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A contact problem for a plate having a vertical crack is consid­
ered. The solution satisfies two restrictions of the inequality type. 
The first restriction is imposed in the domain and represents the 
mutual nonpenetration condition in the system plate-punch, the 
second one is put on the crack faces and corresponds to the non­
penetration of these faces. The corresponding variational inequality 
describing an equilibrium of the plate has the fourth order along the 
normal to the plate and the second order in the horizontal directions. 
The regularity of the solution is under consideration. In particular, 
H 2 x H 2 x H 3-smoothness up to the interior crack points is estab­
lished . Boundary conditions having a natural physical interpretation 
are found on the crack faces. The existence of extreme crack shapes 
is also investigated. Specifically, the cost functional is defined on the 
feasible set of functions describing the crack shapes. The functional 
characterizes the deviation of the displacement vector from a given 
function. The problem consists in maximizing this functional. The 
existence of solutions of the formulated problem is proved. 

1. Introduction 

The model of the plate considered in the paper actually corresponds to a shallow 
shell having zeroth curvatures. The gradient of the punch surface is assumed to 
be rather small, so that the nonpenetration condition imposed in the domain is 
the same as in the usual case for a plate. Meanwhile, the restriction imposed on 
the crack faces takes into account the dependence of horizontal displacements 
on the distance from a middle surface and, hence, contains three components of 
the displacements vector. 

The internal regularity of solutions of unilateral contact problems for a plate 
was investigated in Caffarelly, Friedman (1979); Frese (1973); Schild (1984). In 
these papers the operator of the problem is biharmonic. The solution properties 
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of the equilibrium problem for plates having a crack were studied in Morozov 
(1984). lu this case the boundary conditions imposed on both crack faces are 
written as equalities. As for results on the solution regularity near angle ver­
tices in a linear elasticity theory one may refer to Grisvard (1989). Extreme 
crack shape8 for plates in simpler situations were analyzed in Khludnev (1994). 
In particular, the existence theorems were proved . The stability properties for 
solutious, when the crack shape is perturbed, are quite close to these inves­
tigations. See the book Sokolowski, Zolesio (1992) containing the results on 
the shape sensitivity analysis. An approximate method of finding crack shapes, 
using the minimization of a cost functional, may be found in Banichuk (1970) . 
Other approaches for determining cracks, leading to inverse boundary problems, 
are suggested in Friedman, Vogelius (1989). 

Let 0 c R 2 be a bounded domain with a smooth boundary 80 and the 
equation y = 1/J (a;), :r: E [0, 1], describe a crack shape on the plane x, y. The 
graph of the function y = 1/J(a:) is denoted by r ,p, 'lj; E HJ(O, 1), O,p = 0 \ r ,p. 
Denote next by x = (W, w) a displacement vector of the middle-surface points, 
where W = ( w 1 , w 2 ) is horizontal displacements and w is a vertical one. Let 
E:ij = E:ij(W) be the strain tensor of the middle-surface points and Nij = Nij(W) 
be the integrated stresses, 

i,j = 1,2, x1 = x,x2 = y, 

1 
0 < 17 < 2' ' 17 = const. 

Introduce the energy functional of the plate 

Herein 

f = (h, h, h) E £ 2 (0), (p, q),p = J pqdO,p 

o., 

and the biliuear form B (. , . ) is as follows 

j (wxxWxx + WyyWyy + 17WxxWyy + 17WyyWxx 

01/J 
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Assume that the equation z = <I>(x,y) describes a punch shape, (x,y) E 
n, <I> E C 1 (D) . A nonpenetration condition for the system plate-punch may 
be written as 

(1) 

provided V <I> is small enough. Denote next by v = (-M the normal vector 
yl+.P; 

to the curve y = 'lj1(x) and by 2h the thickness of the plate, v = (v1, v2). Taking 
into account the linear dependence of the horizontal displacements W (z) 
(w 1 (z),w 2 (z)) on the distance z from the middle plane (see Vol'mir, 1972) 

i ( ) i W Z = 1L1 - ZWx;, i = 1, 2, lzl ~ h, 

the nonpenetration condition of crack faces takes the form 

[W - z\lw]v;::: 0 on r,p, lzl ~ h, (2) 

where [U] = u+- u- is the jump of U on r ,p and u± correspond to the 
positive and negative directions of v . For simplicity we put h = 1. The following 
boundary conditions are assumed to be given at the external boundary 

aw 
w = - = w = 0 on an. an 

Let the subspace H 1,0 (n,p) c H 1(n,p) consist of the functions equal to zero 
on an and the subspace H 2 '0 (n,p) c H 2 (n,p) consist of functions equal to zero 
on an with the first derivatives, H(n,p) = H 1,0 (n,p) x H 1,0 (n,p) x H 2 ,0 (n,/J)· 
Consider the convex and closed set 

assuming that the boundary value of <I> provides the nonemptiness of K,p(n,p). 
The equilibrium problem for the plate contacting with the punch z = <I>(x,y) 
and having the crack shape y = 'ljJ ( x) may be formulated as variational 

· inf II,p(x). 
xEKv. (O.v,) 

In view of the convexity and differentiability of II,p this problem is equivalent 
to the next one: find the function x = (W, w) E K,;,(n..;,) satisfying the inequality 

B,j,(W, w- w) + (Nij(W), Cij(W - W)),p ;::: 

(.f, x- x),;, V x E K..;,(nv,)· 

It will be noted that the following inequalities hold true 

(3) 

(4) 
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(5) 

with the constants independent of w and W, respectively. The relation 
(5) is precisely the first Korn's inequality. The inequalities ( 4), (5) provide the 
coercivity and weak lower semicontinuity of the functional II..;, on H (0..;,) , hence, 
the problem (3) has a unique solution. 

2. Bound ary cond itions on r '!f; 
Let us elucidate the boundary conditions on r ..;, for the solution (W, w) assuming 
that w > <I> in some neighbourhood W of the graph r ,/J . To this end, we first 
note that the equation 

(6) 

holds in W \ r,1, in the sense of distributions. Indeed, to verify this equation, 
the test elements of the form (W, w) + (0, ccp) are substituted in (3), where cp 
is a smooth function having a compact support in W \ r ,p and c is a small 
parameter. Moreover, the following equations hold in 0..;1 

DNij 
- -[) = .fi, i = 1, 2, 

:I: j 
(7) 

in the sense of distributions . We next denote F = (h, .fz) and assume that 
the solution (W, w) is quite regular. This assumption means that t,he arguments 
given below are formal. The restriction (2) may be written as 

I [ 
01L! J I [)v :::; [W]1/ on r..;,. (8) 

Let us put functions like (W, w) in the capacity of test ones in (3) , where w 

is the third component of the solution (W, w ). This yields 

(9) 

In so doing, the test functions W should satisfy the inequality 

One can represent the vector {NijVj} on r;;, as a sum of the normal and 
tangential components 

{NijVj} = Nvv + N 8 8, 8 = (-v2, v1). 

A similar formula can be written on r~. Choosing the functions W having 

the property [ w] V 2:: 0 on r V' the test elements w = w + w may be substituted 
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in (D). Since the boundary an,;, of domain n,;, is a combination of the sets 
an, r~, r;; the integration by parts is easily carried out. This implies 

(10) 

On the other hand, let the functions x = (W, w) be chosen as the test ones 
in (3). This drives to the relation 

satisfied for test functions w such that 

Consider the boundary operators on an'I/J 

{)2u 
M(n) = l7f:::..v. + (1- l7) i]n2, 

iJ a3u 
T('u.) = -. - f:::..v. + (1- l7) -, - 2- , 8 = (-n2, n1). 

Dn. iJniJ 8 

Making use of the Green's formula 

iJv 2 
B,;,Cu., v) = (M (·u), -)an"' - (T(u), v)an,p + (!:::.. ·u., v),;, 

iJn 

the relations (11),(12) imply 

T(w)=O, [8w] M(w) Bv -IM(w)i[W]T/ = 0 on r,/J· 

(11) 

(12) 

(13) 

In particular, the strict inequality in (8) provides M ( w) = 0. Otherwise, 
the second equality in (13) determines the sign of M(w). We have to note 
at this point that the boundary conditions (10),(13) hold on re and [N,_,] = 
0, [M(w)] = 0. Besides, (10) holds good irrespective of the inequality w > <P 
in W, i.e. this condition t akes place in general case 'UJ 2:: <P. At the same time, 
to derive (13) , we make use of the equation (6) in W \ f ,;, which takes place 
provided that 111 > <P in W . Moreover, the inequality w > <P in W provides two 
more relations 

[
i]w] IM(w) l :::; -N,_,, M(w) i]v +N,_,[W]v = 0 on r,;,. 

It is seen that all these conditions have clear physical interpretation. 
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3. Solution regularity 

Let x 0 E r '1/J \of V' be any fixed point. Assume that <I> = c in some neighbourhood 
O(x0 ) of the point x 0 , c = const, and r '1/J n O(x0 ) be a segment parallel to the 
x-axis. Denote next by R 8 (x 0 ) the ball of the radius 6 centered at the point 
:r: 0 . The following assertion holds. 
Theorem 1. Let the above hypotheses be fulfilled. Then the inclusions 

OW 2 0 
-EH (Ro(x )nOw) ox 

take place for ti small enottgh . 
Proof. Choose a smooth function cp such that cp = 1 in R 0 (x 0 ), cp = 0 outside 
of R¥ (x 0 ), 0 ::; cp ::; 1 everywhere, ~ = 0 on r '1/J n O(x0

) . The inclusion 

R 28 (:r: 0 ) c O(x0 ) is assumed to be valid. Introduce the notations 

where e is a unit vector of the axis x, 0 < 171 < ~· Now the functions 

may be considered in flw. By virtue of the assumptions the normalv has the 
coordinates (0, 1) near x 0 , hence the nonpenetration condition (8) on r v,nO(x 0 ) 

is of the form 

(14) 

Let us notice the following. Assuming that a function p satisfies the inequal­
ity 

it is easy to check that for the above function cp the relation 

72 
p+2cp26.rp2':0 on fv,nO(x 0

) 

holds. In fact, one has for x E f '1/J n O(x0
) 

72 
p(x) + 2 cp 2(x)b.rp(x) = 

(1- cp 2 (x))p(x) + cp
2

~x) [p(x- 7e) + p(x + 7e)] 2': 0. 
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Bearing in mind this fact the vector Xr = ( w~, w;, w7 ) is easily proved to 
satisfy the restriction (14), that is 

Consequently 

Moreover, the function w 7 satisfies the inequality 

since <I> = c in O(x0 ). To state this, we first notice that w 7 = w outside 
of R2a(a:0), so that Wr ~ <I> in nv, \ R2a(x 0

). On the other hand, one has in 
R2a(x0) 

T2 T2 
w- r: + 2cp2 t. 7 w = (w- c)+ 2cp2t. 7 (w- c)~ 0. 

The aforesaid means that Xr E Kv,(rl.'l/1)· Let us substitute Xr in (3) as a 
test function. In this case we easily arrive at the inequality 

B,t,(w,cp 2t.7 w) + (Nij(W),Eij(cp2t. 7 W))'I/J ~ 

2T-2 (.f, Xr- x)v,· 

It can be verified that the difference between the terms 

(15) 

may be estimated from above by the value being in the right-hand side of the 
written below inequality (16). Analogously, the difference between the terms 

may be estimated from above by the same quantity. Thus, the relation (15) 
implies 

B,t,( d7 ( cpw ), d7 ( cpw)) + (Nij (dr( cp W)), Eij ( d 7 ( cp W)) )1/J :::; 

c{ilxll~(n,1,) + lldr(cpx)liH(n,,)(ilx liH(nv.) + ll.fllo,nv.)}. 

In view of (4),(5) the estimate 

(16) 
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follows being uniform in T . It clearly yields 

a 
-. (cpx) E H(Ov,)· 
D:~: 

A.M. KHLUDNEV 

So, the assertion of Theorem 1 related to w is proved. Meanwhile, the 
equations (7) may be written down as 

Wyy = G . 

The function G depends on fl, f2, W xy, W xx linearly, so that in view of the 
above result, we have G E L2(Rs(x 0 ) n Ov,)· Hence, all derivatives of W up to 
the second order belong to L 2 (R 6 (x 0 ) n O..p). Theorem 1 has been completely 
proved. • 

In what follows we prove the solution regularity in a neighbourhood of points 
belonging to the crack faces and not having a contact with the punch. Let 
x0 E r V'\ ar V' be any fixed point such that w±(x0 ) > <P(x 0 ) ancf, moreover, 
a neighbourhood O(x 0 ) of the point x0 is assumed to be chosen such that 
r V' n 0(:~: 0 ) is a segment parallel to the axis X. The following statement is valid. 
Theorem 2. Let the above hypotheses be fulfilled. Then the inclusions 

W E H 2(Rs(x 0
) n Ov,), w E H 3 (Rs(x 0

) n Ov,) 

hold p·rovided 6 is small enongh. 
Proof. The condition w± (x 0 ) > <P(x 0 ) implies the fulfilment of the equation 

t::,.2~11 = h (17) 

in R26 (:~: 0 ) n Ov, for small 8. Take a function cp and construct the vector 
XT = (w;,w;,wT) as in.Theorem 1, 0 < jTj < ~· The parameter 6 is supposed 
to be fixed such that R20(x 0) C O(x0) and wT 2: <P in RM(x0). In this case 

2 

it is seen that wT 2: <i> in flv,. Moreover, it has been proved that XT satisfies 
the restt'iction (8). Hence, the inclusion XT E K..p(Ov,) holds. Substituting XT 
in (3) as a test function results in the relation like (15). The further arguments 
remind those of Theorem 1, so that 

aw 2 0 
- E H (Rs(x ) n Ov,)· 
8:~; 

Meantime, the equation (17) may be written as 

Wyyyy = Q. 

(18) 

According to (18) the inclusion Q E H- 1 (R0 (x 0 ) n O..p) holds. Whence, 
taking into account the relations Wyyy, wyyyx E H - 1 (Rs(x 0

) n O..p) and the 
results of Duvaut, Lions (1972) we arrive at the desired conclusion: 

wyyy E L2 (Rs(:~: 0 ) n Ov,)· 

Theorem 2 has been proved. • 
Remark. Seemingly, the hypothesis relating to r ..p n O(x0) in Theorem 1 and 
Theorem 2 may be omitted, but it is not proved. 
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4. Extreme crack shapes 

Suppose that the crack shape is described by the equation y = 6'1/J(x) with a 
parameter 6. The space H(no) and the set K0 (no) are introduced analogously 
to H ( n,,,) and K "' ( nv,), respectively. In the following we analyze the behaviour 
of the solution wheu 6 -> 0. It will enable us in the sequel to prove the existence 
of extreme crack shapes. The formulation of this problem will be given below. 
So, for every fixed 6 there exists a solution x8 = (W 8 , w 8 ) of the problem 

B 0 (w 8 ,1v- w
8

) + (NiJ(W 8 ),EiJ(W - W 8))o:::: 

(.f, X- x8 )o, x8 
E Ko(no), '11 x E Ko(no). 

(19) 

In order to study the solution convergence as 6 -> 0 we carry out the mapping 
of no onto no. Of course, the graphs y = O'lj! (X) are assumed to belong to n 
for all 0 s; 6 :::; 6o. Extend the function 'lj! beyond [0, 1] by zero, then choose 
domains nl, n2 such that fh c n2, n2 c n, fo c nl for all 6 small enough 
and a function ~ possessing the properties: e = 1 in n1, e = 0 in n \ n2. The 
following transformation of the independent variables may be considered 

(20) 

It is clear that the .Jacobian q0 = 1 - 61jJ~y of this transformation converges 
uuiforrnly to the unit on n as 6 -> 0. Introduce the notations 

A substitution of a fixed test function x in (19) drives to the relation 

Omitting the sign 6 in the functions it is easy to rewrite this inequality in 
the new variables 

j { ul, + ul; + 2au,uy; + 2(1- a)ul; }qi'dllo+ 
no 

(21) 

6 j g_(x, ij, 6, D 0 ·u, Da·u, Df3u, D 13 U)dno:::; 0. 

no 

Hereiu j 8 (::C, ?7) = f(:r:, y), la I:::; 2, 1.81 s; 1. A dependence of the function g on 
its arguments is fully determined by the transformation (20), It is of importance 
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that this function has quadratic growth in the principal derivatives. In view of 
the inequali ty q{; 1 > ~ holding for small 8 we conclude from (21) that 

uniformly in 8 ~ 8o . Choosing a subsequence, if necessary, one can assume 
that as 8 -r 0 

w 8
-. w weakly in H(flo). (22) 

The solution (U 8 , u 8 ) satisfies the inequalities (1),(2) written in the new 
variables. To be more precise, we denote <I> 8 (x, ii) = <I>(x, y). Then the inequality 
(1) takes the form 

(23) 

and the inequality (2) may be written as 

[u8
- z('u8:v - 8'l/Jxu 8 y, ·u8y)](-8'l/Jx, 1) ~ 0 on fo, lzl ~ 1. (24) 

Let the set of all functions (U, u) from the space H (0.0 ) satisfying (23) ,(24) be 
denoted by K 0(flo). The following statement is useful for further consideration. 
Lemma. FaT" any fixed (U, ·u) E Ko(flo) theT"e exists a sequence (U 8 , u8 ) E 

Ka(flo) s1Lch that as 8 -r 0 

- 8 -8 - -(U , ·u ) -r (U, u) stmngly in H(flo). (25) 

Proof. We make use of the following assertion proved in Khludnev (1994). For 
any fixed function (U, ·u) E H (flo) satisfying the inequality 

[u- z\?·u.]v ~ 0 on fo, lzl ~ 1, v = (0, 1), 

a sequence (U 8 ,·u8 ) E H(flo) may be constructed such that (U 8 ,u8 )-. (U,u) 
strongly in H(flo) and, moreover, the restriction (24) holds good and u8 = u 
for all 8. Let us take a fixed element (U,u) E Ko(flo) and bearing in mind 
the aforesaid construct a sequence 5t = (U 8 , u) having the above properties. 
We show that the appropriate changing the third component of x8 by u8 will 
imply the sequence (U 8 ,·u8 ) to be needful; that is (U 8 ,u8 ) E K 8 (n 0 ) and (25) 
takes place. Since <I> 8 

--7 <I> uniformly on n and <I> 8 = <I> near an there exists a 
function (} 8 such that 

We should remark at this step that u ~ <I> in 0.0 . Putting u8 = ·u + B8 

it is easily checked the sequence (U 8 , u8 ) to satisfy all conditions. Indeed, the 
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restriction (23) for u8 holds by construction of 08 • Since the jump [(o~ -
81/1xO~, 0~)] is equal to zero on f 0 the restriction (24) for (U 8 , u8 ) aslo holds. 

The convergence (25) is evident. Lemma has been proved. 
Let us now rewrite (19) in the new variables x, fj. The convergence (22) and 

Lemma allow us to carry out the limiting procedure when 8 -+ 0. Moreover, 
the limiting function w = (U, 7t) is a solution of the variational inequality 

Bo('u, ·u- ·u) + (Nij(U), €ij(U- U))o :2: 

(f,w- w)o, wE Ko(flo), V wE Ko(flo). 

So, the following statement has been proved. 

(26) 

Theorem 3. From the sequence x8 = w 5 of solutions of the problem {19) 
one may choose a subseq1tence, still denoted by w 0 , such that as 8 -+ 0 the 
convergence {22) takes place and, moreover, the limiting function satisfies (26). 

This result enables us to investigate the extreme crack shape problem. The 
formulation of the last one is as follows. Let \l1 C H3(0, 1) be a convex, closed 
and bounded set. Assume that for every 1/J E W the graph y = 1j1(x) describes 
the crack shape. Consequently, for a given 1j1 E W there exists a unique solution 
of the problem 

Bv,(w, 1u- w) + (Nij(W), €ij(W - W)),p :2: (27) 

(f, X- x)v,, X= (W, w) E Kv,(fl,p), V X E K,p(f2,p). 

Consider the cost functional 

J(v') = llx- xollo,n"' 

where xo E L 2 (f2) is a prescribed element. We have to find a solution of the 
maximization problem 

sup J(7j1) . 
1/JEW 

The following assertion holds. 

(28) 

Theorem 4. Let the above hypotheses be fulfilled. Then, there exists a solution 
of the pmblern (28). 

We shall confine ourselves to short remarks . A maximizing sequence 7j;n E W 
is evidently bounded in H3(0, 1). Hence, without any loss, one may assume that 
as n-+ oo 

1V'· -+ 7j; weakly in H5(0, 1), 7/1 E Ill, 

I 
n I . 1 

7/Ja;x - 7/lxx < - on 
n 

[0, 1]. 

(29) 
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For any n, there exists a solution (wn,wn) of the problem 

(30) 

The domains 0 1 , f22 and the function ~ may be chosen as in the proof of 
Theorem 3. The transformation of the independent variables is of the form 

We prove that the solution U0(i:, y) := W 0(x , y), u0(i:, y) := w 0(x, y) satisfies 
the following estimate 

Without loss a generality, one may suppose that as n -> oo 

(un, un)-> (U, '11.) weakly in H(00 ), strongly in £ 2 (00 ). (31) 

For the passage to the limit in the relations obtained from (30) by a change of 
variables , we use the convergence (31) and the statement analogous to Lemma. 
The limiting function x = (U, u.) is a solution of the variational inequality (3) 
with the function 1j; from (29), that is x = X..P· At last, it is easy to verify that 

.!(1/') =sup .I(1/;). 
1f,Ew 

This precisely means that the limiting function 'lj; is a solution of the extreme 
crack shape problem (28) . 
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