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The paper refers to the problem of optimal clustering of multi
variate observations in the situation when their class numbers are 
statistically dependent . The optimality criterion is classification 
risk. Two models of dependence of class numbers are investigated: 
general model of dependent random sequence and the model of the 
1-st order Markov chain. The optimal decision rules are constructed 
and their risk values are found; plug-in decision rules are proposed 
for the case of parametric uncertainty. The performance of these 
decision rules is evaluated for Gaussian probability distributions of 
observations and is compared with traditional clustering results for 
the classical decision rule, constructed under assumption about in
dependence of class numbers. 
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1. Introduction. Mathematical models of dependence 

Let 

(1) 

be a parametric family of probability densities in RN and L 2: 2 different den
sities 

{q(-;&f)}iES, S={l, ... ,L}, 

be fixed . The set of parameter values {&]', ... , &£} determines L classes 
{D1 , .. . , D£}. An observation from Di is a random N -vector with the probabi
lity density q(-; ei), i ES. Let n random observations :rl, ... 'Xn be registered in 
RN. We introduce the notations: df E S is unknown true number of the class 
to which Tt belongs; D 0 = (d'f, ... , d~,)T is the true classification vector of the 
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sample X= (x[: ... :x'[;)T with size n, where "T" is transposition symbol. The 
clustering problem consists in construction of decision rule (DR) 

for classification of the sample X, i.e. in construction of the estimate D 
, , T 

(d1, ... , d,) for D 0 on X. 
In mathematical statistics this problem was solved earlier under the following 

. classical assumption: 

MODEL 1.1 Model Mo. Class numbers d'J., .. . d~. are independent in total iden
tically distTibuted mndom variables with a discTete pT'Obability distribution 

11'i = P{d~ = i}, i E S (7rl + ... + 11'£ = 1). (2) 

The assumptions of this model, M 0 , are, however, often violated in practice 
(Kharin 1984, Zhuk 1991). Let us consider the general model of dependence of 
class numbers. 

MODEL 1.2 Model M 1 . Random vaTiables {dn are S1tpposed dependent with a 
joint probability distribution: 

P(D) = P{D 0 = D}, D E sn . (3) 

As the example of (3) let us investigate the case of Markov dependence of 
class numbers because of it is so widely applied (Kharin 1992). 

MODEL 1.3 Model M2. A sequence d'J., ... , d~.' . . . is a homogeneous 1-st ordeT 
M arkov chain with the state space S, an initial probability distTib1Ltion: 

(4) 

and a matTix of one-step transition probabilities: 

p = (Pij): Pij = P{d~+l = .i Id~ = i}, (5) 

t = 1, 2, ... (Pil + ... + PiL = 1) i,j E S. 

Here are some of the applied problems which are described by the M 2 model 
(Kharin 1992): classification of meteorological time series, ident ification of com
plex dynamic systems with alternating structure, recognition of speech signals 
and so on. Note that some particulai cases of the model M1, (1), were consid
ered in Kharin (1984), Zhuk (1991) : the family Q was supposed to be Gaussian 
and the classical DR was investigated; the case of prior uncertainty in (4), (5) 
was considered for the matrix P of a special type for the special problem of 
M.arkovian disorder detection. 
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2. Synthesis of the optimal decision rule under general 
dependence model 

In this section we will consider the situation in which parameter values { Bf}iES 
and distribution P(D), D E sn, are known in the model M1, (1). The optimal 
(Bayesian) DR (ODR) determines D as the statistical estimator for D 0 from: 

D = D(X) = arg min "'"""' w(D', D)P(X, D') , 
DESn ~ 

D'ESn 

(6) 

where w(D',D) 2:: 0 is the loss value, when the true classification vector is 
D' and the decision is D ; P(X, D') is joint probability distribution of X and 
D 0 = D'. The so-called (0-1)-loss function is useful in practice: 

w(D', D)= I( IlD- D'll - Do), Do 2:: 0; (7) 

n 

IlD- D'll = 2:(1- Dd,,d;), 
t=l 

where I(z) = {1 , if z 2:: 0; and 0, if z < 0} is Heavyside unit function; Dij = {1, 
if i = j; and 0, if i # j} is Kronecker symbol ( i, j E S). Such choice of (7) means 
that the losses are equal zero if the deviation IID 0 

- D 11 is less than the given 
critical level D0 . ODR (6) in this case minimizes the risk (the expected losses): 

(8) 

In particular, if Do= 0, then r(O) = P{D # D 0
} is the probability of making at 

least one mistake in classification of the sample X. 

THEOREM 2.1 Unde·r model M 1 the ODR D, which has minimal classification 

erTOr pTobability To= T(O) = P{D # D 0
}, has the form: 

n 

D = arg rnax ("'"""' ln q.(:r:t; Bd) + ln P(D)). 
DESn ~ . ' 

t=l 

(9) 

Proof. Putting D0 = 0 into (6)-(8) produces the relation: 

D = arg max P(X, D). 
DESn 

(10) 

Let us write joint probability distribution P (X, D) of sample X and true clas
sificat ion vector D 0 = D in the f?llowing form: 

n 

P(X, D)= P{X I D 0 = D}P{D 0 =' D} = P(D) IT q(xt; Bd,), (11) 
t=l 

which takes place because of conditional independence of observations {:r;t}r~ 1 
under fixed {df}r~ 1 . ODR (9) is obtained from (10), (11). by using lnP(X ,D) 
instead of P(X, D) .• 
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Note, that if {dnr=l are independent in total (model M 0 ), then 

n 

P(D) =IT 7rd, 

t=l 

aud ODR (9) is trausformed into its classical analogue: 

dt = argrnax(7riiJ(:rt;Of)), t = 1,n, 
,,ES 

(12) 

(13) 

which is a point-by-point DR In the case of dependence of class numbers the 
point-by-poiut DR has the risk value greater than the optimal value To of ODR 

(9) ' 
Let us introduce the conditional risk: 

(14) 

To evaluate the uuconditional risk T(O) we must only know probability distri
butiou (3) aud risk (14): 

T(O) = L P(D 0 )TDo, (15) 
DoESn 

Now cousider the family (1) of Gam;sian densities and the well known Fisher 
model: 

(16) 

where 

is N -variate Gaussian density with mathematical mean vector p, and non-singular 
covariauce (N x N)-ruatrix I; (det (L:;) > 0), Denote by 

f::li j = V(!,,i- i''J )TL:; -l(P,i- p,j) (17) 

the Iviahalanobis interclass distance between Di and DJ (i, j E S), 

THEOREM 2,2 If under rnodel1VI1 the family Q is Ganssian fa 'mily (16) and the 
following conditions arc satisfied: 

C1 ) the asymptotics of incTeasing number of class es takes place: 

L = L(n)----> +oo, n----> +oo ; 

C2) rnaxi,jES f::l ij < +oo; 
C3 ) the following limits exist: 

1 P(D) a , 
- oo < liru -lu-(--) < +oo, VD ,D E S ', 

n--->+oo n P D 0 
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then -risk 'I' Do of ODR {.9) satisfies th e asymptotic exp-ression: 

(18) 

wh eTe a ,= J2n ·ln(L(n)) , and m~ is deteTmin ed by asymptotic equation: 

(L(n))-n L exp(a~ ·(m go- m~)- 0.5(mgo- m~) 2 )---+ 1, n ---+ + oo; 
D ESn 
D#:D 0 

n 

·"" ~~0 d ; L....t tl t 
t =l 

_* _ lnn ln(ln (L(n))) 
a, = an - --=-- -. 2a., 20:, 

Proof is based on the following relation: 

{ 
D 0 

0 
TDo = P max TJD > 0 [ D }; 

D 0 ESn 

.,Do= ~ln q(xt;11:J,) ln P(D) 
ID L...t (x ·eo)+ P(Do)' 

t=l q t, d~ 

and on the applicat ion of theory of random sequence extrema by Leadbetter et 
al. (1986) to {·'7Eo}DESn under Fisher model at fixed D 0 

.• 

In the case of small sample size n the investigation of risk functionals (14), 
(15) of ODR (9) is difficult. Therefore let us consider the probability of one 
error iu classification of observations from X under fixed D 0 (see Zhuk (1991)): 

(19) 

THEOREM 2.3 If in the genemlized FisheT model Nh, {16), the classes {Di}iES 

are equidistant: 

~ij = ~ · (1 - Dij), i,.i E S, (20) 

then 

IT
n ~ c:. (1) ITn ~ Ct 

1 - <P (- - .--:. ) < '[' < 1- <P (- - __:. ) 2 ~ - Do- 2 ~ l 

t=l t= l 

(21) 
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wheTe <!?(-) is the standard normal distrib1ttion fnnc.tion with the density n 1 (- I 
0, 1); 

D (t) _ (do do do d do do)T t- -1 -- ' 1> 2, ... , t-1> t, t+1, ... , n , · - ,n. 

Proof. Let us rewrite ·r£l in the convenient form: 

where 

It is obvious that under fixed D 0 random variables {et}r=1 are conditionally 
independent in total and indentically distributed with probability density n 1 (- I 
-.6. 2 /2, .6. 2 ) . Further we obtain: 

n n 

1- IT P{et:::; -c;, I D 0
} :::; T£l :::; 1- IT P{et:::; -Ct I D 0

}; 

t=1 t=1 

rrn .6. C~ (1) rrn .6. Ct 
1- iJ?( - - ___:. ) < T < 1 - iJ?( - - - ) 2 .6, - Do - 2 .6, l 

t=1 t=1 

which coincides with (21) .• 

CoROLLARY 2.1 UndeT conditions of TheoTem 2. 3 th e 1mconditional Tisk 

and Tisk r£l satisfy the ineqnalities: 

where 

1 _ (<1>(.6. _ c'))n < .,.(1J < 1 _ (<1>(.6. _c))"'· 
2 .6, - Do - 2 .6, l 

( .6. c' )"' (1l ( .6. c))n 1 - iJ?(2-~) :::; T :::;1 - <1>(2-.6. . 

c' = min c;, , 
Do esn , 
t::;t:=:;n 

C = max Ct, 
D 0 ESn 
l $t:=;n 

{ Ct, C~}~~ 1 aTe as defined in {21). 

(22) 

(23) 
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Proof follows from (21) and relations: 

.,.(1) = L P(Do).,.£l, L P(Do) = 1.. 
D 0 ESn D 0 ES 

Note that .,.(1) -----> 1, n -----> +oo . This fact can be easily explained: the 
greater n , the greater the probability of one error in classification of sample X 
of observations {xt}~;, 1 . 

3. The case of Markov dependence of class numbers 

Let us illustrate the results obtained in Section 2 for the model of Markov 
dependence M 2 . 

THEOREM 3.1 For the model M 2 , (1), the ODR D, which has minimal -risk 

value To = P {D # D 0 }, may be w-ritten in the foTm: 

n n-1 

D = arg max(""lnq(xt;fld_) + ln1rd_ + ""lnpd, d,+ 1 ). 
DESn W t 1 w , 

t=1 t=1 
(24) 

Proof. ODR (24) is obtained by substitution in (9) of following discrete 
probability distribution: 

n - 1 

P (D) = 7rdl IT Pd, ,dt+l' 

t=1 

which takes place in model M 2 .• 
To solve the optimization problem (24) it is useful to apply the dynamic 

programming method as in the problem of Markovian disorder detection (see 
Kharin (1984)) . Rewrite the optimization problem (24) in the form: 

n- 1 
D = arg max ""'.ft(dt, dt+1), 

DESn W 
t=1 

where 

.ft(i, j) = otl (ln 1rf + ln q(x1; flf)) + lnpij + ln q(xt+1i flj), 

and the dynamic programming method may be used: 
1) the sequence of Bellman functions B2(d) , ... Bn(d) are determined: 

Bt+1(d) = ma
5
x(.ft(i, d)+ Bt(i)) , t = 1, n - 1; B1(d) = 0 (dES); 

iE 

2) the estimate D is constructed: 

argmaxBn(i) ; dn-k = argrp-EaSx(.fn.- k(i , dn.-k+l) + Bn-k(i )) , 
· tES • 

k 1,n-l. 
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Now let us, for example, investigate the case of Gaussian density family 
(Fisher model (16)) in the situation when the sample size n is not large. Intro
duce the notations: 

n~==Ininnf, 1r+0 ==~ax1rf; 
iES . tES 

(25) 

P- = ruin Pij, P+ = rnax Pij. 
i,jES t,JES 

THEOREM 3.2 For the model M 2, {16}, the ODR {24) may be written as: 

A 1L"" T 1 D = arg max (- - (:r:t - JI·d,) I;- (:r:t- /Ld, )+ 
DESn 2 

t=1 

(26) 

n-1 

+ ln ·<L + L lnpd,,d,+J. 
t=1 

If n':_ > 0, P- > 0, and condition {20} of Theorem 2.3 is satisfied then the -risks 
{1.9} and {22} of ODR {26} satisfy the Telations: 

( 
6.. C* )n (1) ( 6.. C* )"" 1 - <I>( - + - ) < T < 1- <I>(-- - ) . 2 6,. - vo - 2 6,. , (27) 

( ( 6,. C* ))"" (1) ( (6,. C* ))"" 1 - <I> 2 +~ S r S.1 - <1>2-~ , 

max{n+0 ,p+} · P+ 
c* = ln . 

rnin{n~,P-} · P-
(28) 

Proof is based on the use of (24) and (23) for the model M2 , (16) .• 

CoROLLARY 3.1 If in the case of L = 2 classes ·we have n]' = n2 = 0.5 and 
matTix {5} has the special fo·rm: 

(
1-E 

P= 
E 1 ~E) , 0 < E < 1, (29) 

then the vahw C* in {27} may be evaluated by means of fo·rmula: 

(30) 

Compare ODR (9) with classical point-by-point DR (13) in the sense of risk 
value (19) . As the comparison measure let us define: 

K. = max u:(l~ - .,.(1~), 
D oESn D D 
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where .;:gl, ,gl are risks (19) of DRs (13) and (9), respectively, For example, if 
in the conditions of Corollary 3.1 we have 1r1 = 1r2 = 0.5 (classes D1 and D2 are 
equiprobable), then 

where C* is determined in (30), We see that the greater j0,5 - Ej (the stronger 
the dependence), the greater the gain "" of ODR from (9), 

The second relation from (27) helps to evaluate the maximal ~-admissible 
sample size (r is any predetermined positive value): 

n* = n*(l) = max{n: ,(1)(n) ::; 1 }, (31) 

which has the form: 

* ( ) [ ln(1 - 1) J . * 
n I = ln(<T?(.6,j2- C*/6.) - 1, I <I< 1, (32) 

where 1* satisfies the condition: n * (r) > 0, and [z] means the entire part of z 
If n::; n*(r), then ,(1)::; 1 , 

4. The case of unknown parameter values 

Let us investigate the situation when in the model M 1 , (1), the value of the 
T· , T T L L 

composite vector go = (g]' :, , , :B£ ) E 8 c;;; R m of parameters { Bi}iES is 
unknown. We propose to use the plug-in DR: 

n 

D* = arg max ("' ln q(:rt; ed,) + ln P(D) ), 
DESn L_-

t=1 

(33) 

which is obtained from ODR (9) by substituting any statistical estimator e = 
'T ' ''T T (8 1 :,, , :BL) for go on sample X, 

Let us investigate the risk of DR (33) 

(34) 

where R(B 0
) = T(O) = T0 is the classification error probability of ODR (9) ('r(O) 

is defined iu (15)); E{-} is the expectation symboL 

THEOREM 4.1 Jf the estimato-r 0 is consistent: 

(35) 

and R(g 0 ) is contirm01LS with respect to go EeL, then 

(36) 
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Proof. Function R(B 0
) = T(O) is limited: 0 :::; R(B 0

) :::; 1 and continuous 
with respect to go E 0£; convergence (35) takes place (see conditions of Theorem 
4.1). Therefore, owing to the corollary of the second continuity theorem from 
Borovkov (1984) we obtain (36) .• 

There are many statistical estimators which statisfy (35): for example, such 
estimators may be obtained using the methods of moments (Borovkov (1984)). 

These investigations were supported by Belarussian National Grant MP94-
03 . 
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