
Control and Cybernetics 

vol. 24 (1995) No. 4 

An efficient algorithm for £1 fuzzy c-means and its 
termination 

by 

Sadaaki Miyamoto* and Yudi Agusta** 

*Institute of Information Sciences and Etectronics 
University of Tsukuba, Ibaraki 305, Japan 

**Graduate School of Engineering, University of Tokushima 
Tokushima 770, Japan 

A fast algorithm for calculating cluster centers in the iteration 
procedure of the £1 fuzzy c-means clustering is proposed. The al­
gorithm is a simple sequential search on the set of coordinates of 
data points. The complexity of calculation of each cluster center is 
the order of the number of data points except that the coordinates 
should be sorted before the iteration begins. The efficiency is com­
parable to the computation of a center in the ordinary Euclidean 
fuzzy c-means. Thus, the £1 fuzzy c-means algorithm is efficient and 
is applicable to large data sets. It is proved that the algorithm ter­
minates after a fi_nite number of iterations and the upper bound for 
the number of iterations is estimated. Numerical examples including 
a set of 10,000 data points are shown. 

1. Introduction 

The £1 space has been considered to be a natural space for statitical analysis in 
addition to Euclidean space, and recently this space has attracted researchers' 
interest (e.g., Devroye and Gyorfi, 1984; Nahorski, 1992). 

In the case of fuzzy c-means (Dunn, 1974; Bezdek,1981), the £1 space based 
fuzzy c-means have also been considered in recent years by .Ja.iuga (1991) and 
by Bobrowski and Bezdek (1991); the latter discusses fuzzy c-means in the £1 

and also £00 spaces . 
These two studies (.Ja.iuga, 1991; Bobrowski and Bezdek, 1991) have diffi­

culties in optimizing the fuzzy c-means model in the £1 and £00 spaces. The 
general fuzzy c-means algorithm is an iterative procedure in which the step of 
determining grades of memberships and that of determining cluster centers are 
repeated. A unified formula can be used for the determination of grades for 
different distances, whereas the calculation of cluster centers strongly depends 
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on a selected distance. Cluster centers in the inner product spaces are derived 
by a simple formula of weighted averages. For the Jl1 space, they have proposed 
iterative subprocedures for calculating cluster centers. The calculation of clus­
ter centers in these studies requires much more computation than those in inner 
product spaces. 

This paper reveals that, in the case of the J1 1 space, a small amount of 
computation is sufficient for calculating the cluster centers. Although no simple 
formula can be used, the computational complexity is low and comparable to 
that of fuzzy c-means for inner product spaces. Namely, each component of 
a cluster center is the minimizing element of a piecewise affine function. The 
component is calculated by a linear search on the derivative of the function, 
which is remarkably simple. 

Convergence of an algorithm has frequently been referred to in literature 
of crisp and fuzzy clustering. The convergence does not imply that the result 
is good , however. For example, the crisp c-means algorithm is proved to be 
convergent (Anderberg, 1973, pp.165-166), but the result is not necessarily the 
optimal solution. In contrast, convergence in other fields of mathematical anal­
ysis more or less implies that the sequence approaches a desired solution. To 
avoid confusion, we use the term termination instead of convergence in order 
to simply mean that an algorithm is guaranteed to stop eventually, with no 
additional implication. 

This paper presents a theorem about termination of the algorithm in the 
Ji 1 space. Such a result has not been reported in foregoing studies . There 
have b eell two approaches for discussing termination of c-means algorithms: 
finiteness of combinations of data allocations to clusters is used in the crisp c­
means (Anderberg, 1973, p.165); uniqueness of the optimal solution in each 
step is used in Euclidean fuzzy c-means (Bezdek, 1981; I-Iathaway, Bezdek, 
Tucker, 1987). The present method uses both finiteness and the uniqueness: 
the finiteness for possible cluster centers and the uniqueness of the minimum of 
strictly convex functions. 

Numerical examples are given to show that the algorithm actually works 
well on a large set of data with a small computation time. Indeed, an example 
includes 10,000 data points. 

2. Cluster centers in the .el fuzzy c-means 

The problem hereill is that n objects, each of which is represented by a p­

dimensional real vector Xk = (xkl, ... , Xkp) E RP, k: = 1, ... , n, should be divided 
into c fuzzy clusters . Namely, the grade v.;k, 1 ::::; i ::::; c, 1 ::::; k: ::::; n, by which the 
ouject k belongs to the cluster i should be determined. 

For each object k, the grades of membership should satisfy the conditions of 
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a fuzzy partition: 

c 

:L:>ik = 1, 1 :S k: :S n; 0 :S v.;k :S 1, 1 :S i :S c, 1 ::; k: ::; n . (1) 
i= l 

T he formulation by Bezdek (1981) is by optimization of the objective func-
tion 

c n 

.J(U,v) = Ll)u.;k)md(xk,v;) 
i=l k=l 

in which d(x, v) is a measure of dissimilarity between x and v, m is a real 
parameter such that m > 1, v; is the center of the fuzzy cluster i, and U = (·u.;k) 
and v = (v1, ... , vc) E Rep. 

Bezdek (1981) takes d(x, v) to be t he square of any inner product induced 
distance. Here we assume that d is the £1 norm: 

p 

d(xk.vi) = llxk - v;ll 1 = LiXkj - Vijl 
j=1 

where v; = (v;1 , ... , v;p)· Namely, the objective function is 

c n 

.J(U,v) = LL('u.;k)mii:I:k - v; lh 
i=1 k=1 

(2) 

for which the constraints are shown in (1) . In other words, the admissible region 

c 

M = {(v.;k) I L 'll,ik = 1, 1 :S k: :S n; 0 :S 'U.ik :S 1, 1 :Si :S c, 1 :S k: :S n} 
i=1 

is used . The present formulation is called the £1 fuzzy c-means or £1 FCM here . 
This formulation is not new: Jajuga (1991), and Bobrowski and Bezdek (1991 ) 
proposed £1 FCM and methods of calculating cluster centers v;. Here we show a 
better method of calculating the centers and the termination of t he algorithm. 

It is well-known that the direct optimization of .J by (U, v) 

min .J(U, v) 
UEM,vERcp 

is difficult. A two stage iteration algorithm (called alternating optimization) is 
often used. 

A General FCM Algorithm (Bezdek, 1981) 

(a) Initialize u(0l ; Sets= 0. 

(b) Calculate cluster cent ers v(s) = (vi8 l, ... , v~8 )) that minimize .J(U(s), ·): 

.J(U(sl,v(s.)) = min .J(U(sl,v) . (3) 
vERcp 
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(c) Update U: calculate u(s+l) that minimize J(-, vCsl): 

J(U(s+l), v(s)) = rnin J(U, v(s)). 
UEM 

(4) 

(d) Check stopping criterion using a given E > 0 and a suitable matrix norm: if 
IIU(s+1) - U (s) 11 < E, then stop; otherwise s = s + 1 and go to (b). 

This general procedure can also be used for £1 FCM. Since no concrete 
methods for calculating u(s) and v(s) are described above, we consider them in 
the following . 

In general, calculation of u(s+1) does not depend on a particular choice of a 
norm . It is well-known that u·ik is easily derived by using Lagrange multipliers 
(Bezdek, 1981). Namely, for Xk such that xk f. vi, i = 1, ... , c, and m> 1, 

1 
(5) 

For xk such that there exists Vi that satisfies Xk =vi, let Wk = {ilxk =vi} and 
take an arbitrary 'Uik E [0, 1], i = 1, ... , c, such that 

L 'Uik = 1; 
iEWk 

(6) 

In the latter case, the solution 'Uik for a given Xk is not unique if and only if Wk 
includes more than one element. 

On the other hand, calculation of the cluster centers is not simple except 
the case of the inner product spaces where 

Bobrowski and Bezdek (1991) propose a basis exchange algorithm for cluster 
centers in £1 and £00 FCM; .Jajuga (1991) considers an iterative algorithm for 
£1 FCM. 

For the derivation of a far simpler algorithm for £1 FCM, notice that 

c n 

J(U, V) L L(·u·ik)mllxk- 'Vill1 

i=1 k=1 

c p n 

LLL('Uik)m!Xkj- Vijl· 

i=1 j=1 k=1 

We put 
n 

Fij(w) = 2:.)-u.ik)mlxkj- wl 
k=1 
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as a function of a real variable w. Then 

c p 

J(U,v) = l:l:Fij(Vij) 
i=l j=l 

in which U does not represent variables but parameters. 
In determining cluster centers, each Fij(w), 1:::; i:::; c, 1 :::; j:::; p, should be 

minimized with respect to the real variable w without any constraint. 
It is easily seen that the following properties are valid. The proofs are 

omitted. 

(A) Fij(w) is a convex, piecewise affine function. 

(B) The intersection between the set X j = { x lj, ... , x nj} and the set of the 
solutions of 

min Fij(w) 
wER 

(7) 

is not empty. In other words, at least one of the .i-th coordinates of the points 
x 1 , ... , x, is the optimal solution. In particular when the solution of (7) is unique, 
it is included in X j. 

In view of the property (B), we limit ourselves to the minimization problem 

min Fij(w) 
wEXj 

(8)-

instead of (7). The reason for this limitation is to simplify the description. 
Indeed, when the solutions of (8) are found, the solution set of (7) becomes 
obvious: the smallest interval in which the solutions of (8) are included . Thus 
the limitation to (8) is harmless. 

Since no simple formula for cluster centers in £1 FCM seems to be available, 
an efficient algorithm of search for the solution of (8) is considered using the 
above properties. Two ideas are used in the following algorithm: ordering of 
{xkj} and derivative of Fij· We assume that when {xlj, ... , Xnj} is ordered, first 
subscripts are changed using a permutation function qj(k), k = 1, ... , n, that is, 
Xqj(l)j:::; Xqj(2)j:::; ... :::; Xqj( n)j · Using {xqj(k)j}, 

n 

Fij(w) = I:(·uiqj(k))mlw- Xqj(k)j i· (9) 
k=l 

Although Fij (w) is not difl:'erentiable on R, we extend the derivative of Fij ( w) 

on {xqj(k)j}: 

n 

dFij(w) = 2.)·u·iqj(k))msign+(w - Xqj(k)j) (10) 
k=l 
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where 

sign+(z) = { ~ 1 (z 2': O), 
.(z<O) . 
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Thus, dFS ( w) is a step function which is right continuous and monotone 
nondecreasing in view of its convexity and piecewise affine property. Now, it is 
easy to see that the minimizing element for (8) is one of xqi(k)j at ~hich dFS ( w) 

changes its sign. More precisely, :x:qi(t)j is the optimal solution of (8) if and only 

if dFS(w) < 0 for w < :x:qi(t)j and dFS(w) 2': 0 for w 2: :x:qi(t)j· 

Let w = Xqi(r)j> then 

T n 

dFS(x:qi(r)j) = 'L)·uiqi(k))m - L (-uiqj(k))m 

k=l k=r+l 

These observations lead us to the next algorithm. 

begin 
S ,_ "'n (·u )m · .- - L__..k=l ik ' 
T := 0; 
while ( S < 0 )do begin 

T := T + 1; 
S := S + 2(·u.iqj(r))m 

end; 
output Vij = xqi(r)j as the j-th coordinate of 
the cluster center Vi 

end. 

It is easy to see that this algorithm correctly calculates one coordinate of the 
cluster center: the solution of (8). 

This algorithm is a simple linear search on nodes of the piecewise affine 
function . It is very efficient, since additions, conditional branches, and the 
calculation of ('uik)m from (v·ik) of O(n) should be processed . Furthermore, 
O(n) is optimal. To see this, it is sufficient to note that examination of all 'U.ik, 

1 ::; k ::; n, is necessary in order to calculate a coordinate of a cluster center , 
since by modifYing the value of 'Uik arbitrarily, any element of x kj, 1 ::; k ::; n, 

can be the solution. The lower bound is thus O(n) and hence the complexity of 
the above algorithm is optimal. 

Thus, the calculation of cluster centers in £1 FCM is simple and does not 
require much computation time, except that the ordering of {xkj} for each 
coordinate j is necessary. Notice that the ordering is performed only once before 
the iteration of FCM. Further ordering is unnecessary during the iteration. 

Thus, the computational complexity for calculating a v in the FCM iteration 
is O(npc) ; the complexity of the ordering before the iteration is O(np logn) ; 
mostly p and c are small. Notice that such estimation of the complexity is 
difficult in the former algorithms (Jajuga, 1991 ; Bobrowski and Bezdek, 1991). 
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3. Termination of f1 fuzzy c-means algorithm 

We prove a theorem of termination of our £1 FCM algorithm which is a modified 
version of the algorithm in the previous section. 

Two modifications are necessary. First, although the solution u(s) is not 
unique in general, it is made to be unique by a simple trick. As we have noted 
earlier, Xk = Vi for more than one Vi is not impossible: it may occur that 
Xk = vi 1 = ... = vih for Wk = {i1, ... , ih}, i1 < ... < ih, in (6). In such a case we 
select a strategy of a llocating unity to the first cluster: 

'Ujk 

in order to make the solution u(s) unique. 
Second, in the calculation of v(s), we take v(s) = v(s- 1) whenever 

J(U(s),v(s)) = min J(U(sl,v) = J(u(s),v(s-1)). 
vERcp 

(11) 

(12) 

(13) 

In other words , if the value of the objective function is not improved, the pro­
cedure outputs the previous center. 

In the following algorithm CC, the input is the ordered sequence { x qj( k)j} 

. (s-1) ( {s- 1) {s-1)) h · h and also the previOus center vi = vi1 , ... , vip ; t e output 1s t e 
new center Vi = ( vi 1 , ... , Vip). In general the cent er is not unique, and more-

over when (13) is satisfied, the previous ds-1
) is one of the minimizing ele­

ments. In this case the algorithm outputs Vi = v~s- 1 ). The algorithm uses a 
set W which stores all minimizing elements for (8). Notice that all minimiz­
ing elements are contiguous in view of the convexity of Fij ( w). Moreover, if 
W = {:r:qi(r)j > Xq j (r+ l)j > ... , Xqi(r+ t)j} , then 

Algorithm CC 
begin 

S ·- "'"' (·u ·k)m . . - - L,.,k=1 '?. ' 

'f' := 0; 
while ( S < 0 )do begin 

'f' := 'f' + 1; 
S := S + 2('uiqj(r))m 

end; 
w :=0; 
while ( S = 0 )do begin 

W := W U {xqi(r)j}; 

'f' :=T+l; 
S := S + 2(-u.iqj(r))m 
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end; 

W := W U {xqj(r) j};> 

if vi;-1
) E W then Vij := vi;-1

) 

else take an arbitrary element z E W and Vij := z; 

output Vij 

end. 

The upper bound of the numbei· of iterations can be estimated. For this 
purpose the following set is useful: 

c 

Let zc be the Cartesian product of Z: zc = Z x Z x .... x Z. The number of 
elements in zc is denoted by IZcl. 

Now we have 

Theorem. For any E > 0 used in FCM, the FCM algorit hm with (5) , (11), 
and (12) for calculating Uik and CC for calculating Vi terminates after a finite 
number of iterations . The upper bound of the number of iterations is given by 
IZcl + 1. During the iteration , the value of the objective function is monotone 
nonincreasing: 

The proof consists of a few steps. 

Lemma 1. The objective function is monotone nonincreasing, i.e., (14) holds. 
Moreover, if 

J(U(s),v(s - 1)) = J(U(s),v(s)), 

for som e s :::: 1, then v(s) = v(s- 1). 

The proof is straightforward , since 

J (U(s+1), v(s)) 

J(U(s), v(s)) 

min J(U, v(s)) ~ J(U (s), v(s)) 
UEM 

min J(U (s),v) ~ J( U(s),v(s- 1)). 
vERcp 

Moreover algorithm CC guarantees v(s) = v(s-1) whenever J(U(s),v(s)) 
J(U(s ),v(s-1) ). 

Lemma 2. The solution u(s+1l of 

(15) 

is unique. Therefore if 
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then u(s+ 1) = u(s). 

For the proof, let C and D be subsets of the set of integers { 1, 2, ... , n} such 
that CUD= {1,2 , ... ,n}: for any k E C, xk -=f. vi for all i = 1, ... , c; for any 
kED, there exists some i E {1 , .. , c} such that Xk = Vi . Then for an arbitrary 
v, 

c c 

i=1 kEG i=1 kED 

The objective function is thus divided into two parts: each part can be indepen­
dently optimized with respect to 'Uik regardless of the other. For the first part, 
'Uik given by (5) is the unique optimal solution, since the function is strictly 
convex with respect to 'U.ik (see , e.g., Rockafellar, 1970, p.263). For the second 
part, we select the strategy (11) and (12) for obtaining the unique minimizing 
solution (cf. Hathaway, Bezdek, Tucker, 1987 ). 

(Proof of the theorem) Since algorithm CC outputs one of {x 1j, ... ,Xnj} as 

the .i-th coordinate of vi, vis) E Z and hence v(s) E zc. If J(u(s), v(s)) 

J(u(s), v(s-1l), v(s) = v(s-1) by Lemma 1. In this case J(U(s+ 1), v(s)) 

minuEM J(U , v(s)) = minuEM J(U, v(s - 1)) = J(u(s), v(s-1)) = J(u(s), v(s)) 

which means u(s+l) = u(s) by Lemma 2. Hence IIU(s+1) - u(s)l l < E and 

FCM stops. 
If v(s) -=f. v(s-1), then J(u(sl,v(s)) < J(u(sl,v(s - 1)) by Lemma 1. In this 

case v(r) -=f. v(s - 1) for all T :::>: s. Assume the contrary, that there exists T :::>: s 

such that v(r) = v(s - 1). Since the value of the objective function is monotone 
nonincreasing, 

On the other hand, 

J(U (r), v(s - 1)) :::>: min J (U, v(s-1)) = J (U (s)' v (s - 1)). 
UEM 

Hence we have a contradiction. 

Thus, while J (U, v) is strictly monotone decreasing , v (s) visits different 
points of zc, and when the optimal value of J is not improved, the algorithm 
stops. Since zc is a finite set and except when v(s) = v(s-1), v( s) cannot visit the 
same point of zc more than once. Therefore the algorithm terminates after a 
finite number, i.e., at most the number of elements in zc plus one , of iterations. 
Thus the theorem is proved. 

This theorem guarantees termination of our £1 FCM algorithm and the al­
gorithm is reasonable since the value of the objective function is monotone 
decreasing. The present theorem is the first result that gives termination of an 
£1 FCM algorithm. Bobrowski and Bezdek (1991) show only the convergence of 
a subprocedure of £1 FCM. 
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Figure 1. Two squares ABCD and EFGH with the intersection PBQH used 
for Example 1. 

4. Numerical examples 

Two examples are considered . Throughout these examples we take the param­
eter m = 2, the number of clusters c = 2, and the dimension p = 2. In each 
example, a region is considered and data points are scattered over the region. 

The region in Example 1 is as follows. Two squares ABCD and EFGH 
of uni t size with the intersect ing square P BQ H are considered, as shown in 
Figure 1. The square PBQH has edge length a. (0 < a < 1). Data points 
have been scattered over the area surrounded by APEFGQCDA using the 
uniformly distributed random numbers. Two different cases of 1, 000 data points 
(called Example 1.1 hereafter) and 10, 000 data points (called Example 1.2) are 
considered. 

In Example 2, the region in Example 1 is rotated by -45° so that the 
line connecting D, H, B, and F becomes horizontal (Figure 2). Two cases 
of n = 1, 000 (Example 2.1) and n = 10,000 (Example 2.2) of the randomly 
scattered data are cons idered likewise. 

The initial value for the grade ·ui~ for each x k is generated by the pseudo 

random number uniformly distributed over [0, 1]; v. ~~ = 1- v.i~ to form a fuzzy 
partition. Ten trials with different initial grades ulD) have been carried out for 
each case of the two examples. 

Fuzzy clusters are transformed into crisp clusters using the a- cut of a = 0.5. 
Then, a measure of misclassification is introduced for a quantitative evaluation 
of the results . Namely, when a data point that is in the left and lower side of t he 
broken line segment PQ in Figure 1 is classified into the same class as the north 
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Figure 2. The rotated region for Example 2. 

east cluster, i.e., the one to which data in the area surrounded by BP EFGQB 
belong, the former data point is called misclassified. In the same way, when 
a data point that is in the right and upper side of the broken segment PQ in 
Figure 1 is classified into the same class as the south west cluster, i. e ., the one 
to which data in the area surrounded by HPADCQH belong, the data point 
is also called m.isclassified. The misclassification in Example 2 is defined in the 
same way. Notice that the term of m.isclassification is used for convenience of 
the description : it is a tentative measure of appropriateness of a classification 
used only for these two examples. 

Tables 1- 4 show the number of successes, the average number of rnisclassified 
data, the average and maximum number of iterations, and the average CPU time 
(sec) throughout the ten trials for three values of the parameter a. : a.= 0.1, 0.2, 
0.3 in the respective cases. Moreover these tables compare results by the £1 

c:-means and Euclidean c-means. 
The number eight, for example, of successes means that eight t rials out of the 

ten have produced good results, while the other two have led to unacceptable 
classifications of large numbers of misclassified data. The average number of 
misclassifications has been calculated from the successful trials: if the eight trials 
are successful, the data of the other two trials are not used for the calculation. 
For example , the number 0.6 ln the row for a.= 0.1 in Table 1 has been obtained 
from (5+0+0+0+0+0+0+0)/8, which means that one trial has been with five 
misclassfied data points and other trials have been without any misclassification . 

The CPU time is for one cycle of calculating a v(s) and a u(s+1l in the main 
loop of FCM. The total CPU time needed until the termination is, for example, 
8.6 x 0.0751 ~ 0.646 on average for a.= 0.1 by £1 c-means in Example 1.1. 
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Table 1. The number of successes out of ten trials, the average number of 
misclassifications, and t he average/maximum number of iterations, and CPU 
time (for one cycle of calculating a pair (v(s), u(s+l)) in the main loop), for 

a.= 0.1, 0.2, 0.3 in Example 1.1 (n = 1, 000) by the £1 and E uclidean c-means. 

Example 1.1 (n = 1, 000) by the £1 c-means 
a successes misclassifications iterations( average/max) CPU time(sec) 

0.1 8 0.6 8.6/10 0.0751 
0.2 9 4.4 9.0/10 0.0755 
0.3 7 6.1 10.6/12 0.0743 

Example 1.1 (n = 1, 000) by Euclidean c-means 
a successes misclassifications iterations(average/max) CPU time(sec) 

0.1 . 10 1.1 11.2/13 0.0817 
0.2 10 3.7 12.8/14 0.0820 
0.3 10 4.2 13.5n6 0.0820 

Table 2. The number of successes out of ten trials, the average number of 
misclassifications, and the average/maximum number of iterations, and CPU 
time for a.= 0.1, 0.2 , 0.3 in Example 1.2 (n = 10, 000) by the £1 and Euclidean 
c-means. 

Example 1.2 (n = 10, 000) by the £1 c-means 
a successes misclassifications iterations (average /max) CPU time(sec) 

0.1 7 5.4 10.3/11 0.758 
0.2 9 10.8 12.1/13 0.752 
0.3 10 19.8 12.0/13 0.755 

Example 1.2 (n = 10, 000) by Euclidean c-means 
a successes misclassifications iterations(average/max) .CPU t ime(sec) 

0.1 10 3.3 11.5/14 0.813 
0.2 10 6.0 12.5/15 0.812 
0.3 10 24.4 12.9/14 0.812 
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Table 3. The number of successes out of ten tria ls, t he average number of 
m isclassifications, and t he average/maximum number of iterations, and CPU 
t ime for a.= 0.1, 0.2, 0.3 in Example 2.1 (n = 1, 000) by t he £1 and Euclidean 
c-means. 

Example 2.1 (n = 1, 000) by the £1 c-means 
a. successes misclassificat ions iterations( average/max) CPU time(sec) 

0.1 7 2.0 6.3/7 0.0796 
0.2 9 2.0 6.3/7 0.0784 
0.3 10 5.6 7.2/8 0.0759 

Example 2.1 (n = 1, 000) by Euclidean c-means 
a. successes misclassifications iterations(average/max) CPU time(sec) 

0.1 10 1.4 12.7/14 0.0811 
0.2 10 0. 1 13.5/15 0.0814 
0.3 10 3.4 15.4/18 0.0812 

Table 4. The number of successes out of ten trials, the average number of 
m isclassifications, and the average/maximum number of iterations, and CPU 
t ime for a. = 0.1, 0.2, 0.3 in Example 2.2 (n = 10, 000) by the £1 and Euclidean 
c-means. 

Example 2.2 (n = 10, 000) by the £1 c-means 
a successes misclassifications iterations(average/max) CPU time(sec) 

0. 1 9 7.0 7.8/8 0.777 
0.2 10 12.3 8.1/9 0.773 
0.3 9 12.3 8.7/10 0.772 

Example 2.2 (n = 10, 000) by Euclidean c-means 
a. successes misclassifications iter ations(average/max) CPU t ime(sec) 

0. 1 10 4.6 12.6/ 14 0.807 
0.2 10 17.6 13.7/ 15 0.809 
0.3 10 26.0 14.9/ 18 0.811 
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Comparison of the results by the Ji 1 c-means and Euclidean c-means leads 
to the following observations. 

(a) The computation for one cycle by Ji 1 FCM is faster than Euclidean FCM in 
all 12 cases. 

(b) The number of iterations by £1 FCM is less than that by Euclidean FCM in 
every case. 

(c) From (a) and (b), the total computation by £1 FCM is faster than Euclidean 
FCM in all cases. 

(d) Seeing the numbers of the misclassifications of the total 12 cases, we find 
that Ji 1 FCM produces better results in four cases, while Euclidean FCM is 
better in the other eight cases. 

(e) Seeing the number of successes for all 120 trials , we observe that £1 FCM 
has failed 16 times, while Euclidean FCM has succeeded in all trials. 

To summarize the above results, we find that the £1 c-means is faster t han 
Euclidean c-means. However, the Ji 1 method has sometimes failed to produce 
an appropriate result. As to the misclassifications, Euclidean FCM is a lit t le 
better, but there is no remarkable difference between the two methods. 

We have analyzed the 16 cases of the failure of the £1 method, and found 
that iu 14 cases the iteration stopped at 8 = 1, i.e. , after (v< 1l, u<2l) had been 
calculated. For the other two cases, one stopped at 8 = 2; the other at s = 3. 
T hus , the failure to produce an appropriate result occurred when the iteration 
terminated too early. A simple technique for improving the algorithm is to 
incorporate an empirical rule into the Ji1 algorithm, whereby if an early termi­
nation is detected, t he calculation starts again with renewed initial membership 
values. 

This failure has not been caused by algorithm CC, since the calculation by 
CC always produces the optimal solution for the cluster center without any 
approximation. In other words, one cannot theoretically expect a better result 
by replacing CC by any other procedure for calculating the cluster centers. (This 
does not mean, however , that we are unab le to improve the algorithm by using 
heuristic or ad hoc rules.) 

5. Conclusions 

We have derived a simple method of calculating cluster centers in the Ji 1 fuzzy 
c-means algorithm . The computational complexity of the present method has 
been shown to be optimal. A theorem of termination for the whole iterative pro­
cedure of Ji1 FCM has been proved for a modification of this algorithm. We have 
tested the present algorithm using a large number of data points. Computat ion 
time is sufficiently small and the classification results are satisfactory. 

We assert that the present algorithm is superior to the foregoing ones (Bo­
browski and Bezdek, 1991 ; .Jajuga, 1991) due to the following reasons: 
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(i) The present algorithm gives an exact solution, i.e. , no approximation or 
iterat ion is used, whereas iterative procedures have been used in the forego ing 
studies. 

(ii) The algorithm always produces the optimal solution for the cluster center. 

(iii) The computational complexity is optimal, while it is difficult to estimate 
the complexity of the other algorithms. 

Numerical results have shown that the £1 method has been faster than Eu­
clidean FCM. There has been no great difference between these two methods 
with respect to the misclassifications. The major drawba~k of the £1 method is 
that sometimes it !).as failed to give an appropriate result. The method requires 
to be improved by incorporating empirical rules to avoid an early termination. 
Anyway, however, the examples have shown that the present £1 algorithm can 
compete with Euclidean 1:-means. 

PosHible future studies include theoretical investigations such as improve­
ment of termination of an £1 FCM algorithm . Small modifications of CC might 
lead to a better theoretical result, and strategies other than (ll) and (12) may 
be adopted . It seems difficult to improve greatly algorithm CC, since the com­
plexity is optimal. 

The present termination theorem is superior to that in standard fuzzy c­
means in the sense that an upper bound on the number of iterations is estimated 
for £1 FCM, while it is possible that only a subsequence converges and the whole 
sequence does not converge in the inner product case . 

The present method of proving termination of an algorithm can be applied 
to fuzzy c-means based on other distances. The key issues are the finiteness of 
the set of possible cluster centers (Bezdek, Bobrowski, 1990) and the uniqueness 
of the grades . 

Thus, we have showu that e1 FCM is a practical method . Problems in real 
applications should therefore be studied using this method. 

References 

ANDERBERG, M. R ., (1973) Cluster Analysis for Applications, New York, 
Academic Press. 

BEZDEK, .J. C., (1981) Pattern Recognition with Fuzzy Objective Function 
Algorithms, New York, Plenum. 

BEZDEK, .T. C. AND BOBROWSKI, L., (1990) Matching "boxy" data: cluster­
ing with the Minkowski norms, Proc. of 3rd International IPMU Confer­
ence., B. Bouchon and R. Yager, Eds., 295-297. 

BOBROWSKI , L. AND BEZDEK, .J. C ., (1991) c-means clustering with the f1 
and £00 norms, IEEE Transactions on Systems, Man, and Cybern., 21, 3, 
545-554. 

DEVROYE, L. AND GYORFI, L. , (1984) Non parametric Density Estimation: 
The £ 1 View, New York, Wiley. 



436 S. MIYAMOTO, Y . AGUS TA 

DuNN, J. C., (1974) A fuzzy relative of the ISODATA process and its use in 
detecting compact, well-separated clusters , J. Cybern., 3, 32-57. 

HATHAWAY , R. J. , BEZDEK, J. C., AND TUCKER, W. T. , (1987) An impro­
ved convergence theory for the fuzzy c-means clustering algorithms, in The 
Analysis of Fuzzy Information, J. C. Bezdek, Ed., Boca Raton , Florida, 
CRC Press, 123-131. 

.JA.JUGA, K., (1991) Lrnorm based fuzzy clustering, Fuzzy Sets and Systems, 
39 , 43-50. 

NAHOil.SKI, Z., (1992) Regression analysis: a perspective, in Fuzzy Regression 
Analysis, .J. Kacprzyk, M. Fedrizzi, Eds., Warsaw, Omnitech Press, 3-13. 

ROCKAFELLAR, T., .(1970) Convex Analysis, Princeton, New .Jersey, Prince­
toll University Press. 


	Bez nazwy

