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This short illtroductory paper indicates the areas of concern in 
cluster analysis. First, it concentrates on the very definition of the 
domain of cluster analysis and on the adequacy of the methods de
veloped therein. Then, it proposes a general approach to both mod
elling and resolution of the clustering problem, forming a framework 
into which several of the existing methods can be also accomodated. 
The thus outlined domaill of cluster analysis is therafter character
ized as to its limits, and some areas of applications are also indicated. 

1. A foreword 

Ten years ago - or by just a fraction less - a special issue of Contml and Cy
bemetics was published, devoted to Optimization Approaches in Cluster 
Analysis ( Contml. .. , 1986). Publication of this special issue was equally mo
tivated by the persollal interest of the then - and now - guest editor alld by a 
more general recognitioll of the importance of this field in data analysi:;. Since 
that time some fashiolls went away and some new came, but the essential prob
lems remailled Ullsolved. Thus, we still see a prolifeTation of applications, often 
dolle with ad hoc (new) methods or ad hoc modifications of the known ones. 
It seems, though, that llO truly new methods have emerged over the last dozen 
or so years. Then, there is still lack of a more formal and constructive func
tion with the ·methods of mathematical statistics (e.g. inadequate effectiveness , 
but also serious formal shortcomings of these statistical methods which would 
at lea:;t verify the appropriatenes:; of the number of clusters formed). Finally, 
largely ill COnllection with the previous, cluster analysis is not being recogllized 
as a well-founded discipline or - even less - a theory within data analysis or 
broadly conceived statistics. It is seen, instead, as a collection of approaches, 
methods and algorithms which try to do a similar, but by no means the same 
thillg, and that ill quite a variety of ways, most of which find a weak theoretical 
justification. Thus, cluster analysis is rather treated as a set of techniques or an 
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art to be mastered in order to deal with a certain poorly defined class of situa
tions. ThiH is largely due, in turn , to lack of the generally recognized - even just 
within the community of those dealing with cluster analysis - .foTm7Llation of 
th e cent-ral p-roblem. of cl7LsteTing, the methods and potential solutions put aside . 
This is why the present author, and the guest editor, seizes this opportunity to 
return to the question of general formulation . 

2. What is cluster analysis? 

Cluster analysis is the discipline which deals with precise formulation, modelling, 
study and solution methods for the following problem, denoted further on as 
(1) : 

hav ing n objects indexed i, i E I = {1 , ... , n } , characterized by 
vectors :r:i = [xil, Xi2, ... :r:imJ, k: E J{x = {1, .. . , m}, and/or by 
distances dt, i,.i E I, k E J{ d ={m+ 1, . .. ,md}, and/or by 

proximities s7j, i,.i E I, k: E J{s = {md + 1, ... , m!}, to find 

h . . ( ) f { }p(P) u p(P) l sue partltwn s P o I , P = Aq q=l , Aq ~ I, q=l =I, t 1at 
objects belonging to the same Aq's of this P be possibly close 
to each other, while those belonging to different Aq's be possibly 
distant . 

(1) 

(We will refer further on to Aq resulting from a solution to (1) as to clusters.) 
T his formulation is somet imes - though this is by no means necessary -

complemented with the condition on P that Aq's be mut ually disjoint, AqnAq' = 
0, q =f. q'. Other details, like turning of (xi, x j) into distances and/ or proximi ties, 
aggregation with/of d7j and/or s7j etc. will be omitted entirely in this short 
introduction as irrelevant for the main question. 

The main question, namely, refers to this - crucial - fragment of (1) stipu
lat ing that "objects belonging to the same clusters be possibly close, while those 
belonging to different clusters - possibly distant" . 

Let us first note that this, quite obviously, implies existence of - or even is 
equivalent to - an objective function which is maximized over all feasible P and 
is composed of two elements: -

(2) 

of which QD (P) represents the differentiation (distancing) of objects among 
various clusters, measured over the whole partition P, while Q s(P) represents 
the similarity of obj ects contained in the same clusters, as also measured over 
the whole par tit ion P. The choice of sum, though arbitrary, does not seem to 
limit the generality of (2) nor its adequacy to (1). 

Let 'us a lso note that we may quite as well deal with a "dual" to (2), namely 

(3) 
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with the principles of interpretation preserved from (2). This "dual" is, of 
course, minimized, and it is just as adequate representation of (1) as (2) is. 

Thus, we have a good expression for (1), but what next? What comes next 
is, first of all, the statement that if (2) is correct, then a vast majority of existing 
clustering schemes (agglomerative, divisive, K-means, .. . ) cannot be considered 
as representing appropriately (1) and, therefore, as leading to its solution. Then, 
we can postulate a number of obvious properties of QD(P) and Qs(P) and try 
to complement at least these of the existing schemes which are based upon just 
one of the two components with the other one, while attempting to preserve 
(the good) computational properties of these schemes. 

On the other hand, the previous papers by the present author (Owsinski, 
1980, 1984, 1990) indicate the possibility of formulating a very general subop
timization procedure, whose main assumption is that QD(P) and Qs(P) have 
opposite monotonicity along the mergers/splits of Aq E P. This property is sat
isfied by numerous functions which can be used as adequate representations of 
(1) . Thereby, not only a family of easily suboptimizable Q{?(P) and/or Q~(P) 
can be obtained - see Owsinski (1990 and 1992, with some 30 examples of 
such functions in the latter), but also, as suggested before, the already existing 
schemes can in many cases be adapted so as to attain conformity with (2) or 
(3) and preserve appropriate computational facility. 

3. The procedure 

The suboptimization procedure for (2), based upon the opposite monotonicity 
assumption mentioned, takes, for instance, the following form for Q{? (P): 

Assume that QD(P) increases with aggregation of Aq's, while Qs(P) de
creases. Thus, if instead of (2) we take 

Q{f(P, T) = (1- T)QD(P) + TQs(P)----+ max, T E [0, 1], (4) 

and start the procedure, with the step number t = 0, T
0 = 1, we obtain P 0 = 

argmaxQ{? (P, T 0 ) = argmaxQ8 (P) = I. This is the initial point of the proce
dure. Then, for given pt, Tt, consider the partitions P1(q, q') which differ from 
pt by aggregation of Aq and Aq'· Find, for each pair (q, q') E n(Pt) x n(Pt), 
where n(P) are the sets of indices q for definite partitions P, the value ofT 

satisfying 

i.e. the condition of aggregation for the particular pair of clusters E pt . This 
value of T is equal 

t( ') QD(Ph(q, q'))- QD(Pt) (6) 
T q, q = QD(PJr(q, q'))- QD(Pt) + Qs(Pt)- Qs(Ph(q, q')) 
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which means that ,.t(q, q1
) E [0 , 1] indeed. Since we are interested in the (locally, 

of course, from the point of view of the whole procedure) best aggregation, we 
set 

,.t+l = rnax = ,.t(q*, q**) 
q,q')En(Pt)xn(Pt) 

(7) 

and accept the respective Pi£(q*, q**) as pt+l . 
This procedure retains as suboptimal the partitions pt for which either 0.5 E 

[,.t, ,.t+l] or 0.5 E [·r·t-1, ,.t], in view of the form of (2). 

4. The limits of clustering 

On the basis of the approach outlined, composed of the objective function (2) 
or (3) meant to model (1), and the simple hierarchical merger procedure (4) 
through (7), one can uot only obtain the suboptimal solutions to the clur-l tering 
proGlem (1), but also several numerical characterizations of this solution (val
ues of QD(pt), Qs(Pt) and ,.t). Even, though, with such a procedure, which 
can additionally be complemented with certain improvement schemes, there 
are some essential limitations to the clustering app roach as represented by (1). 
These limitatious are primarily related to the interpretation of the partitions 
o Gtained. If we know a. prioT"i sufficiently well what is the meaning of our Q D (P) 
and Q s(P) then we are certain as to the "appropriateness" of the solutions ob
tained. Thir-l, however, is very rarely the case. And although the opposite is also 
true (i.e. any criticism as to the results of clustering has to explicitly refer to 
QD(P) and/or Qs(P)), we are often confronted with the problem of analysis of 
"meaning" of the partitions resulting from the procedure(s). This aualysis goes 
in two main directiow;: 

(a) the testing of statistical "objectivity" , and 
(b) the verification of the adequacy for a given practical application. 

Both these kinds of issues are linked with the degree of ability of turning 
the obj ective functions (2) or (3) into the respective counterparts: appropriate 
statistics or objective functions of a given applied problem. This aGility, as of 
now, is very limited, indeed, if at all any (Gor·don, 1995). It is true that with 
respect to the juncture with statistics the paper by Marcotorchino (1986) shows 
how one of possible ernbodiments of (2) can be parallelled with a number of 
classical statistics, but this is only for just one embodiment and, moreover, the 
constructive nature of the parallels is very limited. 

Indeed, the (only) constructive approaches to clustering, which come from 
the statistical domain , referring to the mixture model or to the Bayesian estima
tors, often end up - if formulated in practicable terms - with quite cumbersome 
optimization problems in which, though, only one side of (2) is accounted for 
(the "loss function", for instance). Introduction of a formally statistically based 
complement to this kind of function, a lthough intuitively relatively obvious, 
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would require a lot of theoretical effort and the concrete forms are as yet not in 
sight. 

5. Applications 

The latter difficulty can also well be illustrated by the cases of applications, espe
cially, but not exclusively, the ones which appear recently. We will concentrate 
here on just one area of applications, namely those related to "flexible manufac
turing" or "group technology". The respective references may be provided by, 
for instance, Kusiak (1992), Chen (1993), Srinivasan (1994) or Ben-Arieh and 
Chang (1994) . 

The original problem which is being solved in the publications referred to . 
is a concrete production planning or scheduling problem, for which definite 
mathematical models can be built, usually taking the form of the optimization 
tasks. These optimization tasks, though, both in view of their inherent com
plexity (integer programming, nonlinearity, multiplicity of various constraints, 
dynamic nature) and of the dimensions (e.g. numbers of products, time instants , 
machines, ... ) , turn out to be intractable in practice. Thus, heuristic approaches 
are devised that will provide approximate solutions to such problems. In many 
cases these heuristic approaches take the form of the clustering problem, gen
erally equivalent to (1) . This is related to the fact that the notions of distance 
and/or proximity (likeness) as well as global quality of partition are somehow 
adequate to the original problem formulation (e.g. similar characteristics of 
products from the point of view of their production process , coupled with the 
necessity of assigning them to a number of distinct production lines/centres). 

It must be emphasized, though, that there is, as of now, virtually no direct 
formal link , in terms of a transformation or at least a well-founded bound, 
between the original formulation of the optimization problem and the one of 
clustering. In fact, in numerous cases the clustering heuristics applied do not 
even refer to explicit formulations of a model of (1), be it in the form of (2 , 
3) or any other appropriate one, but simply use the existing known techniques, 
of which we have already said that they do even not address adequately the 
problem (1). 

Thus, in the domain of applications the need exists of finding a way to model 
some important classes of practical problems through clustering formulations. 
It seems that (2 , 3) provides a framework for such a way. Likewise, it may be 
hoped that this will turn out also to be the proper way for making the connection 
with the statistical domain, as indicated already, though quite narrowly, by 
Marcotorchino (1986). 

6. On this volume 

The present issue of Contml and Cybe-rnetics shows quite a range of work which 
is being currently done in the clustering domain: from statistical models of rei-
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atively complex nature, through new developments in classical clustering tech
niques (single link) and in fuzzy-set based methods, down to very pract ical 
applications of known algorit hms implemented in widely disseminated packages. 

Thereby, a proper illustration for the image of the domain is provided , to
gether with the technical and more in-depth questions which are being solved. 

We start with a very interesting paper by Yu. Kharin and E. Zhuk, which 
considers the Bayesian classification model with Markov-type dependence be
tween the class number assignments. This paper is then followed by two papers 
(by K. Jajuga and by S. Miyamoto and Y. Agusta) dealing with fuzzy clustering 
methods. The sequence chosen is primarily related to t he perhaps subtle , but 
still very important junction between the statistical models and the fuzzy set 
K -means ones, which is provided by the notion of loss function, representing 
indeed one side of (1). Attention should be paid to the new result shown in the 
second of the two papers mentioned. 

The subsequent group of papers deals with the efforts a iming at finding of 
effective and effi cient methods for optimization in case of clustering problems, 
though not always of the very general nature of (1). Thus, G. Govaert considers 
simultaneous clustering of rows and columns, in fact one of the oldest specific 
problems in cluster analysis, and proposes the method(s) which result from quite 
a broad overview of the domain. T hen, P. Kadluczka and K. Wala on t he one 
hand , and J.S. Chipman and P. W inker on the other propose heuristic meth
ods largely referring to the so called "stochastic" vein in optimization to solve 
definite clustering problems. It is interesting to note, especially with respect 
to the paper by J.S. Chipman and P. Winker, that quite practical problem is 
being solved with a far reaching degree of detail. Finally, Th. Gafner returns 
to the old question of applicability of dynamic programming to clustering and 
shows the ways in which the approach left a lready some time ago as apparently 
inefficient can be improved and therefore perhaps used in some cases when exact 
solutions are needed. 

To somehow close the landscape of cluster analysis we have, at the end, first 
the paper by Ph. Lehert and Ch. Dumortier which presents a new technique 
for the single link method which, given certain assumptions , can go down with 
its computational complexity to O(n), though at the expense of rapid increase 
of computat ional effort with rn, the number of variables describing Xi. Still, 
the result shown is of particular significance in view of the often encountered 
difficul~y in dealing with very large sets of data (e.g. when n = 105 or even 106 ). 

T he , last paper in the volume, by E. Kovacs amd A. Sugar, shows a practical 
·applicat ion of a straightforward clustering technique "taken from the shelf". 
This is this end of the domain which we all ought to have well in mind when 
devising new approaches , methods and techniques. 
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