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Like factor analysis methods but different to most clustering 
methods, simultaneous clustering aims to deal simultaneously with 
two sets which are related together in a data table. 

In this paper we present the basic principle of a new approach. 
It includes different algorithms which are suited to different kinds 
of data tables (contingency tables, binary tables, quantitative data, 
questionnaires, ... ) . Then we examine closer some of these algorithms 
with the help of some examples. 
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1. Introduction 

Although data analysis methods are many and various, there underlies nearly 
all of them a desire to summarize, to simplify and , eventually to explain the 
data. 

Factor analysis methods as principal components analysis (Anderson 1958) , 
correspondence analysis (Benzecri 1973, Greenacre 1984) or multiple correspon
dence analysis (Lebart , Morineau and Warwick 1984) aim to simplify a rectan
gular data table defined on two sets I and J. One of the distinctive feature of 
these methods is that they obtain results simultaneously on the two sets . 

When analyzing data by means of clustering procedures, it seems relevant 
to have the same approach. But most of the existing clustering methods are 
concerned only with one of the two sets. The object of this work is to present 
a general methodology to define methods which aim to provide simultaneously 
a partition of both sets . 

This approach is not a new one. Fisher (1969) sets the problem of finding two 
simultaneous partitions by means of matrix computation; he defines a criterion 
to optimize, without proposing any method for solving this problem. Among 
the existing clustering problems Anderberg (1973) cites the selection of the 
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Figure 1. Reorganization by permutation of rows and columns 

set to classify. He considers the clustering of the variables as sensible as the 
clustering of the objects. This leads him to propose an iterative approach where 
objects and variab les are alternatively classified until both partition become 
"mutually harmonious" . Toledano and Brousse (1977) and Greenacre (1988) set 
a similar problem for hierarchical clustering. Back (1979) shows the interest of 
simultaneous clustering, gives several examples where these particular approach 
of clustering provides good solutions and proposes some clustering methods 
based on statistical models. 

Simultaneous clustering can be related to direct clustering (Hartigan, 1972 
and 1975), also called block modeling or block clustering. Direct clustering 
organizes directly the initial table and simplifies the table by permuting rows 
and columns (see figure 1). 

A wide variety of procedures have been proposed for finding patterns in data 
matrices. These procedures differ in the pattern they seek, the types of data 
to which they apply, and the assumption on which they rely. Among these 
procedures, we can cite the bond energy algorithm (McCormick , Schweitzer, 
and White 1972 , Arabie and Hubert 1990), the GPM algorithm of Garcia and 
Proth (1986), the block seriation approach of lVIarcotorchino (1987) and the 
permutation-based algorithm of Duffy and Quiroz (1991). We can also cite 
the interesting work of Bertin (1977) which have designed a device to organize 
manually the initia l table by permuting rows and columns. 

In this paper, we are only interested in the seek of partitions simultaneously 
on two sets which are related together in a data table. In the terminology of 
Tucker (1964), our work can be characterized as seeking partition both modes 
of a two-mode matrix. 

Taking place in the context of exploratory analysis, we have made it a rule 
to respect the following conditions : 

• to propose a simple summary easily understood for the user; 
• to be able to use jointly factorial methods and clustering methods; 
• to be able to have at one's disposal close methods for main data tables; 
• to obtain classical clustering methods when we only try to cluster one the 
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two sets. 
To achieve t his aim, we propose a methodology which generalizes the two 

algorithms Cro bin and Oroki2 that we have developed for the cont ingency tables 
(Govaert 1977) and the binary t a bles (Govaert 1984). 

After introducing t he general principle of this methodology in Section 2, 
we will illustrate in Sections 3 and 4 this process by describing the algorithms 
Orobir1, and Oroki2. Moreover , for contingency t ables , we will show the very 
close links of our approach with correspondence analysis. In Section 5, we will 
examine how our approach can be applied to quantitat ive data and we will 
show the links which exist with principal component analysis. Section 6 is 
devoted to the presentation of an illustrative example. Finally, we will finis h by 
a concluding section. 

2. Basic principle 

2.1. Data 

Our approach is concerned with data that consists of a matrix X (I, J) defined 
on two set s I and J (two-mode two-way matrix in the Fisher terminology). 

2.2. Summary matrix 

The main idea of our approach is to try to resume the initial matrix X (I, .J) 
by a rnatrix X(P, Q), much smaller, simply defined fro m a couple of part it ion;; 
P and Q of I and .J , and having the same structure than the initial table . For 
instance, we will resume a 1000x200 binary matrix of by a 10x5 binary matrix 
or a 200x100 contingency table by a 8x5 contingency table. 

The justification of this process is to allow a simple use of results ::;ince they 
have go ing to be presented in the same form t han the initia l data. Besides, the 
same struct ure of the two mat rice:-; X (I, .1) and X (P, Q) will a llow us to define 
the objective funct ion , which has to be optimized, more easily. 

2.3. Objective function 

Depending on the typ es of data, two approaches can be used to define an ob
jective funct ion : 

• It exist:-; an information measure I such that every summary means loss 
of informat ion : 

I[X(I, .J)]:::; I[X(P, Q)] . 
T hen, the clustering problem consists in minimizing the loss of information 
when passing fro m the init ial table to the summary table. 

• We use a function 6. which measures the difference between the two matri
ces X (I, J} and X(P, Q). Then, the purpose is to find the matrix X(P, Q) 
which minimizes 6. (X (I , .J) , X(P, Q)). 
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After this formulation, it remains to find the pair of partitions which optimize 
the objective function. 

2.4. Algorithm 

Several algorithms are able to seek a local optimum of the objective function. For 
solving this problem we propose an algorithm which defines a sequence (Pn , Qn') 
of partition pairs. Starting from an initial partition pair (P 0 , Q0 ) t~e following 
procedure is applied: one of these partitions is fixed and a better partition of 
the other set is searched for. Then the resulting partition is fixed and a better 
partition of the first set is searched for. These two steps are repeated until 
convergence. Thus an iterative algorithm is obtained. For finding the better 
partition at each step, we use dynamic cluster analysis (Diday et a l. 1980, 
Celeux et a l. 1989) . This method is also iterative. Hence the simultaneous 
clustering algorithms have two levels of iterations. 

The properties of this type of algorithms are simplicity, speed of convergence 
and the possibility to process big data tables. The drawbacks are due to the 
fact that they only provide local optimum. 

2.5. Remarks 

In this work, we have not put the stress on the algorithm but rather on the form 
of the searched result (the summary table) and on the criterion to be optimized. 
The problem of the research of an optimal algorithm still exist but for the 
proposed criteria which are extension of criteria of k-means types, the problem 
will have to be solved for the k-means before considering optimal solutions to 
our problem. The solution could be, for instance, stochastic variants of the EM 
algorithm as SEM (Celeux, Diebolt 1985) , or simulated annealing variants as 
CAEM and SAEM (Celeux, Govaert 1992). Of course, an algorithm providing 
the global optimal solution would be an great improvement of this approach. 

As with all methods converging towards a local optimum, the results ob
tained depend on the initial partitions. The algorithm is consequently applied 
several t imes, starting with random initial partition. Then many possibilities 
may be considered. For example, it is possible to find a strong agreement in the 
solutions (Celeux et a l. 1989) indicating groups of elements which are stable 
for all random starts . Here, we have chosen to keep to the initial goal. This 
means optimizing the objective function. Thus the program keeps the best pair 
of partitions after having performed several initial random drawings . 

Another problem that we have not considered in this work is the choice of 
the number of clusters that must be fixed by the user. Let us notice that the 
problem is not yet solved in a satisfactory way. We can quote the recent works 
of Celeux and Soromenho (1995) done in the Gaussian mixture approach of this 
problem. 
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3. Binary data 

To illustrate our approach, we study in this section how it can be applied to a 
binary table. 

3.1. The problem 

Before describing the problem, let us make our purpose precise with a simple 
example. Let us consider data in figure 2. The rows correspond to a set of ten 

1 2 3 4 5 6 7 8 9 10 
a 1 0 1 0 1 0 0 1 0 1 
b 0 1 0 1 0 1 1 0 1 0 
c 1 0 0 0 0 0 0 1 1 0 
cl 1 0 1 0 0 0 0 1 0 0 
e 0 1 0 1 0 1 1 0 1 0 
f 0 1 0 0 0 1 1 0 1 0 
g 0 1 0 0 0 0 0 1 0 1 
h 1 0 1 0 1 1 0 1 1 1 
i 1 0 0 1 0 0 0 0 0 1 
j 0 1 0 1 0 0 1 0 0 0 

Figure 2. Example of binary data. 

micro-computers and the rows to ten properties that these computer may (value 
1) or may not have (value 0). 

In order to justify and detail the search for simultaneous partitions of a 
binary table, let us cite some ideas proposed by Lerman about the notion of 
polythetic cluster (Lerman 1981). He first recalls the notion of polythetic clus
ter: "A polythetic cluster G of a natural clustering refers to a subset B of 
attributes in such a way that: 

1. each element of the cluster has an important pi·oportion of attributes from 
B; 

2. each attribute of B is present in an important proportion; 
3. an attribute is not necessarily shared by all elements of G." 

Lerman generalizes this notion: "In the more general situation of a good clus
tering on E with a good clustering on A , each cluster Ei of the partition (El, 
... , E 1) corresponds to the union B of clusters of the partition (A 1 , ... , Ak). Con
versely, each cluster A j corresponds to the union G of clusters of the partition 
(E1, ... , El)." 

This situation may be represented by a binary table reorganized according 
to the partitions (figure 3). 

Let assume that the shaded regions correspond to regions with high one 
density and that the unshaded regions correspond to regions with high zero 
density. 
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Figure 3. Binary table reorganized according to row and column partitions 

3.2. Summary matrix 

With the previous example, if the partitions P and Q are respectively { {a., d, h } , 

{b, e, .f,)}, {c, g, i}} and {1, 3, 5, 8, 10}, {2, 4, 6, 7, 9}}, we get tab le of the figure 4 
by reorganizing rows and columns according these two partitions and the initial 
binary matrix can be summarized by the binary matrix of figure 5 when crossing 
t he two partitions. 

1 2 
1 3 5 8 10 2 4 6 7 9 

a 1 1 1 1 1 0 0 0 0 0 
A J 1 1 0 1 0 0 0 0 0 0 

h 1 1 1 1 1 0 0 1 0 1 
L 0 0 0 0 0 1 1 1 1 1 

B e 0 0 0 0 0 1 1 1 1 1 
f 0 0 0 0 0 1 0 1 1 1 
j 0 0 0 0 0 1 1 0 1 0 
c 1 0 0 1 0 0 0 0 0 1 

c g 0 0 0 1 1 1 0 0 0 0 
i 1 0 0 0 1 0 1 0 0 0 

Figure 4. Representation of the simultaneous clustering. 

1 2 
A 1 0 
B 0 1 
c 0 0 

Figure 5. Summary of the data. 

A, B and C correspond to the three clusters of computers, 1 and 2 to the two 
clusters of properties. Each table division is associated with 0 or 1 according 
a majority vote. This table allows to see that computers of cluster A usually 
have properties 1 but not 2, computers af cluster B have properties 2 but not 1 
and that the one of cluster C have no properties. Thus a table with six values 
summarizes a table of a hundred values. 
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The idea of summary table appears in this example. This table has the same 
structure as the initial table. This time, the summary table is a binary table 
(with each pair of clusters an ideal value is associated) and the criterion will 
measure the deviation between this ideal table and the initial data. It is easy 
to see, that this transformation comes to obtain homogeneous blocks of 0 or 1 
by reorganizing rows and columns of the initial table. 

3.3. The objective function 

We aim to find homogeneous blocks, which are full of zeros or full of ones. 
Each pair of clusters (k,m) is associated with an ideal binary value (1 or 0). 
Thus we get a binary table which we will call "kernel". We want to minimize 
the number of times where the value associated with a pair (i,j) is different 
from the ideal value associated to the clusters pair to which ( i, .i) belongs. This 
quantity represents the difference between the initial table and the ideal table. 

If we write: 
• (x;,) the initial binary table defined on the two sets I and J with sizes n 

and p , 

• P and Q the partitions into K clusters and M clusters of the two sets I 
and J , 

• LK,M the set of binary table with K rows and M columns; LK,M repre
sents the kernel set: 
.\ E LK,M ~ ,\ = (ak') where ak' E {0, 1} Vk: = 1, ... , K and Vm = 
1, .. . , NI, 

the objective function we would like to minimize can be defined by 

K M 

W(P, Q, .\) = L L L L i:r:i - a/.nl . 
k=l m=l iEPk jEQm 

When we only deal with the research of one partition, we obtain the well
known maximal predictive classification criterion proposed by Gower (1974) . 
Let us mention that we also find this criterion when we use a classification 
maximum likelihood criterion (Celeux and Govaert 1991) or an entropy criterion 
(Gyllenberg, Koski and Verlaan 1994) on the Bernoulli mixture model. 

If we constrain the summary to have a diagonal structure (same number of 
clusters for the two partitions, 1 on the diagonal and 0 everywhere else), we 
find the criterion proposed by Garcia and Proth (1986). Let us notice that 
introducing such a constraint ii1 our algorithm is very easy. 

3.4. Algorithm 

As we have seen in the Section 2, it remains to define more precisely the two 
steps of th.e algorithm. If P and Q is a pair of partitions and .\ a kernel, for Q 
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fixed, we try to improve partition P and kernel,\ , Thus, we seek for a partition 
P' and a kernel .A' such that: 

W(P,Q,.A) 2': W(P',Q,.A'). 

We may write 

W(P, Q, .A)= L L L L ixi- ak'i). 
k iEPk m jEQ,.. 

which can be rewritten 

and we obtain 

W(P,Q,.A) = L L LiYf'- qmak'i· 
k iEPk m 

It is easily shown that the dynamic cluster algorithm provides a solution to our 
problem. The algorithm must be defined on a set of n elements and M variables 
associates with table (yf')iEI,m=l,M· This table is supplied with distance L 1 

with kernel of the form (q 1aL ... , qMa~) where a%n E {0, 1} (each component 
of the ·kernel can be exclusively the minimum or the maximum reached by 
regrouping the columns of the initial table). We may obviously start with a 
fixed partition P and improve the partition Q and the kernel,\. 

4. Contingency table 

4.1. Introduction 

In this section, we first describe the Croki2 algorithm which performs simulta
neous clustering on contingency tables defined with two sets I and J, or more 
generally on tables which have the same properties. Then, we will show the 
very close links between this method and correspondence analysis. 

4.2. Notations 

X (I, J) = ( nij) will denote the initial contingency table defined on the two sets 
I and J of sizes n and p. The usual terminology is used: 

• s is the sum of the table elements (I:iEI I:jEJ nij), 

• F is the frequency table (fij = ~, i E I, j E J), (fij is an estimation 
of probability t hat an object has simultaneously the category i and the 
category j), 
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• h et f.J are the marginal frequencies : Vi E I, h = 2:.jEJ fiJ and Vj E 

J, f.j = 2:.iEI fij 
• fr = (h, ... .fi., ... , .fn.) and .fJ = (.f.l, ... ,f.j, ... ,.t.p) are the marginal 

laws defined on I and J, 
• .fj = j:1 and .f/ = ~ are the conditional frequencies, 

• .f} = (f{, .. . , .fj, ... , .f~) and .tJ = (f{, ... , .t/, ... , f~) are the conditional 
laws , also named row and column profiles. 

• D-+- is the diagonal matrix with diagonal terms f1', . .. , Jl', ... , .f1p,, 
f I · 1 j 

• D + is the diagonal matrix with diagonal terms --!,-, ... , --!,-, ... , --!,-. 
f J . .fl f; fn 

4.3. The summary table 

Following the principle stated in the introduction, the summary table associ
ated with the two partitions must also be a contingency table. It is obtained 
by regrouping the rows and columns according the partitions P and Q in the 
following manner: If P = (P1, .. . , PK) is a partition of I into K clusters and 
Q = ( Q 1, ... , Q M) a partition of J into M clusters, it becomes possible to define a 
new contingency table by summing the elements of the initial contingency table 
corresponding to each pair of clusters (Pk, Qrn). This table , denoted T(P, Q), 
is defined by: 

T(k,m) = L L nij 
iEPkjEQm 

4.4. The objective function 

4.4.1. Definition 

Vk = 1, ... , K and Vm = 1, ... , M. 

The chosen information measure we would like to preserve is the x 2 of contin
gency (or Pearson chi-square statistic) which measures the dependence between 
I and J by the contingency x2 : 

This measure usually provides statistical evidence of a significant association, 
or dependence between rows columns of the table. This quantity represents 
the deviation between the theoretical frequencies hf.J, that we would have if 
I and J were independent, and the observed frequencies fiJ· If I and J are 
independent the x 2 will be zero and if there is a strong relationship between I 
and J, the x2 will be high. So, a significant chi-square indicates a departure from 
row or column homogeneity and can be used as a measure of heterogeneity. The 
chi-square can be used as a measure of the information brought by a contingency 
table. 
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As for the initia l table, it is possible to measure the information brought 
by the new contingency table X (P, Q). This is measured by t he associated 
contingency x2 noted x2 (P, Q). We chose t his quantity to measure the quality 
of the two partitions P and Q of sets I and J . 

The following relationship is easily demonstrated: 

(1) 

Regrouping the elements of each cluster leads to a loss in x2 . Minimizing this 
loss is equivalent to searching for the partitions P and Q which maximize the 
contingency x2 of their associated table. T his leads to maximizing the depen
dence between partition P and partition Q. The problem we like to solve is the 
simultaneous search of two partitions p and Q which maximize the contingency 
x 2 of the associated table . 

In order to show the pertinence of this problem, let us consider an example 
presented by Benzecri (1973) . In this example a contingency tab le is defined on 
a set I of towns and a set J of professions. tij represents the number of p eople 
practicing profession _j in town i: 

"A town classifica tion in terms of a partition P will be good if knowledge of 
a town class give us more information about the repartition of the professions in 
this town. In the same way, a classification of the professions in terms of parti
t ion Q will be good if knowledge of a profession class gives us more informat ion 
a bout the repartition of this profession in the towns." 

Notice that in the ideal case where the row profiles and the column profiles 
are equal inside each cluster of P and Q, there is no loss of information. 

4.4.2. Justification 

The Pearson chi-square usually provides statistical evidence of a significant as
sociation, or dependence , between rows and columns of the contingency t able . 
Various methods (Goodman 1985) have been proposed for investigating this 
associat ion. Some of them are graphical ap proaches and t he best known is Cor
respondence analysis (Benzecri 1973, Greenacre 1984, Lebart, Morineau and 
Warwick 1984). This technique represents the rows and the columns of the 
table in high-dimens ional space and then projects them onto a best-fitt ing sub
space or lower dimensionality for ease of interpretation. Here, we propose to 
analyze the x2 by means of clustering . 

Remarks that this function is very closed to the Goodman RxC association 
function 

""""' f l ( fij ) ~.ij n --
. . hf. j ,,] 

and gives similar results. 
Among the numerous properties of this approach, we can cite the "principle 

of distribut ional equivalence" (Benzecri 1973) : If two i·ow profiles are ident ical 
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then the corresponding two rows of the original data matrix may be replaced by 
their summation (a single row) without affecting the geometry of the .columns 
profiles. 

4.5. Search of a partition optimizing the x2 

In order to define more precisely our algorithm, it is necessary to recall that a 
variant of the dynamic cluster algorithm is able to optimize the x2 criterion: 

From a contingency table defined on I and J, the k-means algorithm applied 
to the set N (I) of profiles .f} with weights h and considering the x2 metric 
which is the Euclidean metric defined by the matrix D !~ , allows to partition I 

into K clusters optimizing the contingency x2
. 

Indeed, the optimized criterion may be written: 

W(P) = L L fi.d 2 (i , G(Pk)) 
k=l,K iEPk 

where P = (P1, ... , PK), d is the D ..1.. distance and G (Pk) is the center of gravity 
fJ 

of Pk. The following relationship is easily demonstrated: 

(2) 

s W (P) represents the information lost in regrouping the elements according 
the partition P, and x2 (P, J) corresponds to the preserved information. As the 
quantity x2 (I, J) does not depend on the partition P, the search of the partition 
minimizing the criterion W (P) is consequently equivalent to the search for the 
partition P maximizing x2 (P, J). The dynamic cluster method maximizes the 
contingency x 2 of the table (P, J). Notice that relation 1 from the preceding 
paragraph is easily demo11strated when starting with relation 2. 

4.6. The Croki2 algorithrq 

A sequence (P'", Qn) is computed from any initial pair (P 0 , Q0 ) so that the 
associated series of x2 values is increasing. 

4.6.1. Computation of pn+l from (Pn, Qn) 

Let X (I, Qn) be a contingency table defined by 

X(i, k) = L nij 

jEQ'k 

where 

Qn = (Q~, ... , QM). 

The partition pn+l is obtained by applying the preceding algorithm to the 
table X (I, Qn) while considering that the objects to classify are the elements of 
I , the variables are the clusters of Qn and taking pn as initial partition. 
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4.6.2. Computation of Qn+l from (pn+l, Qn) 

The principle is the same. But the table taken into consideration is X (pn+l, J) 
defined by: 

X(k , j) = L nij· 

iEP;:+t 

The objects to classify are the elements of J and the variables are the K clusters 
of pn+l. The a lgorithm starts from the partition Qn to get the partition Qn+l. 

From the convergence properties of the dynamic cluster method , it is possible 
to show equivalent convergence properties for the Croki2 algorithm. 

4.6.3. Relationship with correspondence analysis 

We have just seen that the Cmki2 algorithm is applied to the same kind of 
data and uses the same measure of information (the contingency x2 ) as in 
correspondence analysis. It is possible to go further in this comparison and show 
that the two problems are close: simultaneous clustering may be considered as 
a constrained correspondence analysis. 

5. Continuous data 

5.1. Introduction 

In this section , we suppose that we have observations of p continuous variables 
on each of n individuals. I will be the set of individuals and J the set of variables 
The data can be arranged in an x p matrix X = (x{, i E I , j E J ). Let us notice 
that, in this case, data matrix present a dissymmetry: rows and columns, which 
correspond to entities of different types, will not be handled in the same way, 
contrary to what we have done in the two precedent examples. 

To analyze this type of data, we can use principal component analysis (PCA) 
which summarizes data by means of new axes. Here, we propose to resume the 
data by means of clusters of the individuals and of the variables. 

As for the PCA, we associate to the set of individuals the weights p.(I) 
(JJ·l , ... , f.Ln) which verify 

Vi E I P.i > 0 and L !J·i = 1 
iEI 

and we associate to the set of variables the weights v(J) 
verify 

Vj E l Vj > 0. 

For instance, we can use 

1 
ViE I JJ·i = 

n 
and Vj E J Vj = 1. 
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Moreover, we suppose than X is "column-centered", that is the means of the 
columns of X are equal to 0 : 

'1::/j E J Lf-LiXI = 0. 
iEJ 

Remarks that if it is not true, it is easy to modify the initial table to obtain this 
property. 

Finally, the initial data, which are are defined by a "column-centered" matrix 
(X(I, J) and two vectors p.(I) and v(J) , will be noted (X (I , J), p.(I) , v(J)). 

5.2. Geometrical representation 

We can associate to the data two geometrical representations : 
• a geometrical representation of the individuals by a set of n points of JRP : 

the coordinate of the n points are the rows of X, the fJ·i are the weights 
of the point and the Vj can be used to define an Euclidean metric : 

p 

d2(. ·') """ I j j 12 2,1. = ~Vj X; - X;t . 

j=l 

• a geometrical representation of the variables by a set of p points of IRn: 
the coordinate of then points are the columns of X, the Vj are the weights 
of the point and the p; can be used to define an Euclidean metric : 

n 

d2(· ·') """ I j /12 .J,.J = ~fJ· i X;- X; . 

i=l 

5.3. The summary 

Following the principles stated in the introduction, we must associate with the 
two partitions a summary table X ( P, Q) and two sets of weights fJ· ( P) and v ( Q) 
which have the same structure that the initial data (X(I , .J),f.L(I) , v(J)) . For 
this, if P = (P1, ... , Px) is a partition of I into K clusters and Q = ( Ql , ... , QM) 
a partition of J into M clusters, we define : 

and 

'1::/k: = [1, ... , K], '1::/m = [1, .. . , M], 

'1::/k: = [1 , ... , K], 

'1::/m = [1 , ... , M], 

f.Lk = L P·i 
iEPk 

This new structure will be noted (X(P,Q) , f.L(P) ,v(Q)). It is easy to verify 
that this structure has the same property than (X (I, .J), p.(I), v(.J)): 
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the means of the columns of X (P, Q) are equal to 0, 

K 

Vm = [1,,,,, M] L fJ,kXkn(P, Q) = 0, 
k=l 

K 

Vk = [1,,,,, K] J.Lk > 0 and LJ.Lk=1, 
k=l 

Vm E [1, , , , , M] Vm > 0, 

G. GOVAERT 

In the fo llowing, we note (X (I, Q), J.L(I), v(Q)) the structure obtained when, 
m the partition P of I, each element of I is a cluster, Similarly, we note 
(X (P, J), p,(P), v(J)) t he structure obtained when, in the partition Q of J, 
each element of J is a cluster, 

5.3.1. Inertia 

The chosen information measure we would like to preserve is the following : 

I(X(I, J), J.L(I) , v(J)) = L LfJ,iVj(xi) 2 

iEJ jEJ 

With the geometrical representations, this information represents the inertia 
of the set I in JRP or the inertia of the set J in IRn , Let us notice that this 
information measure is the measure used by PCA, 

5.4. The objective function 

5.4.1. Definition 

As t he summary (X (P, Q), p, ( P), v ( Q)) has the same structure that initial data, 
we can define the information measure I(X(P,Q),J.L(P),v(Q)), Moreover, it is 
possible to prove that this information is less than the information associated 
to the initial data, that is to say that the grouping in two partitions P and Q 
leads to a loss of information, In our method, we propose to minimize this loss 
or, equivalently, to maximize the criterion I(X(P,Q),p,(P),v(Q)), 

5.4.2. Link with the Fisher criterion 

We can show that in the simple case where every weights Pi et !Jj are equal, the 
loss of information is exact ly the Fisher criterion (1969), We can illustrate it 
on the following example, If data are 

x~ (! ~ n 
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with weights 

1 
p,l = f/,2 = p,3 = p,4 = - and 111 = 112 = 113 = 1 

4 

and if partitions are 

P = ({1,2},{3,4}) and Q = ({1,2},{3}), 

then, summary table is 

( 

1,5 
X(P, Q) = 3,5 

7,5 ) 
6,5 ' 

and with weights 

1 
p,l = 1',2 = 2 and 1/1 = 2, 1/2 = L 

The Fisher criterion can be expressed as trace(X- Y)'(X - Y) where 

( 

1,5 

Y = L5 
7,5 

L5 3,5 
L5 3,5 
7,5 6,5 

then, it is easy to show that 

3,5 ) 
3,5 ' 
6,5 
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trace(X- Y) 1(X- Y) = I(X(I, J), p,(I), v(J))- I(X(P, Q), p,(P), v(Q)), 

5.4.3. K -means 

If we restrict to the sought of the partition P, our criteria can be expressed as 
the loss of information due to the partition. By using the Huygens theorem, we 
can show 

I(X(I, J), fl,(I), v(J))- I(X(P, J), p,(P), v(J)) = W(P/J) 

where 

J( p 

W(P/J) = L L fi,i L 1/j(:r{- :~:~y, 
k=l iEPc j=l 

Thus, we find the intra-class inertia function minimized by the classical /;;-means 
algorithm and our criterion generalizes the k-means criterion to the simultaneous 
search for partitions, 
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5.5. Algorithm 

Let us remind that, by applying the general principle, we have to compute for 
a fixed partition of J the best partition of I, and, for a fixed partition of J the 
best partition of I. For this, it is sufficient to notice that 

I(X(I,Q),J-L(I),v(Q))- I(X(P,Q),p.(P),v(Q)) = W(P/Q) 

where W(P/Q) is the intra-class inertia criterium for the partition P of I when 
data are (X(I,Q),J-L(I), v(Q)) and 

I(X(P,J), J-L(P) ,v(J))- I(X(P,Q),p.(P) , v(Q)) = W(Q/P) 

where W ( Q /F) is the intra-class inertia criterium for the partition Q of J when 
data are (X(P, J) , p.(P), v(J)). 

Thus, using K-meant> algorithm alternat ively on (X (I, Q), p.(I), v(Q)) and 
(X(P,J ), p.(P), v(J )), we obtain an algorithm optimizing the criterion 

I(X(P, Q), p.(P), v(Q)). 

6. Illustrative example 

To illustrate the family of methods developed in this work, we have chosen to 
present some results obtained with the Oroki2 algorithm on a small contingency 
table. 

6.1. The data 

The data concerns the comparison between time-budgets (.Jambu 1976). We 
have a table X(I,J) = nij , i E I , j E J where nij represents the number of 
hours spent to practise the activity j by the population i during a certain time 
period. The set I is made of 28 types of population characterized by the sex, 
the country, the professional activity and the marriage. In a row identifier, the 
letter meaning is the following: h: man, f: woman, a: working, na: not working, 
m: married, c: unmarried, us or u: USA, we or w: west country, es or e: east 
country, yo or y: Yugoslavia. The set J is made of 10 activity clusters: prof: 
Occupational work, tran: Activity related to occupational work, mena : Home 
work, enfa: Activity related to the child work, cour: Shopping, toil: Washing 
and personal care, repa: Mealtime, somm: Sleep, tele: Television, lois: Other 
leisure. We have reported the data in figure 6. 

6.2. Results 

Here we present the best result obtained among ten initial drawings when the 
numbers of clusters of the row and column partitions are respectively 5 and 
3. The initial x2 value was 9658 and the resultant x2 value is 8048. The 
percentage of x2 explained by the partition pair is very good with this small 
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prof tran men a en fa cour toil rep a sornrn tele loi s 
ha us 610 140 60 10 120 95 115 760 175 315 
fa us 475 90 250 30 140 120 100 775 115 305 
fnau 10 0 495 110 170 110 130 785 160 430 
hrnus 615 141 65 10 115 90 115 765 180 305 
fmus 179 29 421 87 161 112 119 776 143 373 
he us 585 115 50 0 150 105 100 760 150 385 
fcus 482 94 196 18 141 130 96 775 132 336 
ha we 652 100 95 7 57 85 150 807 115 330 
fa we 510 70 307 30 80 95 142 815 87 262 
fnaw 20 7 567 87 112 90 180 842 125 367 
hmwc 655 97 97 10 52 85 152 807 122 320 
fmwe 168 22 529 69 102 83 174 825 119 392 
he we 642 105 72 0 62 77 140 812 100 387 
fcwe 389 34 262 14 92 97 147 848 84 392 
hayo 650 140 120 15 85 90 105 760 70 365 
fayo 560 105 375 45 90 90 95 745 60 235 
fnay 10 10 710 55 145 85 130 815 60 380 

hrnyo 650 145 112 15 85 90 105 760 80 357 
frnyo 260 52 576 59 116 85 117 775 65 295 
hcyo 615 125 95 0 115 90 85 760 40 475 
fcyo 413 89 318 23 112 96 102 774 45 409 
haes 650 142 122 22 76 94 100 764 96 334 
faes 578 106 338 42 106 94 52 752 64 228 
fnac 24 8 594 72 158 92 128 840 86 398 

hrnes 652 133 134 22 68 94 102 762 122 310 
ftnes 434 77 431 60 117 88 105 770 73 229 
hces 627 148 68 0 88 92 86 770 58 463 
fees 433 86 296 21 128 102 94 758 58 379 

Figure 6. The data 
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example: more than 83% of the x2 has been preserved. The partition of the 
rows are the following: (fmus fmwe fmyo), (fayo faes fmes), (faus fcus fawe fcwe 
fcyo fees), (fnau fnaw fnay fnae) , (haus hmus hcus hawe hmwe hcwe hayo hmyo 
hcyo haes hmes hces) and the partition of the columns are the fo llowing: (prof, 
tran) , (mena, enfa) , (cour, toil, repa, somm, tele, lois). 

The contingency table X (P, Q) obtained by regrouping rows and columns 
according to the two partitions P and Q (see figure 7) summarizes the two 
partitions. Let us recall that the program aims to maximize the x2 preserved in 
the summary table. A more interesting output is the array of figure 8, defined 
by the values ./.7',. This table allows us to characterize the two partit ions. 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 2 3 
1741 710 4832 
1291 1860 3993 
1765 3165 9363 
2690 89 6818 
1201 9134 18456 

Figure 7. X(P,Q) 

1 2 3 
1846 437 1024 
1395 1168 863 
953 993 1011 
2165 41 1096 
322 1423 989 

Figure 8. fk, 
fk.f., 

The most interesting values are the values far from the mean 1000. These 
values are brought to the fore by an underline. Notice that row cluster 3 and 
column cluster 3 are always around the average. Thus these clusters are not 
characteristic of anything. On the contrary, the other clusters are very charac
t eristic. 

6.3. Relationship with correspondence analysis 

To illustrate the relationship between the correspondence analysis and simul
taneous clustering , we have applied correspondence analysis to the preceding 
example aud reported in the figures 9 and 10 the representation of I and .J 
on the two first axes which explain 84% of the x 2 . We have also reported the 
clusters obtained by our simultaneous clustering method. 

With this simple example, we obtain the same conclusions as with siniulta
neous clustering. For the rows , clusters 4 and 5 are strongly opposed, cluster 1 
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has the same tendency as cluster 4, cluster 3 is the·middle cluster and cluster 2 
is apart from the others . For the columns, clusters 1 and 2 are strongly opposed 
and cluster 3 is the middle cluster. 

7. Concluding remarks 

In this paper, we have proposed a general approach to simultaneously analyze 
two sets which are related together in a data table by means of clustering. This 
approach has been applied with success to 3 kinds of data and has provided 
algorithms which used the most adapted information measures. It remains to 
apply this approach to other tables such as qualitative data or to other clustering 
structures such as hierarchical clustering. 

The extension of this approach to tables which have more than 2 dimensions 
does not set up any problem, provided that the st ructure of the table allows it 
(binary table or contingency table). 

The clustering methods of only one set could have been modeled by the mix
ture approach for quantitative data (Celeux and Govaert 1992, 1993) or binary 
data (Govaert 1990, Celeux and Govaert 1991, Gyllenberg, Koski and Verlaan 
1994) . Then, it would interesting to extend this modeling to simultaneously 
clustering methods defined in this work. 
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