
Control and Cybernetics

vol. 24 (1995) No. 3

A general view on fuzzy relational database systems and
querying

by

Wlodzimierz K wasowiec

ul. Goluchowska 3/33,
01-485 Warsaw, Poland

A simple and general view of fuzzy querying in relational database
systems is presented. Fuzzy database systems are defined basing on
traditional ones and using a relation which more precisely reflects
the internal structure of the database. Fuzzy querying in fuzzy
database systems is proposed and discussed. Basic properties of
these database systems are briefly examined.

Keywords: Relational database systems; fuzzy database sys
tem~; fuzzy querying; matching degree function.

1. Introduction

The purpose of the present paper is to simplify our understanding of relational
database systems and to introduce in a most general way the. fuzzy database
system~ basing on traditional ones. To this end we shall start with formulation
of conventional data bases and generalize them to fuzzy databases and infer main
properties of fuzzy databases as set against conventional (non-fuzzy) ones.

There are various models of fuzzy databases (see e.g. Anvari and Rose 1987;
Kacprzyk et a l. 1990; Shenoi et al. 1990; Yazici et al. 1992) . Some authors
defined fuzzy database by means of an equivalence relation (e .g. Anvari used
distinguishability relation, Shenoi used the one of similarity) and in this way
they obtained a partition of the database domain. Tripathy and Saxena (1990)
dealt with fuzzy databases by means of fuzzy relations containing membership
grade fuuctiou. We want to get a similar general model using simpler tools.

Kacprzyk et al. (1989;1986), Bosc and Pivert (1992) dealt with queries - a
basic notion of database theory; Kacprzyk has proposed linguistic quantifiers
for fuzzy queries. Zemankova and Kandel (1984) presented a model of fuzzy
database systems and a query language. They discussed in detail the measures
of imprecision and various operations and applied them to querying. We are
going to introduce the notion of query as general as possible and we want to
discuss its main features in traditional and fuzzy databases .

376 W. KWASOWIEC

One important aspect which will be taken into consideration is imprecision
of membership of contents of a database. We will not deal here with imprecision
of values of particular attributes stored in the database and, moreover, we will
not consider neither so called measure of nearness nor pairwise similarity. Some
subjects are put off to more detailed considerations. We shall deal with pro
cessing of vague information in the sense of imprecise belonging to a database
table. Therefore if a database system is used to model an information system
of the real world , then by means of the degree of imprecision we indicate "how
much" particular information of the system satisfies user's conditions.

We shall introduce conventional database systems and try to extend them
in a way to give users more convenient ("human-consistent") tools for database
management. First we shall define relational database structure by means of
partition of a database onto tables and moreover we assume to have a distin
guished relation specifying internal relationship between attributes of different
tables. We shall introduce usual queries in traditional databases and we shall
generalize them to fuzzy queries (again in traditional data bases). Later we shall
generalize traditional databases to fuzzy ones and define there fuzzy queries .
We shall discuss querying and show its general characteristics in conventional
and in fuzzy database systems.

2. Basic notat ion

Here we state some general assumptions.
Let ATT R be a set of attributes (their names).
By D mn (f) we denote the domain of the function .f .
By fiX we denote the restriction of the function .f to the set X n Dam (f).
Let DT be a set. Its elements are called types and each type is a set composed

of (for now: non-fuzzy) values.
Since types are sets, sometimes we shall need to speak about their elements

and therefore we adopt the denotations:
Elem.(DT) -for the set of elements of all types (the union of all types),
Therefore: Elern(DT) = {:r:: x E Type for some Type E DT}

3. Traditional database systems

By a database we mean a set of tables and a relation

B = (TBL,LINK)

where TBL is a set of tables (database components),
LINK is a relation between attributes of different tables (to be described later) .

LINK does not show the relational structure of the database like in Codd
(1970) -- this relational structure is reflected here by table structure. The re
lation LINK shall establish internal structural dependencies between parts of
the database.

Fuz:ty 1·clo.tional databas c s and querying 377

Now we define tables.
By a table T from TB L we mean a pair

T = (StT(T), Cont(T))

StT(T) is a partial function (the structure ofT) from ATT R into DT.
Its domain instead of Dom(St.,.(T)) will be written shortly Att.,.(T) because

it is the set of attributes assigned to the tableT. Therefore:

AttT(T) <:::; ATT R,

There may happen that an attribute (its name) is used in many tables. We
assume for such case that the same type is assigned to it by the function St·r
in all these tab les (otherwise we might take a new name for an attribute with
another type), i.e. we assume:

if (J, E AttT(T1) n AttT(T2) then StT(T1)(a) = St.,.(T2)(a)

Cont(T) is a set of functions from AttT(T) into elements of data types deter
mined by the structure St.,.(T). It consists of all current contents of the table
T. These content functions are sometimes called tuples (e.g. in Shenoi et al.
1990), sometimes are called snbset-values (e.g. in Tripathy and Saxena 1990) .
We assume:

Cont(T) C {c: ATTR---> Elem(DT) such that Dom(c) = Att.,.(T) &

c(nttT) E StT(att·r) for each attT E Att-r·(T)}

Because one attribute may be used in many tables, we shall often use pairs
(attTibnte, table) to avoid confusion.

We denote: Cont(B) = {((attT,T),val) T E TBL & (attT,val)
E Cont(T)}.

Thus Cont(B) is the union of all content functions of the whole database B
with attributes specified as above pairs. Sometimes we shall write simply c!XO
forcE Cont(B) if it will not cause any confusion (XO will consist of attributes
of only one table).

Now come to the description of the relation LINK - a feature which char
acteri~es relational databases in more detail. Generally we avoid to duplicate
information in the database. However sometimes we shall admit to assign the
same pieces of information to attributes in different tables to fix a relationship
between these tables. Various attributes with the same values may be used to
identify elements of different tables (which is simillar to the idea of so called
"primary" and "foreign" keys). To this end we define LINK as a general rela
tion between attributes of different tables, i.e. between pairs: an attribute and
a table which contains that attribute. We used here the word "link" because
we wish to link these attributes which may contain the same values.

So we assume:

LINK<:::; (ATTR x TBL) x (ATTR x TBL)

378 W. KWASOWIEC

and it must satisfy:
(i) if (al, Tl)LI N K (a2, T2) then Tl =/= T2 and al E Att·r(Tl) and a2 E

. Attr(T2) and Str(Tl)(al) = Str(T2)(a2)
(ii) if Tl =/= T2 and a E Attr(Tl) n Attr(T2) then (a, Tl)LI N K (a, T2)

LINK may be symmetric and transitive relation but under (i) it may not be a
reflexive one. Thus

PROPOSITION 3.1 LINK is not an eq1Livalence relation.

The relation LINK shows an essential structural relationship between ta
bles. It may happen that it is empty relation and it means that different tables
are completely independent. Mostly interesting for us are database systems
with reacher structure where LINK is not empty. Thus from (ii) we obtain an
obvious property concerning non-emptiness of the relation LINK.

PROPOSITION 3.2 If there exists a E Att·r(Tl) n Attr(T2) for some Tl =/= T2
then LINK is not empty.

3.1. Example

We shall considei· a simple database STUDENT which contains tables:
PERSONAL, GRADE, JOB and possibly some other ones. We are not go
ing to present the structure of these tables in detail. We shall show only their
attributes. Namely:

{I d_nr, Name} Att·r(PERSONAL)

Attr(GRADE)

Attr(JOB)

{I d_nr, Course, Grade}

{I d_rt•r, Job, SalaTy}

We assume that student is uniquely determined by the value of its Identity
number (I d_n:r) and different students may have the same name. We can have
various content functions, e.g.

((I d_nT, 1), (Name, BTown))

((I d_m, 2), (N a:me, K wasowiec))

((I d_n:r, 1), (C o·urse, M at h), (GTade, 5))

((I d_n:r, 2), (Com·se, M ath), (GTade, 4))

E Cont(P ERSON AL),

E Cont(P ERSON AL).

E Cont(GRADE),

E Cont(GRADE).

It denotes that Brown has got 5 and Kwasowiec has got 4 from Math but we
are interested in finding more information using (involved) queries. Here LINK
relates (identifies types) the attribute Id_m in all these tables and is defined to
be symmetric and satisfying:

Fu:6zy relational database::; and querying

(I d_n:r, PERSONAL) LINK

(Id _n:r,PERSONAL) LINK

(Id_n.,.,.JQB) LINK

(I d_nr, GRADE)

(Id_nr, JOB)

(Id_n.,., GRADE).

4. Querying in traditional database systems

379

Users may require from a computer system to deliver various information origi
nating from data stored in the database. To this end queries of database systems
might constitute a good utility. -

We are not going to discuss query language in detail, like it is e.g. in Ullman
(1982) or Bosc and Pivert (1992) or Kacprzyk et al. (1989;1986). Moreover we
are going to simplify considerations: in a query we shall look for information of
only one table but that information may be determined by conditions concerning
data of the whole database.

So a classic query (in its simplified version - for one table) is a 3-parameter
formula:

Q'U.cTyO(T, XO, CondO),

where T is a table,

xo ~ AttT(T),

CondO is a condition - it involves some attributes and restricts their values.
This query Q ·u.eTyO should be understood in the following way:
"Find all values of attributes from XO of the tableT satisfying CondO".
The condition CondO might be a simple condition restricting only values of

attributes of the table T but also more involved one concerning attributes of
many tables. It may be specified in various ways by means of any attributes
from the set ATT Rand any values from the set Elem(DT). We may search for
concrete values, for ranges of values of some attributes but we may not yet use
here so called "fuzzy values". Since the present approach is very general we are
not going to deal with the structure of the CondO in detail.

A query is a formula which transmits our information demands to a computer
system. The query should be processed and we are interested in the results
obtained after such processing.

The result of the query Que·ryO(T, XO, CondO) is the set of functions:

Res(Q'U.eTyO) {'res: XO---> Elem(DT) such that there exists

c E Cont(B) which satisfies CondO & res= ciXO}.

380 W, KWASOWIEC

Hence query returns results which were required by users and are deter
mined in parameters specified by users in a given condition (using values of
some attributes). The returned results are partial database content functions
containing interesting for users, current information taken from the database.

Remark. Queries should be specified carefully and properly. It might seem
that we do not need information about many attributes in a query and there
fore we choose a small set XO. However it may happen that a query returns
restrictions of many contents as one partial function (restriction caused by too
small subset XO) and then we get wrong information about e.g. the number
of retumed elemeuts. If such information is important to us then we should
specify query for larger set XO, even for the set of all attributes of that table.

4.1. Example

We adopt assumptions of the example 3.1. We may ask about names of stu
dents who has got the grade 5, i.e. we ask Q·uery1(T, X1, Cond1), where
T =PERSONAL, X1 ={Name}, Cond1 = (Cont(GRADE)(G·mde) = 5)

Theu we obtain: Res(Qnery1) = {(Na.me,Brown)}
To get better information we should specify: X 1 = {I d_nr, N a. me} because

otherwise when two students of the name Brown got 5 we would obtain the
same result and this way we could loose essential information.

5. Fuzzy querymg m traditional database systems

For fuzzy approach to databases we shall need fuzzy values, fuzzy relations, fuzzy
quantifiers and a function which will enable us to determine adequate values that
give "the best matching" for a given query (i.e. to find all information from the
database which fit best to the specified query).

So we assume to have fuzzy objects:
F _val - a set of names of fuzzy values (e.g. "high")
F _rd- a set of names of fuzzy relations (e.g. "is much greater than")

F _rrna - a set of uames of fuzzy quantifiers (e.g. "ma.iority of ... ")

Now we introduce FQ to be the set of all so called "fuzzy queries". Fuzzy
query is also (like query in the non-fuzzy case) a 3-parameter formula

QneTyO(T, XO, CondO) :

where T is a table, XO ~ Attr(T), similarly to the non-fuzzy case
CondO is a conditiou (restricting some attributes) - but now it may contain
fuzzy values, fuzzy relations and fuzzy quantifiers.

We assume also to have a function which will show the membership or the
matching degree of some contents under "fuzzy conditions".
md- matching degree function with results in [0, 1]

Fuzzy rcl<.\tional datubus c s and querying 381

Generally md is a function which depends on (fuzzy) queries and content
functiouH :

·rnd: FQ x Cont(B) ~ [0 , 1]

When we shall deal in future with the query Q·ueryO in more detail, we shall
decompose the condition CondO to small components containing either fuzzy
value or fuzzy relation or fuzzy quantifier and then we shall define md by means
of correspondent operators joining these components. Now we want to show
the domaiu dependency of the function md for two components: F _va.l and
F _rel. Fuzzy values are values of some (perhaps all) attributes and we must
know which attribute is under consideration. Fuzzy relations concern pairs of
attributes (perhaps of different tables).

md: Ath·(T) x F _val x Cont(B) ~ [0, 1]

md: Attr(T1) x F _rel x Attr(T2) x Cont(B) ~ [0, 1]

Fuzzy quantifiers, whose use was proposed by Kacprzyk and Zi6lkowski
(1986) conceru a certain part of the condition and therefore they are applied to
some iudirect results (after evaluation of that part of the condition at contents of
considered table). The domain dependency of the function md for F _q-ua. is more
involved and we put it off to future considerations. More detailed discussion of
theHe fuzzy objects eau be found in Kacprzyk et al. (1989).

The result of the query Qv.eryO(T, XO, CondO) is also the set of content
functious (similarly to the non-fuzzy case) which now is additionally determined
by nul:

5.1. Example

{n~ s : XO ~ Elem(DT) such that

there exists c E Cont(B) satisfYing

CondO & res= c!XO & md(Q-ueryO, c)> 0}

We coutinue our example. We may ask "to find all students who have better
grades iu main courses than their total earnings". First we must formally define
the rneaniug of our strange words in this context (fuzzy value "main" and fuzzy
relation "better") according to:

nul: {Cov:r.se} X "nwin 11
X Cont(PERSONAL) ~ [0, 1]

md: {Gr(J,de} X "better" X Sa.la.ry X Cont(PERSONAL) ~ [0,1]

We use the table PERSONAL because we want to find numbers and names of
studeuts satisfying our condition. So T2 PERSONAL and
X2 = Attr·(P ERSON AL) in our Qv.ery2(T2, X2, Cond2).

382 W. KWASOWIEC

To use quantifiers we might ask Query3, e.g. "to find all students for whom

nearly all of(.) hold!' where instead dots in brackets we write several condi
tions. We should define the meaning of the quantifier "nearly alf' in the function
md and then in the set of results F _Res(Quer-y3) we could obtain all students
(their identity_number and name) for whom the value of md is greater than 0.

In practice the set F _Res (Quer-yO) will usually be shown as a set ordered
by md in descending order (most interesting for us are information contained
in elements with the highest matching degree). Moreover these results might
depend on a given threshold but such considerations will be put off to fuzzy
databases.

Usually for simplification of considerations we want to deal with values of
all attributes of a given table for an arbitrary query and then we would have
XO = Attr(T), i.e. the first parameter of QueryO would be determined by T.
So a query might often be considered as a formula parameterized by T and then
dependent only on a condition in the following way:

Q'll.eryOr(Con dO).

6. Fuzzy database systems

First we assume to adopt all above notations. Tripathy and Saxena (1990) have
used fuzzy relations defined by means of tuples (here: content functions) and
a membership grade function. We shall proceed similarly. Now we shall add
to each content function a fixed attribute to be able to keep in it (as its value)
membership grades of content functions.

Now we assume that a distinguished attribute M d_attr- exists in ATT R and
a distinguished type composed of real numbers Type = [0, 1] exists in DT . .

We require that the attribute M d_attr belongs to Attr-(T) for each T ET EL
and that Str(T)(Md_attr) = [0, 1] for each T E TEL . This attribute will be
used to keep the degree of membership (expressed here by means of a real
number) of an arbitrary content function.

By a fuzzy database (general definition is similar to the traditional case) we
shall mean a set of tables and a relation

B = (TBL,LINK)

where similarly to traditional databases T EL is a set of tables (database com
ponents), LINK is a relation between pairs: attributes and tables.

Similarly to traditional case a table T from T EL is a pair:

T = (Str(T), Cont(T))

where Str(T) is a partial function from ATT R into DT, with our main assump

tions:
(i) M d_attr E AttT·(T) & Str(T)(M d_attr) = [0, 1] for each T ET EL

Fu~zy relational databas cs und querying 383

(ii) if a. E AttT(T1) n Att-r(T2) then StT(T1)(a) = StT(T2)(a)

and Cont(T) is a set of functions from AttT(T) into elements of data types
determined by the structure St.,.(T) (it describes all current contents of the
table T) with the assumption concerning M d_attT:

Cont(T) C { c: ATT R-+ Elem(DT) such that Dom(c) = AttT(T) &

c(att-r) E StT(att-r) for each attr E Att-r(T)}

So each content c is defined at M d_attr and this value shows us "the degree
of belongingness" to the database table (higher c(M d_attr) means better be
longinguess of c to our database). If c(M d_attr·) = 0 then we understand that
actually this c does not belong to the database.

One could think that we should restrict Cont(T) only to such content func
tions c that c(M d_att ·r) > 0. We do not remove from the database the contents
which equal 0 at M d_attr but we will not consider them when dealing with
current state of the database. They will show a piece of "the history of the
behaviour of our database".

Moreover like in traditional case we denote:

Cont(B) = {((attT,T),val): T E TBL & (attr , val) E Cont(T)}.

Now we define LINK (similarly to the traditional case except for M d_attT)
as a relation between pairs of attributes and tables:

LINK~ (ATTR x TBL) x (ATTR x TBL)

and it must satisfy:
(i) if (a1, T1)LI N K (a2, T2) then T1 # T2 and o.1 E AttT(T1)

aud a2 E Att·r(T2) and Str·(T1)(o.1) = St·r(T2)(a.2)
(ii) if T1 i= T2 and (], E AttT(T1) n Att-r(T2) then (a, T1)LI N K (a., T2)

We emphasize that though LINK is defined here using the same conditions
as before, we must take into account the attribute M d_attT which is situated in
all tables of the database and therefore the type of the attribute M d_att·r is the
same in all tables. Consequently we have the following properties:

PROPOSITION 6.1 If TBL consists of more than one table then
(M d_att·r, T1)LI N K (M d_attr, T2) for all different tables Tl, T2 ET BL.

COROLLARY 6.1 If T BL consists of more than one table then LINK is not

empty.

6.1. Example

We adopt assumptions of the example 3.1. To get fuzzy database we must add
the attribute M d_attr· to all tables . Its current value may be interpreted: how
much somebody (e.g. the dean) considers given person to be a student.

384 W. KWASOWIEC

7. Fuzzy querymg m fuzzy database systems

In section 5 we defined fuzzy querying in traditional database systems. This
definition with using a formula Q·ueryO(T, XO, CondO) remains the same but
now it is applied to extended specification of databases. The formula Q·ueryO

is parameterized by a tableT which is now enriched by the attribute M d_attr,

by a set of attributes XO which may now contain a new attribute M d_attT and
by a condition CondO which now also might be more powerful!.

Of course for fuzzy databases we may use fuzzy values from F _val, fuzzy re
lations from F _rel, fuzzy quantifiers from F _qv.a . We will need also the function
md because it will evaluate the matching degree for a given query. Its definition
is similar to traditional case:

md : FQ x Cant(B) -> [0, 1]

Now the structure of tables is extended and therefore the function md de
pends additionally on values of the distinguished attribute M d_attr. We can
keep an information about actual membership grade of a given content in
M d_a.ttr and modify it consecutively by means of currently gained values of
m d.

For example: in the condition CondO of the fuzzy query Qv.eTyO we may
use also the attribute M d_attr to require all content functions with the value of
M d_a.ttr not less then a given threshold.

Similarly to the non-fuzzy case the result of the query Qv.eTyO(T, XO, CondO)
is the set of functions which are now determined also by md:

F _Res(Qv.eryO) {res : XO-> Elem(DT) such that

there exists c E Cant(B) satisfying

CondO & res= ciXO & c(Md_attT) > 0 &

md(Q·ueTyO, c) > 0}

The set F _Res (Qv.e-ryO) is usually shown as a set ordered by md in descend
ing order and most interesting for users are information contained in elements
(partial content functions) with the highest matching degree.

Traditional databases correspond to some fuzzy databases. Namely to get
fuzzy database system we must extend traditional database (all its tables) by
the attribute M 1LattT and define:

c(M d_attr) = 1 for each tableT and for all c E Cont(T).

Therefore we obtain:

PROPOSITION 7.1 Traditional databases are particular cases of fuzzy database
systems.

Fu;~;zy relational datubases and querying 385

In future this property will be useful in the description of an implementation
of fu~zy querying in traditional databases.

We could generalize F _Res(Q·ueryO) to F _Res(Q·uer·yO, thres), where thTes
is a fixed real number (it is the threshold) from the set (0, 1] which might be
different for different queries. Then we define:

F _Res(Qv.eryO, thres) {res : XO-. Elem(DT) such that

there exists c E Cont(B) which satisfies

CondO & r es = ciXO &

c(M d_att·r) :::: thres &

md(Q·ueryO, c):::: thres}

Remark. The set XO could be adopted in Q·ue·ryO more generally as the
union of attributes of various tables.

In this paper we discussed fuzzy queries in general terms and we assumed
that the fundamentals for dealing with them in more detail.

References

ANVARI M., RosE G.F., (1987) Fuzzy relational databases, in The Analysis
of F1;zzy InfoTmation (J. Bezdek, Ed.), CRC Press, Boca Ratan.

Base P., PIVERT 0., (1992) Fuz~y querying in conventional databases, in
HtzZJJ Logic foT' the Management of UnceTtainty, (L. Zadeh & J. Kacprzyk
Etl.), Wiley & Sons.

BUCKLES B.P., PETRY F.E., (1987) Generalized Database and information
systems, in The Analysis of Fnzzy Information (J. Bezdek, Ed.), CRC
Press, Boca Ratan.

CODD E.F., (1970) A relational model for large shared databases, Comm.
Assoc . Compnt. Mach., 13(6), 377-387.

KACPRZYK .J., ZADROZNY S., ZIOLKOWSKI A., (1989) Fquery Ill: A "human
consistent" database querying system based on fuzzy logic with linguistic
quantifiers, Information Systems, 14, 443-453.

KACPRZYI< .J., ZIOLKOWSKI A ., (1986) Database queries with fuzzy linguistic
quantifiers, IEEE Trans. Systems, Man and Cybernetics, 11, 474-479.

KACPRZYI< .J., BUCKLES B.P., PETRY F.E., (1990) Fuzzy information and
database systems, Fnzzy Sets and Systems, 38, 133-135.

SHENOI S., MELTON A., FAN L.T., (1990) An equivalence classes model of
fuzzy relat ional databases, Fuzzy Sets and Systems, 38, 153-170

TRIPATHY n..C., SAXENA P.C., (1990) Multivalued dependencies in fuzzy re
lational databases, Fnzzy Sets and Systems, 38, 267-279.

ULLMAN J. D ., (1982) Pr-inciples of database systems, Computer Science Press,
Rockville, Maryland.

386 W. KWASOWIEC

YAzrcr A., GEORGE n.., BUCKLES B.P., PETRY F .E ., (1992) A survey of
conceptual and logical data models for uncertainty management, in Fnzzy
Logic fo-r the Management of Unce-rtainty, (L. Zadeh & .J. Kacprzyk Ed.),
Wiley & Sons.

ZEMANKOVA M. , KAND.EL. A., (1984) Fnzzy -relational data bases - a key to
expert systems, Verlag TUV Rheinland, Koln.

	Bez nazwy

