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The paper refers to the problem of optimal clustering of multi-
variate observations in the situation when their class numbers are
statistically dependent. The optimality criterion is classification
risk. Two models of dependence of class numbers are investigated:
general model of dependent random sequence and the model of the
1-st order Markov chain. The optimal decision rules are constructed
and their risk values are found; plug-in decision rules are proposed
for the case of parametric uncertainty. The performance of these
decision rules is evaluated for Gaussian probability distributions of
observations and is compared with traditional clustering results for
the classical decision rule, constructed under assumption about in-
dependence of class numbers.
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1. Introduction. Mathematical models of dependence

Let
Q = {a(w;6),c € BV :0 € © CR™) (1)

be a parametric family of probability densities in RY and L > 2 different den-
sities

{q(;6) }ies, S =1{1,...,L},

be fixed. The set of parameter values {69,...,09} determines L classes
{Q1,...,Qr}. An observation from ; is a random N-vector with the probabi-
lity density ¢(-;0¢),4 €S. Let n random observations x1,...,z, be registered in
RY. We introduce the notations: d¢ € S is unknown true number of the class
to which a; belongs; D° = (dS,...,d%)T is the true classification vector of the
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sample X = (z7:...:2T)T with size n, where “T"” is transposition symbol. The

clustering problem consists in construction of decision rule (DR)
D=D(X):R™ - 5"

for classification of the sample X, i.e. in construction of the estimate D =
(cil, .. ,Jn,)T for D° on X.

In mathematical statistics this problem was solved earlier under the following
. classical assumption:

MoODEL 1.1 Model My. Class numbers dS,...d2 are independent in total iden-
tically distributed random variables with a discrete probability distribution

m:P{df:i},ieS (7T1-|—.,.+7TL:1). (2)

The assumptions of this model, My, are, however, often violated in practice
(Kharin 1984, Zhuk 1991). Let us consider the general model of dependence of
class numbers.

MODEL 1.2 Model M;. Random variables {d¢} are supposed dependent with a
joint probability distribution:

P(D)= P{D° =D}, D € ™. (3)

As the example of (3) let us investigate the case of Markov dependence of
class numbers because of it is so widely applied (Kharin 1992).

MODEL 1.3 Model Mg. A sequence dY,...,d;,... is a homogeneous I1-st order
Markov chain with the state space S, an initial probability distribution:

) =P{d=i},i€S (n{+...+n5=1), (4)
and a matriz of one-step transition probabilities:

P = (pi;) : pij = P{df;; =j | d7 =i}, (5)

t=12,... (pn+...+piL=1)i,j €5S.

Here are some of the applied problems which are described by the M3 model
(Kharin 1992): classification of meteorological time series, identification of com-
plex dynamic systems with alternating structure, recognition of speech signals
and so on. Note that some particular cases of the model My, (1), were consid-
ered in Kharin (1984), Zhuk (1991): the family Q was supposed to be Gaussian
and the classical DR was investigated; the case of prior uncertainty in (4), (5)
was considered for the matrix P of a special type for the special problem of
Markovian disorder detection.




Optimal clustering under dependence of class numbers 401

2. Synthesis of the optimal decision rule under general
dependence model

In this section we will consider the situation in which parameter values {69};cs
and distribution P(D), D € S™, are known in the model My, (1). The optimal
(Bayesian) DR (ODR) determines D as the statistical estimator for D from:

D=D(X)=arg min » w(D',D)P(X,D’), (6)
DesS™
D’esSn
where w(D’,D) > 0 is the loss value, when the true classification vector is
D’ and the decision is D ; P(X,D’) is joint probability distribution of X and
D° = D’. The so-called (0-1)-loss function is useful in practice:

w(D’', D) = 1(||D — D'|| — 65), 60 > 0; (7)
ID-D'| = (1-éa,a),
t=1

where I(z) = {1, if z > 0; and 0, if z < 0} is Heavyside unit function; é;; = {1,
ifi = j;and 0, if ¢ # 4} is Kronecker symbol (4, € S). Such choice of (7) means
that the losses are equal zero if the deviation ||[D° — D/ is less than the given
critical level 6,. ODR (6) in this case minimizes the risk (the expected losses):

r(60) = P{|D — D°|| > 6,}. (8)
In particular, if §, = 0, then 7(0) = P{ﬁ # D®} is the probability of making at

least one mistake in classification of the sample X .

THEOREM 2.1 Under model My the ODR 15, which has minimal classification
error probability r, = r(0) = P{D # D°}, has the form:

n
D = arg gle%}%(;lnq(mt;é)di) +In P(D)). (9)

Proof. Putting 6, = 0 into (6)-(8) produces the relation:
D = arg P(X,D). 10
arg max P(X, D) (10)

Let us write joint probability distribution P (X, D) of sample X and true clas-
sification vector D° = D in the following form:
n
P(X,D) = P{X | D° = D}P{D° =D} = P(D) [ a(=+;63,), (11)
t=1

which takes place because of conditional independence of observations {z;}7,
under fixed {d¢}7_; . ODR (9) is obtained from (10), (11) by using In P(X, D)
instead of P(X, D). A
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Note, that if {d9}?; are independent in total (model My), then

P(D):det, (12)
t=1
and ODR. (9) is transformed into its classical analogue:
dy = arg meagc(mq(mt; #2)), t =1, m, , (13)

which is a point-by-point DR. In the case of dependence of class numbers the
point-by-point DR has the risk value greater than the optimal value r, of ODR

9).

Let us introduce the conditional risk:
rpe =rps(0) = P{D # D°| D°}, D° € ™. (14)
To evaluate the unconditional risk (0) we must only know probability distri-
bution (3) and risk (14):
r(0)= > P(D°)rpe. (15)
Deesn

Now cousider the family (1) of Gaussian densities and the well known Fisher
model:

a(507) =nn(- | pi,2), i €5, (16)
where
nn(z | p, )= @2m) N2 (det(2)) 70 exp(—0.5(z — p) T2 (z — p))

is N-variate Gaussian density with mathematical mean vector ;2 and non-singular
covariance (N x N)-matrix ¥ (det(X) > 0). Denote by

Aiy = 1 — = e = 1) o

the Mahalanobis interclass distance between §; and Q; (4,7 € S).

THEOREM 2.2 If under model M1 the family Q is Gaussian family (16) and the
following conditions are satisfied:
C1) the asymptotics of increasing number of classes takes place:

L =L(n) — +o0, n — 400;

02) max; jes A’J %< Foo;
Cs) the following limits exist:

P(D
—00 < nEl-il-loo = In P((D"))

< 400, VD,D° € ST,
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then risk rpo of ODR (9) satisfies the asymptotic expression.:
rpe/Tpe — 1, n — +00; (18)

- 2n
Tpo =1—exp (_(f/(_T); -exp(anmsy)),

where @p = +/2n - In(L(n)), and m}, is determined by asymptotic equation:

(L(n))™ Z exp(@X - (mB" —m2) —0.5(mB" —m2)?) - 1, n - +o0;

Desm
D#£D°

mB” = (ln(P(D)/P(D°)) —

bis S
[my| < max lmp |5 @
D#D°

Proof is based on the following relation:
rpo = P{ max nB° > 0| D°};
Deesn ’

P(D)

D
§ 1 dt 1
r;D Z n rf,f)fi’o +in P(D")’

and on the application of theory of random sequence extrema by Leadbetter et
al. (1986) to {nB°}pesn under Fisher model at fixed D°. Il

In the case of small sample size n the investigation of risk functionals (14),
(15) of ODR (9) is difficult. Therefore let us consider the probability of one
error in classification of observations from X under fixed D¢ (see Zhuk (1991)):

W — p{ID - D°| = 1| D°}. (19)

THEOREM 2.3 If in the generalized Fisher model M1, (16), the classes {Q;}ics
are equidistant:

Aij = A~ (1 — 51'3‘), ,j €S, (20)
then
B B € (1) - A Ci
_” il 5 (RO . 0 (P _” e
1 :<I>(2 A)_IDO_I @(2 A)’ (21)
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where ®(-) is the standard normal distribution function with the density ny(- |

0, 1);
P(D® P(D®
C; = max In g, O = min n (L—)—,
2 15 oy i I 5y
dy#£d? dg£a2

D = (82, 8. . oo dsbts Sy oo BE)T , §= 1,

. 1) . .
Proof. Let us rewrite 'rg)g in the convenient form:

L _ 4 __P(D(t)) o
The =1— P{ Ig(ag( (In P(D°) +&)<0|D°,

dy€S,dy#d?

where

- 1 ==
&= —(pag — pa,) TS (@ — 5 (uaz +pa,)), t=1n.

It is obvious that under fixed D° random variables {&:}7; are conditionally
independent in total and indentically distributed with probability density nq(- |

—A2/2, A?%) . Further we obtain:

1-J[ P& < —ci 1Dy <rbl <1-T[ P& < —Ci | D°)
t=1

=1

LU W . 1 SO N oA
1-J[e(=- )< D<c1-Tlo(=-=2
E(2 ~) STpe < tl;[l(Z )

which coincides with (21).
COROLLARY 2.1 Under conditions of Theorem 2.3 the unconditional risk

@ = p{|Ib - D°| = 1} (22)
and risk 'r'gz satisfy the inequalities:
A él n (1) A é n
1=~ ((I)(_Q— == K)) X Fpa L1 — (‘I)("Q_ - Z)) ; (23)
A & A" ¢
— (B2 - =N <V <1 (B(=-2)"
- (o5 - 7)) <r P <1- (25 - 7))
where
C' = min C~’;, C = max Cy,
Degs™ Dees™
1<t<n 1<t<n

{Cy, C1Yo—y are as defined in (21).
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Proof follows from (21) and relations:
rO= 5" Py, Y P0)=1H
Decsr DeeS

Note that #) — 1, n — 4oco . This fact can be easily explained: the
greater n , the greater the probability of one error in classification of sample X
of observations {z+}7_; .

3. The case of Markov dependence of class numbers

Let us illustrate the results obtained in Section 2 for the model of Markov
dependence M .

THEOREM 3.1 For the model Mo, (1), the ODR D, which has minimal risk
value ro = P{D # D°}, may be written in the form:

n n—1
D = arg Bleagcn(;hl q(zs;0g,) + Inmg + ; Inpd,,deis)- (24)

Proof. ODR (24) is obtained by substitution in (9) of following discrete
probability distribution: '

n—1
P(D) =g, det,dm,
=1

which takes place in model My . &=

To solve the optimization problem (24) it is useful to apply the dynamic
programming method as in the problem of Markovian disorder detection (see
Kharin (1984)). Rewrite the optimization problem (24) in the form:

n—1

D = arg di,d
D "*Iggle%ﬁ;ft( £y di41),
where
fi(i,5) = 6a1(lnnf + Ing(z1;607)) + Inpy; + Ing(zers; 67),

and the dynamic programming method may be used: :
1) the sequence of Bellman functions Ba(d), ... Bn(d) are determined:

Bt+l(d) = meagc(ft(i, d) + Bf(l)), t= 1,7’L = 1, Bl(d) =0 (d S S),
1
2) the estimate D is constructed:

dp, = argmaxDBpy(i); Ay = arg max( fr—x (4, dAn_IH_l) + Bn—1(i)),
1€S €S

k= ln—=-1
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Now let us, for example, investigate the case of Gaussian density family
(Fisher model (16)) in the situation when the sample size n is not large. Intro-
duce the notations:

o L1 o o o
T = MIN T T, = maxm;; 25
ics 4. + €S 1) ( )
p_ = min p;;, P4+ = IMNaxp;;.
fger T gges Y

THEOREM 3.2 For the model Mo, (16), the ODR (24) may be written as:

5 1y T,

D = arg max (— ;(mf, = pd,)” X (w1 — pa, )+ (26)
n—1

oy <k Z D e )
=1

If 1° > 0, p_ > 0, and condition (20) of Theorem 2.3 is satisfied then the risks
(19) and (22) of ODR (26) satisfy the relations:

A C*.n 1) A C*.n
1-— ((I)(E—’_K)) _<_’I“Do S 1—— (‘b('—z——K)) 3 (27)
A C* .n A C*\n
- (@5 + )" < <1 (a5 - )"
where
C*=1In IIIaX{Tr+7p+} s > (28)

min{r®,p_}-p_"
Proof is based on the use of (24) and (23) for the model M, (16). I

COROLLARY 3.1 If in the case of L = 2 classes we have 7] = 7§ = 0.5 and
matriz (5) has the special form.:

1—e€ €
P—< . 1_6),0<e<1, (29)

then the value C* in (27) may be evaluated by means of formula:

1—¢€

€

o = (=MD ((—)?). (30)
Compare ODR (9) with classical point-by-point DR (13) in the sense of risk
value (19). As the comparison measure let us define:
() Ay

k= max (Tro — T
DDES"( DO Do
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where 'Fgg, 'r-gz are risks (19) of DRs (13) and (9), respectively. For example, if
in the conditions of Corollary 3.1 we have w1 = w9 = 0.5 (classes 1 and ) are
equiprobable), then
A C*\n A\n
=(®(=+—)) —(2(=)) =0,

where C* is determined in (30). We see that the greater |0.5 — €| (the stronger
the dependence), the greater the gain x of ODR from (9).

The second relation from (27) helps to evaluate the maximal y-admissible
sample size (v is any predetermined positive value):

n* =n*(y) = max{n : 'r'(l)('n,) <~} (31)
which has the form:

TL*(’)’) - [ 111(1 - ’Y)

In(®(A/2 — C*/A)

]—1,7*<'y<1, (32)

where v* satisfies the condition: n*(y) > 0, and [z] means the entire part of z
If n < n*(y), then gk <.

4. The case of unknown parameter values
Let us investigate the situation when in the model M7, (1), the value of the

composite vector 0° = (H‘fo . EHZT)T € ©F C RI™ of parameters {09};cs is
unknown. We propose to use the plug-in DR:

n
D, = arg 11'3116%}2(;111 q(z4;04,) + 10 P(D)), (33)
which is obtained from ODR (9) by substituting any statistical estimator 6 =

Let us investigate the risk of DR (33)
ro = B{RO)}, (34)

where R(6°) = r(0) = r, is the classification error probability of ODR (9) (+(0)
is defined in (15)); E{-} is the expectation symbol.

THEOREM 4.1 If the estimator 0 is consistent:

A o

6 — 0°, n — +oo, (35)
and R(0°) is continuous with respect to 0° € oL, then

|re —ro] — 0, n — 4o00. (36)
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Proof. Function R(0°) = r(0) is limited: 0 < R(6°) < 1 and continuous
with respect to 8° € ©F; convergence (35) takes place (see conditions of Theorem
4.1). Therefore, owing to the corollary of the second continuity theorem from
Borovkov (1984) we obtain (36). Il

There are many statistical estimators which statisfy (35): for example, such
estimators may be obtained using the methods of moments (Borovkov (1984)).

These investigations were supported by Belarussian National Grant MP94-
03.
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