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The paper reviews some of the fuzzy clustering methods based 
on the optimization approach. This approach applied in fuzzy clus
tering consists in optimization of the objective function reflecting 
the quality of clustering. The methods presented in the paper are 
the versions of the generalized fuzzy ISO DATA method. The impor
tant cases outlined are: classical fuzzy ISODATA, fuzzy ISODATA 
with fuzzy covariance matrix, fuzzy linear varieties, fuzzy linear el
liptotypes. The author refers a lso to some relatively new proposals , 
namely: the method based on Lrnorm and the general fuzzy clus
tering method for Minkowski distances. Finally, application of fuzzy 
clustering method for linear regression estimation is presented. 

1. Fuzzy clustering - an introduction 

Clustering methods are among the most common used statistical methods. They 
aim at partitioning of a set of (multivariate) observations into subsets, called 
clusters, so that the following conditions are satisfied: 

• the observations belonging to the same cluster are as similar as possible; 
• the observations belonging to different clusters are as dissimilar as possible. 

In clustering methods similarity is usually measured via the distance be-
tween multivariate observations. Very often Euclidean distance or more general 
Minkowski and Mahalanobis distances are used. 

Most of the clustering methods perform well in the case of well separated 
clusters. Such clusters occur for example when so called natural clusters exist . 
However, in real applications it often happens that the set of observations does 
not contain well separated clusters. The structure existing in this set is such one 
that there are no "sharp borders" between clusters. In such cases fuzzy approach 
proved to be useful. In fuzzy approach instead of clustering understood in usual 
sense (called crisp clustering or hard clustering), fuzzy clustering is used. 
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A fuzzy clustering problem can be stated as follows. Suppose that m-variate 
observations are given: 

where: 
n number; of observations. 

Fuzzy clustering is a family of K fuzzy sets determined on the set of m 
variate observations , in such a way that the following conditions are satisfied: 

1. .fij?.O i=1, ... ,n;j=1, ... ,K ; 

2. I:_f= 1 fij = 1 i = 1, . .. , n; 

3. I:Z;,1 .fij > o J = 1, .. . , K; 

where: 

K the number of fuzzy clusters, 
.fij the membership grade of the i-th observation in the j-th fuzzy cluster. 

Since fuzzy clustering is more general than hard clustering, it is more useful. 
It can be applied also when the clusters are not fuzzy. Then the membership 
grades are approximately equal to 0 or 1 and the hard clusters are easily de
tect ed. 

It should be mentioned that sometimes clustering is used also for fuzzy data, 
that is when there is uncertainty in data. We will not consider this case. In this 
paper there is no uncertainty or vagueness in multivariate observations. 

The idea of fuzzy clustering was outlined by Bellman, 'Kalaba and Zadeh 
(1966), and the first formal proposals of fuzzy clustering methods were given 
by Ruspini (1969) . T he most common approach in fuzzy clustering is the op
t imization approach . In this paper we review some fuzzy clustering methods 
based on the optimization approach. Due to the scope of this pap er , we will 
limit ourselves to the most important methods. 

2. Fuzzy ISODATA method 

In optimization approach the object ive funct ion reflecting the quality of classifi
cation is determined and the fuzzy clustering is obtained through the minimiza
tion (or maximization) of this function. Many fuzzy clustering methods based 
on the optimization approach were proposed (see e.g. Backer, 1978; Ruspini, 
1970,1973; Kaufman and Rousseeuw, 1990). One of the very first fu zzy cluster
ing method based on the optimization approach was fuzzy ISODATA proposed 
by Bezdek (1973) and Dunn (1974) . This is by no doubt the most well known 
fuzzy clustering method. 
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The objective function of early versions of fuzzy ISO DATA can be regarded 
as a special case of the following function: 

n }( 

.L.L.ti~dij (1) 
i=1 j=1 

where: 

dij the distance between the i-th observation and the j-th fuzzy cluster. 

The distauce between the observation and fuzzy cluster reHects the similarity 
of this observation to fuzzy cluster. The higher this similarity, the higher should 
be the membership grade of this observation in a fuzzy cluster. Therefore, in 
"good" fuzzy clustering large values of dij correspond to small values of .fiJ and 
vice versa. Thus, the objective function (1) has to be minimized. 

It is worth to indicate that sometimes the more general objective function is 
considered, where the exponent 2 in (1) is replaced by s (s > 1). This parameter 
controls the fuzziness of the clustering. As s tends to 1, the clustering becomes 
less fuzzy. For s = 1, we obtain hard clustering. As s tends to infinity, the 
clusteriug becomes more fuzzy. In infinity all membership grades are equal to 

1/K. 
In the objective function (1) both membership grades and distances between 

the observations and fuzzy clusters are not known. Therefore, minimization of 
the objective function is performed through two tasks: 

• minimization with respect to values of .fiJ, given values of dij; 

• miuimization with respect to values of dij, given values of .fiJ. 

The solution of the first task is well-known. It can be proved (see e.g. 
Bezdek, 1981) that given values of dij, the optimal membership grades are 
giveu according to the following rule: 

• if for some i, there exists k such that dik = 0, then: 

{ 
1 j = k 

.fij = 0 j i= k 

• if for i, all dij > 0, then: 

.fiJ = (rliJ)-
1 I (f)r1il)- 1

) 

1=1 

(2) 

In (2) the membership grade of the observation in the fuzzy cluster is given 
as a fraction of the similarity (a reciprocal of a distance) of this observatiou to 
the fuzzy cluster in the sum of the similarities of this observation to all fuzzy 
clusters. 

The solution of the second task, namely the minimization with respect to 
values of dij, giveu values of fiJ, depends on the particular form of the distance. 
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The most simple case is the version, where squared Euclidean distance is used, 
so that the objective function is defined as: 

n K 

LLfi~(:x;i- vj)T(xi- vj) (3) 
i=l j=l 

where: 
Vj the location vector of j-th fuzzy cluster. 

Then the optimal location vectors are given as: 

(4) 

To conclude, it is worth to remind that this version of fuzzy ISODATA is 
useful when the clusters are of equal size and of hyperspherical shape (both 
conditions have to be met at least approximately) . 

3. Some other versions of fuzzy ISODATA method 

The classical fuzzy ISODATA, where squared Euclidean distance is used, is a 
special case of the method based on the objective function (1). There are some 
other cases, useful from the point of view of real app lications. 

Gustafson and Kessel (1979) in one of the first extensions of classical fuzzy 
ISODATA method proposed to use squared Mahalanobis distance. T heir objec
tive function is therefore given as: 

n K 

LLfi~(xi - Vj)TMj(:x;i- Vj) (5) 
i=l j = l 

where: 
Vj the location vector of j-th fuzzy cluster, 
Mj the symmetric and positive definite matrix reflecting the scatter of the )-th 

fuzzy cluster. 
The objective function (5) takes into account the shape of clusters, allowing 

this shape to differ across the clusters. However this shape should be at least 
approximately hyperellipsoidal. 

To make the minimization of the objective function tractable, each Mj is 
constrained by requiring its determinant to be fixed, for example by letting it 
equal to one. Allowing Mj to vary while keeping its determinant fixed corre
sponds to seeking an optimal cluster shape fitting the observations to a fixed 
volume. 

This gives the following optimization problem: 
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mmmuze 

i = l j=l 

with respect to: 

1Mj l= 1, j=1, ... ,K. 

It can be proved that given values of .fij , the optimal parameters are given 
as: 

Vj = (t .f;~x;) / (t f~) 
,=1 ,=1 

So the location vector is the weighted mean vector and the scatter matrix 
is proportional to the inverse of the weighted covariance matrix, scaled in such 
a way that its determinant is equal to 1. In both cases the weights reflect the 
membership grades of the observations to fuzzy clusters. 

The next version of fuzzy ISO DATA method was proposed by Bezdek et al. 
( 1981) and is called fuzzy linear varieties method. In this method each fuzzy 
cluster is represented by T-dimensional linear variety. Here a linear variety of 
dimension,. (0 :::; ,. :::; m,) through an m-dimensional point v , spanned by the 
linearly independent m-dimensional vectors .s1, .s2 , ... , .sn is the following set : 

Similarly as before , the objective function is based on the distances between 
the observations and the representations of fuzzy clusters (in this case the rep
resentations are linear varieties). This distance between observation and any 
linear variety is given as: 

r 

d(x:;, Vr) = [(x:; - v)T(x:; - v)- I)x; - v)T.sk ]05 

k=l 

(6) 

It is worth to mention that for ,. = 0 the distance (6) becomes Euclidean 
distance and we obtain the classical fuzzy ISODATA method. 
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The distauce (6) is obtaiued by projecting :1:i - v onto the span obtained 
by {.s k} aud t heu calculating the length of ~;i - v minus its best least squares 
approximation. Iu the case of ·r· = 1 it is simply the shortest distance from t he 
point to a line. In general case it is the shortes t Euclidean distance between the 
observation and any point belonging to the linear variety. 

If we use this distance iu the objective function ( 1) , we get the following 
optimization problem: minimize 

n K r 

I::I::.rl[(:J:i- Vj)T( :I:i - Vj)- L(:I:i - Vj)TSkj] (7) 
i=l j=l k=l 

where: 

vj, s 1j, s 2j, . . . , Srj uuknown vectors defining linear r-dimensional variety for the 
j-th fuzzy cluster. 

It eau be proved that given the values of fij, the solution is giveu as: 

s kj beiug the eigeuvector corresponding to the k- th largest eigenvalue of fuzzy 
scatter matrix Sj for the .'l-th fuzzy cluster , where: 

n 

Sj = L fi~(:l:i - 'llj)(:J:i- Vjf 
i=l 

It is worth to mentiou that this method is useful for the detection of t he 
clusters of liuear shape. Some weakness of this method is the assumpt iou t hat 
the liuear varieties for different clusters are of the same dimension , which is not 
uecessarily true for the data sets occurriug in practice . 

The next version of fuzzy ISODATA given by the objective functiou was 
also proposed by Bezdek et a l. (1981). The method, beiug a slight modification 
of the fuzzy liuear varieties method, is called fuzzy linear elliptotypes method. 
Here the objective functiou is defined as: 

n K 

L L .f;~ { n,[(a:i - vj)T(:ri- Vj)]+ 

i= l j=l 

(8) 

The fuuctiou (8) is a convex cornbiuation of two objective functions. The first 
oue is fuuctio u (3) of classical fuzzy ISODATA and the secoud one is fuuctiou 
(7) of fuzzy linear varieties method. Here the distauce betweeu the observatiou 
aud fuzzy cluster is a convex combination of t he Euclideau distance betweeu 
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observation and fuzzy cluster center and the orthogonal distance from obt>erva
tion to the line passing through fuzzy cluster center . This idea can be useful if 
oue looks for clusters of linear shape but also such clusters that contain a center 
near or in convex hull. The disadvantage of this method is the arbitrary choice 
of the coefficients of the convex combination . 

The optimal solution in fuzzy linear elliptotypes method is exactly the same 
as in fuzzy liuear varieties method . The only exception is of course the distance 
used in the oLjective function . 

4. Minkowski distances m fuzzy clustering 

Iu the fuzzy clusteriug methods presented so far, the distances of observatious 
from fu zzy clusters were somehow derived from Euclidean distance. It is well 
kuown that Euclidean distance is a special case of l\!Iinkowski distance , given as: 

(9) 

where: 
p parameter iu l\!Iiukowski distance, in case of Euclidean distance p = 2 . 

.Jajuga (1991) gives Lrnorrn Lased fuzzy clustering method. This is the 
version of fuzzy ISODATA for the case of J\!I inkowski distauce where p = 1, 
corresponding to the kuowu Manhattan distance, called also city block metric . 
By introduciug this distance to the functiou (1), we get the following objective 
functiou: 

n K m 

LL.ri~ L 11;il- 'l!jzl (10) 
i = 1 j=l l=1 

where: 
v11 the 1-th component of the location vector of the j - th fuzzy cluster. 

It can be proved that location parameters in the optimal t>olutions are oL
taiued through the formula: 

VJZ = (t aiJI:ril) / (t UiJl) 
•=1 •=1 

where: 

U.i. jl = .f~/ I:Dil- 'l!jll 

Receutly a general fuzzy clusteriug method where the l\!I inkowski distance is 
used, was proposed Ly Groenen aud .Jajuga (1994). Here the objective fuuction 
is given as: 

n J( (m ) 2h/p 8 f; fi~ 8l:ril - Vjt/P (11) 
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where: 
1 :::; p :::; 2, 0 :::; h :::; 1. 

Here, in addition to varying parameter p, the second parameter, h , is intro
duced which allows for different powers of distance function. The function (11) 
contains as special cases the classical fuzzy ISODATA (p = 2, h = 1) and the 
Lr-norm based fuzzy clustering methods (p = 1, h = 0.5). 

It should be added that this method was derived for the general case of 
fuzziness parameter s. For the sake of uniform presentation here we will restrict 
ourselves to the case of s = 2. 

In Groenen and Jajuga (1994) the optimal solution is derived by using so 
called iterative majorization algorithm (see e.g. De Leeuw, 1988). It can be 
proved that the optimal parameter vectors for fuzzy clusters are given through 
the formula: 

where: 

As we have already mentioned in all discussed methods the objective func
tions derived from general function (1) can be extended so that they are the 
special cases of an even more general objective function: 

n K 

:L:L.ti)dij, 
i=l j=l 

where s > 1 
The exponent s controls the fuzziness of the classification. In practice, how

ever, the choice of s = 2 works quite well. 

5. Fuzzy clustering in linear regression 

In each of the presented methods the parameter vector of each fuzzy cluster 
can be considered as a location vector, like a "generalized cluster center". This 
allows to consider fuzzy clustering problem as the one of estimation of the 
location vectors. 

However , in some methods other parameters of fuzzy clusters were also de
termined . For example - in fuzzy linear varieties method the· hyperplane was 
another representation of fuzzy cluster. In fact fuzzy linear varieties method 
can be regarded as a generalization of two well known statistical methods. 
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First, if T = 1, that is if the linear varieties are lines, we get the generalization 
of principal component analysis. Strictly speaking, for each fuzzy cluster a kind 
of first principal component is determined using weighted scatter matrix. 

Secondly, if T = m- 1, the linear varieties are (m- 1)-dimensional hyper
planes, we get the generalization of orthogonal regression. Here for each fuzzy 
cluster the best least squares fit is obtained and the observations are given 
weights reflecting their membership grades to fuzzy clusters. 

In orthogonal regression the residuals are measured through the shortest 
distances of points from hyperplane. However more often classical regression is 
used, where the residuals are me·asured along the axis of the dependent variable. 
Therefore it may be useful to consider the fuzzy clustering, where the parameters 
of fuzzy clusters are regression hyperplanes. Here the regression of dependent 
variable with respect to the other variables, regressors, is taken. As a rule 
these hyperplanes are obtained via classical least squares method. The fuzzy 
clustering method for this case were proposed by Bezdek and Hathaway (1990) 
and Hathaway and Bezdek (1993) and independently by .Jajuga (1993). 

The main rationale behind the use of fuzzy clustering approach in linear 
regression lies in the fact that the requirement for the use of least squares method 
in linear regression is the homogeneity of the set of observations. However 
the observations ve_ry often form a heterogeneous set, which consists of several 
homogeneous clusters. Then it is advised to fit regression separately for each 
cluster. If the clusters are not well separated the detection of clusters by the 
classical clustering methods may fail. In addition, in order to fit the regression , 
a sufficient number of observations for each cluster should be given. This may 
cause problems for small data sets. This problem can be avoided by using fuzzy 
clustering ideas, since each fuzzy cluster contains all observations (with different 
membership grades) and there is no problem of small data set. 

When applying fuzzy clustering to linear regression, we can still stay in the 
framework of general objective function (1) , by using the function: 

n K 

L L .fi~(Xirn- a,J Zi)
2 (12) 

i=l j=l -

where: 
Xirn value of the dependent variable for i-th observation, 
zi = (xi1Xi2 ... Xi,rn-11) T the vector of the values of regressors for i-th observa

tion, 
a,j = (a.j 1aj 2 ... a.j,rn-lbj)T the vector of the regression coefficients for the j-th 

fuzzy cluster, bj being the intercept . 
In function (12) the distance of the observation from fuzzy cluster is defined 

as squared residual calculated for this observation basing on the regression of 
j -th fuzzy cluster. The objective function itself is a sum of the weighted squared 
residuals over all fuzzy clusters , where the weights reflect the membership grades 
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in fuzzy clusters . This function may be also written as: 

]( 

2_):t;- Z(J,jfFj(Y- Zaj) 
j=l 

where: 
y a vector, whose components are values of dependent variable, :r:im, 

Z a n x m. matrix vector, whose columns are vectors zi , 

I< . .JA.TUGA 

(13) 

Fj an diagonal n x n matrix, where the elements on the main diagonal are 

f2 f2 f2 
· lj' · 2j ' · · · ' · nj · 

Given values of .fij, the objective function (13) is minimized for: 

So the vectors of regression coefficients are obtained as weighted least squares 
coefficients , where the weights are squared membership grades. 

To implement this method the iterative algorithm has to be used, where 
in the consecutive iterations the regressions for fuzzy clusters are updated and 
then squared residuals are used to update the membership grades. 
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	Bez nazwy

