There are two dual classes of invariants. A place invariant (P­
invariant) characterises the conservation of a weighted set of tokens, while a
transition invariant (T -invariant) characterises a set of transition sequences hav­
ing no effect, i.e. with identical start and end markings.

The main advantages of invariant analysis are the low computational com­
plexity (in particular, compared to the method of reachability graphs described
in Section 2.2) and easy parametrization with respect to system parameters
(through the definition of different initial markings).

The main drawback is the difficulty to automate the interpretation of in­
variants and the incompleteness (in the sense that it is usually only possible to
calculate either necessary or sufficient conditions, for a given property).

It is desirable to be able to make an automatic computation of invariants.
This can be done by solving a matrix equation. The matrix equation can be
solved by standard Gauss elimination. It is sufficient to find a basis from which
all invariants can be constructed (as linear combinations). By means of invari­
ants it is possible to investigate many different kinds of system properties, e.g.
deadlocks, mutual exclusion and marking bounds. For more details about the
calculation of invariants, see Memmi, Vautherin (1987). Above, we have dis­
cussed how to calculate invariants by solving a matrix equation. The problem
is, however, often of a different nature - because we already have a set of vectors
and just want to verify that these are invariants. This task is much easier and
it can be done totally automatically.

As described above, transition invariants are the duals of place invariants.
Transition invariants can be calculated in a similar way as place invariants.

206 Z. SURA.!

Transition invariants are found by solving a matrix equation (obtained by trans­
posing the matrix used to find place invariants). Each transition invariant is
a solution to the matrix equation. The opposite is, however, not always true.
Transition invariants are used for similar purposes as place invariants (i.e. to
investigate the behavioural properties of Petri nets).

In Section 3.7.2 we describe some Petri net tools to support the computation
and the analysis of invariants.

2.4. Analysis by means of reductions

Petri nets can also be analysed by means of reductions. The basic idea be­
hind this method is to modify a Petri net - without changing a selected set
of properties, e.g. liveness, marking bounds, deadlocks and reachability. The
modification of the net is performed by means of a set of transformations rules
and may be carried out manually, automatically or interactively. In the latter
case the strategy is decided by a person, while the detailed computations and
checks are made by a computer.

The purpose of the transformation is to obtain a small and simple net for
which it is easy to investigate the given properties. A serious problem with
reduction methods is that they often are non-constructive (because the absence
of a property in the reduced net, usually, does not tell much about why the
original net does not have the property. An exception is the reduction method
to calculate place or transition invariants, mentioned in Section 2.3. In this
case it is, from the reduced net, possible to determine a set of the invariants for
the original net - and this means that the analysis results can be interpreted in
terms of the original net. In Section 3.6 a Petri net tool to support the execution
of net reduction based on transformation rules developed by Berthelot (1987)
is described.

2.5. Other methods of analysis

For ordinary Petri nets several kinds of analysis methods are known. One of the
methods uses structural properties, it means properties which can be formulated
without considering the behaviour (i.e. transition sequences) of Petri net to
deduce behavioural properties. For more information see Best (1987).

In Section 3.5.1 we describe a Petri net tool to support the analysis of struc­
tural properties, which is implemented on the basis of the method as mentioned
above.

3. Computer tools for the users of Petri nets

3.1. Why do we need computer tools for Petri nets?

The practical use of Petri nets is strongly dependent upon the existence of ade­
quate computer tools- helping the user to handle all the details of a large and

PN-l.ools: cnvirotunent for the design and analysis o f Petri nets 207

complex description. For Petri nets one needs editors (supporting construction
and modification of Petri nets) as well as analysis programs (supporting dif­
ferent analysis methods), Jensen (1987). Graphical work stations provide an
opportunity to work directly with graphical representations of Petri nets (and
reachability graphs). The most important advantages of using computerized
Petri net tools are, Jensen (1987):

• the possibility to obtain better results,
• the possibility to create faster results,
• the possibility to make interactive presentations of the analysis results,
• the possibility of 'hiding' technical aspects of the Petri net theory inside

the tools,
• the possibility of producing fast results of good quality- without requiring

too deep knowledge of the Petri net theory.

Furthermore it is important to be able to use Petri nets together with other
specification/implementation languages.

3.2. Which tools do we have in PN-tools?

This section contains a general characteristic of PN-tools. As mentioned above,
our integrated computer system PN-tools may be used to help the system de­
signer in proving the correctness of his design. PN-tools consists of four logical
parts:

1. EDITOR/SIMULATOR is a window-based graphical and textual edi­
tor/simulator for entering, exiting, constructing, simulating, and editing
Petri nets.

2. ANALYSER is a set of programs by means of which basic structural
and dynamic properties (see Reisig (1985), Starke (1990)) of nets can be
checked. The results of such analysis allow to detect syntactic (sometimes
even semantic) design errors.
For certain subclasses of PT-nets the structural properties can be used to
deduce dynamic properties.

3. REDUCER is a program to reduce the size of a net (and of its reachability
graph) preserving liveness and boundedness. The use of such program
is necessary if the storage capacity of a given computer system is not
sufficient to analyse a given net. Reduced nets are thus made accessible
for treatment by ANALYSER.

4. VERIFIER is a subset of programs which calculate the invariants and
other structural information (e.g. state machine components) from a given
net which reflect certain structural properties of the modelled system.
Invariant analysis can be done by computing generator sets of all P-IT­
invariants and of all nonnegative invariants. Vectors can be tested for
invariant properties.

208 Z. SURA.T

3.3. Editors

To be able to work with practical applications of Petri nets - in an effective
way - the user needs all the tools mentioned above. In particular, for Petri
nets there is a need for tools supporting construction of nets, as well as mod­
ification. Graphical work stations provide the opportunity to work - not only
with textual representations of Petri nets- but also directly with the graphical
representations.

This section describes the textual Petri net editor (TPN-editor) and the
graphical Petri net editor (GPN-editor) belonging to our PN-tools.

Generally, these editors are a computer aid developed for creation, manip­
ulation and simulation of Petri nets. They are based on place/transition nets,
self-modifying nets, priority nets, and nets with inhibitor arcs.

3.3.1. Textual Petri net editor

The user needs textual editors to be able to construct and modify Petri nets,
working directly with their mathematical representation. This representation
can be expressed by flow relations, incidence matrices, functions, etc.

The TPN-editor is a program belonging to the part EDITOR/ SIMULA­
TOR. This program realizes Petri nets the size of which is only restricted by
the main storage capacity of the given computer. It allows the user to construct,
combine, refine, modify and syntactically check Petri nets and their extensions
considered in this paper. The nets can be read-in from a file or the terminal.
The generated nets can be stored in files.

The TPN-editor enables us, in particular, to execute the following opera-
tions:

• reading a net from a file;
• deleting the places or transitions;
• deleting the arcs;
• changing a net number;
• changing multiplicities;
• output of a net to the terminal;
• writing a net to a file;
• changing a marking;
• changing a place number or a transition number;
• raising all the place numbers (transition numbers respectively) by a span

(to make two place/transition sets disjoint);
• gluing together two nets at their common transitions;
• merging two nets by merging common nodes and arcs;
• refining nodes by nets.

Moreover, the TPN-editor has many of the facilities provided by normal
word processing systems.

PN- t ools : e nvironme nt fo r the des ign and analys is of Petri n e t s 209

3.3.2. Graphical Petri net editor

General information A nice aspect of Petri nets is the fact that they can be
graphically represented and that one can visualize the states reached during an
execution. From users' experience a graphical editor is an absolute necessity if
people are to effectively use Petri nets. Increasingly, graphic description tech­
niques play a significant role in the fields of analysis, system specification, and
documentation. However, creation of graphics is quite expensive without rele­
vant computer support and proves very inflexible in the case of modifications.
Moreover it seems natural to use a dialogue, which is close to the operations
performed, if the net was drawn by hand on a piece of paper.

A Petri net constructed by means of the GPN-editor is called a PN-graph
and it consists of several types of graphical objects. In this paper, the word
graph denotes the mathematical concept of a graph (i.e. a structure which
consists of a set of nodes interconnected by a set of edges). Each object is either
a node, a connector (between two nodes) or a description (i.e. a subordinate
of another object). Places and transitions are nodes, arcs are connectors, while
all the net inscriptions are descriptions. In addition to the PN-objects (e.g.
places, transitions, arcs and net inscriptions), which are formal parts of the
model there may also be auxiliary objects which have no formal meaning but
play the role of comments.

It is possible for the user to determine, in great detail, how he wants the
PN-graph to look. One of the most attracting features of Petri nets is the very
appealing graphical representation. In the GPN-editor each object has its own
set of attributes which determine e.g. the position, shape, size and line colour.
When a new object is constructed the attributes are determined by a set of
defaults (each object type has its own set of defaults). At any time the user
can change one or more attributes for each individual object. All options in the
GPN-editor have defaults and these can be changed by the user.

The GPN-editor supports hierarchical Petri nets (for the moment it supports
substitution transitions and places in the sense ofValette (1978)) and this means
that each PN-graph can contain a number of pages. Each page is displayed in
its own screen. The page objects can be moved and modified in exactly the
same way as other types objects, and this means that the user can determine
how the page hierarchy looks.

The hierarchies in a PN-graph can be constructed in many different ways ­
ranging from a pure top-down approach to a pure bottom-up: Part of a page
can by a single editor operation be moved to a new subpage: The user selects
the nodes to be moved and invokes the operation, then the editor checks the
legality of the selection, creates the new page, moves the subnet, and creates a
hierarchy inscription for it.

There is also an editor operation to turn an existing node into a supernode
(by relating it to a new page). The user invokes the operation, then the editor
makes the hierarchy page active and enters a mode in which the user, by means

210 Z. SURA.l

of the mouse or the keyboard, can construct the desired subpage. To destroy
the hierarchical relationship between a supernode and a subpage the user simply
deletes the corresponding page.

The user works with a high-resolution raster graphical screen and a mouse.
For the moment PN-tools has been implemented on IBM PC machines- and
they can easily be moved to other machines running DOS (e.g. Apollo 700 work
stations). It is recommended, but not necessary, to have a large colour screen.
The PN-graph under construction can be seen in a number of screens (where it
looks as close as possible to the final output obtained by a printer or a plotter).
The editor is menu driven and has self-explanatory option names. The user
moves and resizes the objects by direct manipulation - i.e. by means of the
mouse (instead of typing coordinates and object identification numbers on the
keyboard). This also applies to the pages which can be opened, closed, scrolled,
scaled and deleted. When the user deletes a page connector the corresponding
hierarchical relationship is destroyed (and thus the corresponding supernodes
become ordinary nodes).

One important difference between the GPN-editor and many other drawing
programs is the possibility to work with layers (groups) of objects. This means
that the user is able to select a set of objects and simultaneously change the
attributes, delete the objects, copy them, or move them. The user can select
layers in many different ways (e.g. by dragging the mouse over a rectangular
area or by pressing a key while he points to a sequence of objects). The GPN­
editor allows the user to perform operations on layers in exactly the same way as
they can be performed on individual objects (there are only very few operations
which do not make sense for layers)- and this has the same effect as when the
corresponding operation is performed on each layer member one at time. All
members of a layer have to belong to the same page.

In the design of the GPN-editor it has been important for us to make it as
flexible as possible. As described above, this means that it is possible to con­
struct PN-graphs which look very differently. However, it also means that each
graph can be created in many different ways. One example of this principle is
the variety of ways in which the page hierarchy can be construct ed. Another
example is the fact that the GPN-editor allows the user to construct various
objects in many different orders: Some users prefer first to construct the net
structure (i.e . the places, transitions and arcs). Later they add the net inscrip­
tions . Other users prefer to create templates. Then they create the graph by
copying the appropriate templates to the desired positions and modifying the
text (if necessary). Finally, most users work in a way which is a mixture of the
possibilities described above. We think that this kind of flexibility - where the
user controls the detailed planning of the editing process - is extremely impor­
tant for a good tool. Thus the GPN-editor has been designed to allow most
operations to be performed in several different ways.

A PN-graph contains several different kinds of information and this means
tL ··' '! ,, .ndividual pagPc~ ·.·ery easily become cluttered. To avoid this the user

PN-tools : environment for the des ign l\nd analysis of Petri n ets 211

is allowed to make some information invisible (without changing the semantics
of the objects to which that information are attached). As an example the user
may hide the capacities of all places.

It should be noticed that the generality of the GPN-editor means that the
user can create various graphs, diagrams, and it also is possible to produce bad
nets. We do not believe it is sensible to try to construct a tool which makes it
impossible to produce such objects. Such a tool will, in our opinion, inevitably
be far too rigid and inflexible. However, we do of course believe that the tool
should make it easy for the user to make good nets.

There are many other facilities in the GPN-editor: operations to open, close,
save and print graphs. It is also the intention to allow the user to save part of
a graph and later load it into another graph. In this way it will be possible to
create libraries of reusable submodels. There is an operation to check the syntax
of the PN-graph, see further on, operations which assist the user to select the
object, move objects to another positions (on the same page), change object
size, merge a group of nodes into a single node, duplicate a node (by using the
command on a group of nodes, it is possible to get a subnet which is identical
to an existing subnet), hide and show objects and change the graphical layering
of the objects, operations to redraw the page hierarchy -when this has become
too cluttered, operations to select groups, and other ones which make it easy to
create arcs with right angles and vertical/horizontal segments.

Any operation preserves the syntactical correctness of the net. For instance,
deleting a place a lso deletes the adjacent arcs. The nets can be output in a terse
text format, a verbose text format suitable for careful checking, and graphically.

The GPN-editor can be used at many different skill levels. Casual and novice
users only have to learn and apply a rather small subset of total facilities. The
more frequent and experienced users gradually learn how to use the editor more
efficiently: All the more commonly used commands can be invoked by means of
key shortcuts.

Finally, it should be mentioned that the GPN-editor is designed to work with
large PN-graphs - i.e. graphs the size of which is practically only restricted by
the main storage capacity of the given computer.

In particular, the GPN-editor has the following main editor functions (cf.
Jensen (1987):

• add, delete place, transition and arc,
o edit marking and capacity of places,
• create nodes with refinements, i.,e. they may be made to represent a subnet

(thus, a net may be structured hierarchically by the user),
• rescale nodes,
• name places and transitions,
• reposition nodes (if a node is repositioned, all its arcs are automatically

adjusted too),
• add, delete and reposition text comments,

212 Z. SURA.J

• associate text comment with places, transitions, arcs and the net,
• move, copy, delete, save, load subparts of the net,
• rotate and symmetry subparts of the net,
• rescale the entire net or a subnet (this changes both the view and the final

product),
• merge subnets into single net,
• refine net nodes,
• create, modify and draw net layers,
• set up attributes of net layers,
• name and select views of the net,
• redraw the net,
• produce output at different quality and speed (it also is possible to output

only part of a net),
• use grid for aligning items,
• save/load file to/from disk,
• construct the different textual representations of a net.

Syntax check The GPN-editor is syntax directed- in the sense that it rec­
ognizes the structure of Petri nets and prevents the user from making many
kinds of syntax errors. This is done by means of a large number of built-in
syntax restrictions. All the built-in restrictions deal with the net structure and
hierarchical relationships. As examples, it is impossible to make an arc between
two transitions (or between two places), and to create an illegal structure in the
substitution hierarchy. These restrictions are necessary in order to guarantee
that the PN-graph has a well-defined semantics- and thus they must be fulfilled
before a simulation (and other kinds of behavioural analysis) is performed.

All the net structure checking is done by the GPN-editor and it is the error
messages of this editor which is presented to the user. These messages are easy
to understand and use Petri net terminology.

The GPN-editor allows the user to give each page, transition and place a
name (i.e. a text string) and a number. It should, however, be understood
that these names have no semantic meaning. Names are used in the feedback
information from the editor to the user. To make this information unambiguous
it is recommended to keep names unique. Many users have a large number of
transitions and places with an empty name (and this is no problem, as long as
the current net is not used in making a simulation).

The possibility of performing an automatic syntax check means that the user
has a much better chance of getting a consistent and error-free PN-graph. This
is very useful - also in situations where the user is not interested in making a
simulation (or other kinds of machine assisted behavioural analysis).

PN-tools: environment for the design a nd analys.is of Petri nets 213

3.4. Graphical Petri net simulator

The GPN-editor and the graphical Petri net simulator (the GPN-simulator) are
two different parts of the same program and they are closely integrated with
each other. The GPN-simulator is able to work with large Petri nets, e.g. Petri
nets with 25 screens of a monitor.

The GPN-simulator, during the execution of a simulation step, goes through
three different phases: First it makes a selection (according to a choice of a
strategy) between enabled transitions, then it removes and adds tokens at the
input/output places of the occurring transitions, and finally it calculates the
new enabling.

The user must be able to follow the on-going simulation - and it is obvious
that no screen (or set of screens) will be able simultaneously to display all page
instances of a large model. Like the editor, the GPN-simulator uses a screen for
each hierarchy page and on this screen the simulator displays the subnet of one
of the corresponding hierarchy page.

When the transitions (a transition) occur(s) the simulator automatically
displays the corresponding page screen (if necessary), brings it on top of the
subnet, and scrolls the screen so that the transition(s) becomes (become) visible.
The user can, however, tell that he does not want to observe all page hierarchies.
In that case the simulator still executes the transitions of the non-observed page
hierarchies but this cannot be seen by the user. The user can also work in this
way that he asks the simulator to pause after each simulation step. At each
breakpoint the user can investigate the system state (and decide whether he
wants to continue or cancel the remaining part of the simulation).

It is possible to perform both manual and automatic simulations. In
a manual simulation the simulator calculates and displays the enabling, the
user chooses the occurrence transitions to be executed and finally the simulator
calculates the effect of the chosen step. During the construction of a step, the
simulator assists the user in many different ways, e.g. the simulator always shows
the current enabling (and updates it each time a new occurrence transition is
added/removed at the step). In an automatic simulation the simulator chooses
among the enabled occurrence transitions like by means of a random number
generator. It is possible to specify how large each step should be: It may contain
a single occurrence transition or as many as possible.

The user can, at any time during a simulation, change between manual and
automatic simulation. It is usual to apply more of manual simulation modes
early in a project (e.g. when a design is being created and investigated) while
the automatic modes are more used in the later phases (e.g. when the design
is being validated) . There are many other facilities in the GPN-simulator: An
operation that proposes a step (which can be inspected and modified by the
user before it is executed); operations to return to the initial marking of the PN­
graph and to change the current marking of an arbitrary place (this means t hat
it often is possible to continue a simulation in the case where a minor modelling

214 Z. SURAJ

error is encountered); an op-eration to save system states. Moreover, the earlier
comments about different skill levels and a consistent and self-explanatory user
interface also apply to the GPN-simulator.

Finally, it should be mentioned that many modellers use simulation during
the construction of PN-graphs. It is thus very important that it is reasonably
fast to shift between the editor and the simulator (and that it is possible to
simulate selected parts of a large model) .

3. 5. Analysers

The proof of the correctness of a system specification in a Petri net based lan­
guage usually is d'one in twosubsteps. First, the underlying net is analysed with
respect to basic dynamic and structural properties such as safeness, bounded­
ness, liveness, conflicts, resetability, deadlock and livelock avoidance, holding of
facts and the resetability or coverability of certain (wanted or unwanted) states,
moreover, some structural properties such as coverability by invariants or special
type subnets (like strongly connected state machines) are tested. Next, using
the results of such an analysis the correctness of the complete model is verified.
It appears, that it is rather difficult, if not impossible, to do this in a systematic
way. But, the more information has been collected and the more design errors
have been detected during the analysis and simulation of the underlying Petri
net, the easier the second substep is to carry out.

This part of PN-tools is to analyse Petri nets with respect to the structural
and dynamic properties.

3.5.1. Structure checking and liveness

For testing structural properties from which, in case of ordinary Petri nets,
liveness properties follow, the modules APROPE, ALVDTP and ASMCTE are
available.

If one is given an unknown net, using the program APROPE one can ob­
tain information on elementary net properties such as: the number of places
(transitions), the minimal (maximal) number of the net nodes, as well as the
maximal entrance (exit) degree of the net nodes. One can check basic structural
properties. Additionally, it is tested, whether the read-in net considered as an
undirected graph, is connected.

If a net is an ordinary one the program ALVDTP checks first whether it
is a state machine, a free-choice net, an extended free-choice, and an extended
simple net. These properties are related with the liveness via the deadlock­
trap-property (see Reisig, 1985). Then the minimal deadlocks are computed. If
there exists a dean deadlock, the net is not live. Next, the possible conclusion
connected with the liveness of a net follows:

1. If a given net is an extended simple net and the deadlock-trap-property
holds, then a net is live Holt, et al. (197 4).

PN-tool s : environment for the design and analysis of Petri nets 215

2. If a given net is an extended free-choice and the deadlock-trap-property
does not hold, then a net is not live Commoner, (1972).

3. If for a given net the deadlock-trap-property holds, then no dead marking
can be reached.

Moreover, the m<;>dule ALVDTP checks whether the net is a state machine
decomposable (which implies that it is bounded under any initial marking) and,
in this case, whether it is a state machine allocable (from which we can conclude
that it admits a live marking). If the net is a state machine allocable the initial
marking is examined whether it marks any strongly connected state-machine
component, in this case, the net is live.

The module ASMCTE decides whether a given net is a state machine cov­
erable, i.e. coverable by components which are state machines.

3.5.2. Reachability graph analysis

In the modules described above possible conclusions to the dynamic properties
are drawn from the structural properties on the basis of an initial marking.
If there are no information for such conclusions, we have to investigate the
reachability graph.

The module ACGDTM computes the coverability graph, Karp, Miller (1969),
which is identical with the reachability graph in the case of a bounded net. There
by, this module provides full information on the boundedness and coverability
properties of a given net. Besides, ACGDTM shows the dead transitions and
markings.

The module AREACT tests a marking which has to be initially input from
the terminal for reachability. If a given marking is reachable, then a correspond­
ing path is output.

Liveness, conflicts and resetability of bounded Petri nets can be examined by
using the module ALCTRE. First, this module builds the reachability graph.
If a dead marking is found, ALCTRE ends with a corresponding indication,
otherwise it is checked whether there are the dead transitions. If no dead mark­
ings can be reached, the resetability is tested. If a net is not resetable, a list
of nonresetable markings is output. Then, the module checks at each reachable
marking at which several transitions have concession whether one of these tran­
sitions takes the concession of another upon firing. The obtained conflicts are
printed in a table.

The module ARGRTE computes the reachability graph for bounded nets.
It also lists the dead transitions at an initial marking as well as dead markings.
The module writes the reachability graph to a file whereby dead markings and
dead transitions are indexed.

If a given net is not bounded, the number of an unbounded place is output .
The module APRIOR treats the priority nets. The priorities are requested

in the beginning and can be read from the terminal. This module works (under

216 Z. SURAJ

the priority firing rule) like ARGRTE. The test for boundedness is omitted,
because this property is undecidable for the priority nets.

3.6. Reducer

The module REDUC can be used to reduce the size of the given net, so that it
becomes analysable by modules from ANALYSER subsystem, and it can be used
to find an equivalent small net with known properties. This module implements
the most essential local reduction steps known from the literature, e.g.

• merging of nodes which share all predecessors and successors,
• fusion of equivalent places,
• reduction of different kinds of place/transition chains.

Various reduction steps of a net are offered in the menu of the program
REDUC.

3.7. Verifiers

This subsystem provides tools for the verification of Petri net models. By ver­
ification we mean the proof that certain desired system properties hold in the
Petri net model.

The verification method is as follows. First, we compute a basis for the
space of all (nonnegative) place (transition) invariants. Next, from this we can
derive information on boundedness, liveness and livelock properties, moreover,
in general invariants have an interpretation in terms of the modeled system
which can be useful for its verification. It is worth to reflect that several con­
clusions derived from invariants are related only to nonnegative invariants (e.g.
net coverability by P-invariants) .

This subsystem consists of the modules VCOMPO, VINALL, and VINTES.

3.7.1. Components of a net

If a net model is generated by synchronizing subnets modeling e.g. sequential
subprocesses, then the investigation whether all subprocesses participate in the
total process and whether they enter it structurally (as a component) is part of
the verification of the total system. This verification problem is supported by
VCOMPO.

3.7.2. Computation of invariants

A basis for the set of all place (transition) invariants is computed by the module
VINALL. The set of all invariants is the set of vectors generated by arbitrary
linear combinations from the computed set . This module also computes a basis
for the set of nonnegative place (transition) invariants. Correspondingly, the set
of all nonnegative invariants is the set of vectors that can be generated from the
computed set by means of linear combinations with nonnegative coefficients.

PN-t.ools: environment fo r the des ign and analys is of Petri nets 217

A system of generators for the set of nonnegative subinvariants (surinvari­
ants) of places and transitions, respectively, can also be computed by the module
VINALL. In this case, too, the set of all invariants of the type considered is the
set of vectors that can be generated by linear combinations with nonnegative
coefficients. In order to save time, the set computed here might be not mini­
mal. On the other hand, restriction of storage may lead to doing without the
completeness of the computed set (coverable invariants are deleted). However,
in this case each of the invariants being of interest is coverable by one of the
invariants that can be generated from the computed set.

3.7.3. Invariant test

The module VINTES permits to check the properties of place and transition
vectors, respectively. It shows whether the vector investigated is an invariant, a
subinvariant or a surinvariant. Moreover, it can be tested which values the single
equations yield for this vector. The process of computation of these equations
is written out.

First, for a given net to be read-in it has to be indicated. Then the user can
select whether place or transition vectors will be tested. As for VINALL the
incidence matrix (at a transition vector) and its transposed matrix (at a place
vector), respectively, is built up.

3.8. Extensions to the net analysing modules

When working with our Petri net analyser (PN-analyser) we have found it dif­
ficult to model complex systems with PT-nets, because the nets are often large
and it is not quite easy to see all the interactions between the nodes of the net.
Due to that we have found it necessary to use extended nets for our modeling
purposes; but then we need an analyser for those nets.

The fastest way to construct an analyser is to use existing programs as much
as possible. Therefore our first step to enable the analysis of extended nets is
to translate them into PT-nets and to use our PN-analyser. All we need is an
automatic extended Petri net- to the Petri net translator (the PN-translator).
The PN-translator is implemented first for : self-modifying nets, priority nets,
nets with inhibitor arcs and some subclass of PT-nets. The PN-translator has
the following tasks:

• it forms aPT-net corresponding to a given SM-net (IA-net, P-net),
• it maps the initial marking of the SM-net (IA-net, P-net) into a marking

of the PT-net,
• it maps a marking of the PT-net (e.g. a deadlock marking found by the

PN-analyser) into a marking of the SM-net (IA-net, P-net).

Using the PN-translator and the PN-analyser will be only a temporary way
in analysing extended nets (SM-nets, lA-nets, P-nets). But it will be a reality

218 Z. SUR~.J

very soon. And after that we can concentrate on implementing an extended
analyser.

4. Implementation environment

PN-tools has been developed under a DOS environment running on IBM PC
computers. The access to the particular programs can take place from PN-tools
level. The interaction between the user and the system PN-tools consists only
of the selection of commands in menus. To each net, we associate the graphic
representation, two textual representations and several textual files which in­
clude an addition information about a given net; these all files are managed
in a directory whose name is created in an installation stage of PN-tools. For
monochromatic graphics the Hercules card is proposed. If colour graphics are
to be used, then SVGA is preferred. Black and white graphics hardcopy can
be obtained using e.g. STAR printer. It is also possible to use e.g. ROLAND
plotter as terminal for obtaining colour graphics hard copy. Moreover, this yields
much better typographical quality.

5. Future plans for PN-tools

5.1. Extensions of PN-tools

The GPN-editor/-simulator is being extended to handle timed Petri nets, the
extension of ordinary (classical) Petri nets making it easy to describe systems
which are time-driven. It will then be possible to use the same net model to
analyse both logical correctness and time performance of a system.

The implementation of timed Petri nets will be finished during the second
half of 1995. Later we will also extend the GPN-editor to allow the user to
construct and modify Petri nets by means of a set of behaviour preserving
transformation rules (for more information see Berthelot (1987)) . We will also
extend the GPN-simulator to handle code segments written in languages such
as: Pascal and C++ and we will extend the GPN-editor/-simulator to handle
the other hierarchy constructs and different extensions of Petri nets (e.g. FIFO­
nets, timed and high-level Petri nets).

5.2. Additional PN-tools

Additional Petri net tool will be created to support reachability graph analysis.
The tool will construct in a graphical mode reachability graphs for Petri nets
and their extensions considered in this paper. It will also assist the user in the
analysis of the constructed graphs . As described in Section 2.2, a large number of
system properties can be automatically determined from the reachability graph
(by inspection of individual markings and from strongly connected components).
There is, however, also a need to develop more complex search systems by which
the user can perform an interactive inspection of a large reachability graph. The

PN-tool s : environment for the des ign and analys is of Petri n e t s 219

Petri net reachability graph tool will be able to handle Petri nets mentioned
above and it will be tightly integrated into the existing PN-tools. It will e.g. be
possible to ask the GPN-simulator to execute an occurrence sequence which is
found in the reachability graph - or as the reachability graph analyser to search
for markings which are identical to or larger than the current marking of the
GPN-simulator.

To keep the size of reachability graphs manageable it will be necessary to
create reachability graphs for selected parts of a large model. The first version
of the reachability graph tool will be available during 1995. It is, however,
obvious that this, among other things, will depend upon the priority given to
the improvement of the new reachability graph tool (and other extensions of
existing PN-tools).

Finally we want to develop PN-tools to support reduction and translation
methods and the analysis of special subclasses and/or extensions of Petri net
- e.g. as described in Starke (1987). Such tools have, however, lower priority
than those described above.

6. Conclusions

We have presented PN-tools, collecting some of the different kinds of computer
tools which are needed in the Petri net area. These tools support the user in
construction of nets (also hierarchical nets), as well as modification and analysis
in a natural and effective way. Moreover, PN-tools provides the opportunity to
work not only with textual representations of Petri nets but also directly with
graphical representations.

The main point of PN-tools is its extensibility: it is easy to connect other
tools to the system. PN-tools allows to describe and analyse different kinds
of nets, owing to a flexible textual and graphical representation of the nets.
Integrating several tools for designing nets, checking structural and dynamic
properties, etc., PN-tools provides an environment for design and verification of
nets.

There is a large number of different groups who work with the development
of Petri net tools. However, many of the tools are still research prototypes.
Only few tools handle many kinds of nets and very few handle hierarchical nets.
For use in industrial environments, there are only few tools that are powerful
enough, sufficiently robust, and have the necessary documentation and support.

It seems that our system presented in the paper is a professional tool which
is well maintained and offers a stable platform for extensions.

By using PN-tools, organizations and management consultants obtain a
method and a tool with which operational procedures and organizational struc­
tures· can be analysed quickly and described in a presentable way.

Analysts, .system designers and everyone who, in the framework of project
development, has to describe coherently and vividly complex procedures of sys­
tem engineering on the basis of a theoretical method, are able to carry out their

220 Z. SURAJ

cask in a more economical and time-saving way.

Acknowledgements

The author is grateful to the Departmental Program RP I.09 for financial sup­
port for the Petri net research and to Tadeusz Gq.sior, Urszula Niedzialek,
Bogumil Komarek, Pawel Halys and Stanislaw Wasilewski for their high quality
programming.

References

BERTHELOT G. (1987) Transformations and Decompositions of Nets. In: W .
Brauer, W. Reisig and G. Rozenberg (eds.): Petri Nets: Central Models
and Their Properties, Advances in Petri Nets 1986 Part I, Lecture Notes
in Comput . Sci., vol. 254, Springer-Verlag, 359-376.

BEST E. (1987) Structure theory of Petri nets: the .free choice hiatus, In: Lec­
ture Notes in Comput. Sci., vol. 254, Springer-Verlag, 168-205.

BILLINGTON J., WHEELER G., WILBUR-HAM M. (1988) PROTEAN: a high­
level Petri net tool for the specification and verification of communication
protocols, IEEE Transactions on Software Engineering, Special Issue on
Tools for Computer Communication Systems, SE-14(3), 301-316.

'BRAUER W., REISIG W., ROZENBERG G. (eds.) (1987a) Petri Nets: Cen­
tral Models and Their Properties, Advances in Petri Nets 1986 Part I,
Lecture Notes in Comput. Sci., vol. 254, Springer-Verlag.

BRAUER W., REISIG W., ROZENBERG G. (eds.) (1987b) Petri Nets: Ap­
plications and Relationships to Other Models of Concurrency, Advances
in Petri Nets 1986 Part II, Lecture Notes in Comput. Sci., vol. 255,
Springer-Verlag. ·

CHIOLA G. (1985) A software package .for the analysis of generalized stochastic
Petri net models. In: Proc. Int . Workshop Timed Petri Nets, Torino,
Italy, July 1-3, 1985, 136-143.

COMMONER F. (1972) Deadlocks in Petri nets, Appl. Data Res. Inc. RR
CA-7206-2311, Wakefield.

FELDBRUGGE F.H.J. (1986) Petri Net Tools. In: G. Rozenberg (ed.), Ad­
vances in Petri nets 1985, Lecture Notes in Comput. Sci., vol. 222,
Springer-Verlag, 203-223.

FELDBRUGGE F.H.J, JENSEN K . (1987) Petri net tool overview 1986. In: W.
Brauer, W. Reisig and G. Rozenberg (eds.): Petri Nets: Applications and
Relationships to Other Models of Concurrency, Advances in Petri Nets
1986 Part II, Lecture Notes in Comput. Sci., vol. 255, Springer-Verlag,
20-61.

FELDBRUGGE F.H.J. (1990) Petri net tool overview 1989. In: G. Rozenberg
(ed.): Advances in Petri Nets 1989, Lecture Notes in Comput. Sci., vol.
424, Springer-Verlag, 151-178.

PN-tools: cnviron1nent for the design and analysis of Petri n e ts 221

FELDBRUGGE F., JENSEN K. (1991) Computer tools for high-level Petri nets.
In: K. Jensen, G. Rozenberg (eds.), High-level Petri Nets. Theory and
Application, Springer-Verlag, 691-717.

FINKEL A. (1990) A minimal coverability graph for Petri nets. Proc. of the
11th Int. Conference on Application and Theory of Petri Nets, Paris, 1-21.

HACK M. (1975) Decidability questions for Petri nets, Ph.D. dissertation, De~
partment of Electrical Engineering, Massachusetts Institute of Technology,
Cambridge.

HOLT A.W. ET AL. (1974) Final R. for the Proj. "Development of the Theo­
retical Foundations for Description and Analysis of Discrete Information
Systems", vol. I: Semantics, vol. II: Mathematics. Mass. Computer
Associates, Inc., Wakefield.

JENSEN K. (1987) Computer Tools for Construction, Modification and Anal­
ysis of Petri Nets. In: W. Brauer, W. Reisig and G. Rozenberg (eds.):
Petri Nets: Applications and Relationships to Other Models of Concur­
rency, Advances in Petri Nets 1986. Part II, Lecture Notes in Comput.
Sci., vol. 255, Springer-Verlag, 4-19.

JENSEN K. ET AL. (1990) DesignjCPN extensions. Meta Software Corpora­
tion, 150 Cambridge Park Drive, Cambridge MA 02140, USA.

JENSEN K., ROZENBERG G. (eds.) (1991) High-level Petri Nets. Theory and
Application. Springer-Verlag.

KARP R.M., MILLER R.E. (1969) Parallel program schemata. Journal of
Computer and System Sciences, vol. 3, 147-195.

MEMMI G ., VAUTHERIN J. (1987) Analysing nets by the invariant method. In:
W. Brauer, W. Reisig and G. Rozenberg (eds.): Petri Nets: Central Mod­
els and Their Properties, Advances in Petri Nets 1986 Part I, Lecture
Notes in Comput. Sci., vol. 254, Springer-Verlag, 300-336.

MuRATA T. (1989) Petri nets: Properties, Analysis and Applications, Proc.
of the IEEE, vol. 77, no. 4, 541-580.

PETERSON J.L. (1981) Petri Net Theory and the Modeling of Systems. Pren­
tice-Hall, Inc., Englewood Cliffs, N.J.

PETRI C .A . (1966) Kommunikation mit Automaten, Bonn: Institut fur Instru­
mentelle Mathematik, Schriften des IIM Nr.3, 1962. Also, English transla­
tion, Communication with Automata. New York: Griffiss Air Force Base.
Tech. Rep. RADC-Tr-65-377, vol. 1, Suppl. 1.

Proc. Int. Workshop Timed Petri Nets (1985) Torino, Italy, July 1-3, 1985.
Proc. Int. Workshop Petri Nets and Performance Models (1987) Madison, WI,

August 24-26, 1987.
REISIG W. (1985) Petri Nets. EATCS Monographs on Theoretical Computer

Science, vol. 4, Springer Publ. Company.
STARKE P .H. (1985) Petri-Netz-Maschine - A Software Tool for Analysis and

Validation of Petri Nets. Systems Analysis and Simulation, Proc. of the
2nd Int. Symp., Berlin 1985. - Oxford: Pergamon, 474-475.

222 Z. SURA.!

STARKE P.H. (1987) On the mutual simulatability of different types of Petri
nets. In: K. Voss, H.J.Genrich, G. Rozenberg (eds.), Concurrency and
Nets, Springer-Verlag, 481-495.

STARKE P.H. (1990) Analyse von Petri-Netz-Modellen. B.G. Teubner, Stutt­
gart .

SuRAJ Z. (1990) GRAPH: A graphical system .for Petri net design and simu­
lation. Petri Net Newsletter no. 35, 32-36.

SURAJ Z. (1993) A System .for the Design and Analysis of Petri Nets. ICS
Research Report 3/93, Warsaw University of Technology.

VALETTE R. (1978) Analysis of Petri nets by stepwise refinements. Journal
of Computer and System Sciences, vol. 18, no. 1, Academic Press, Inc.,
New York and London, 35-46.

VALK R. (1978) Se(f-Mod~fying Nets: a Natural Extension of Petri Nets. In:
G. Ausiello, C. Bohm (eds.), Automata, Languages and Programming,
Lecture Notes in Comput. Sci., vol. 62, Springer-Verlag, 464-476 .

VOSS K., GENRICH H.J ., ROZENBERG G. (eds.) (1987) Concurrency and
Nets. Advances in Petri Nets, Springer-Verlag.

	Bez nazwy

