
Control and Cybernetics

vol. 24 (1995) No. 4

Tabu search and genetic algorithms
for the generalized graph partitioning problem

by

Piotr Kadluczka, Konrad Wala

Institute of Automatics,
University of Mining and Metallu,rgy

a l. Mickiewicza 30, 30-059 Krak6w, Poland

The paper considers the generalized problem of partitioning the
nodes of a weigchted graph into m disjoint subsets of bounded size,
such that the objective function related to the weights of the graph
edges is maximized. The applications of the investigated model for
the group technology classification and for processing large computer
programs in distributed computing system are presented.

Both tabu search and genetic a lgorithms are fine tuned for solv
ing of the generalized graph partitioning problem. Tabu search a lgo
rithm is the neighbourhood search optimization procedure based on
the tabu search framework with short as well as long term memory
components, and a strategic oscillation element that allows search
paths to cross the capacity-feasibility boundary. Genetic algorithm
is an instance of genetic type algorithms with evaluation function
consisting of objective function and weighted infeasibility measure.
It exploits five genetic operators, three of them perform simple search
operations besides random choose operations.

1. Introduction

The graph partitioning problem (GP) of an undirected and weighted graph G =
(N, E) consists of a partition of the nodes N = {1, 2, .. . , j, ... , n} into m, disjoint
subsets X1, X2, .. . , Xm so called clusters to optimize a given measure defined by
the objective function .f(X), where X= (X1,X2, ... ,Xi,· .. ,Xm) is called the
graph partition. This clustering of the nodes of a graph into subsets is NP-hard
combinatorial problem (see, Feo and Khellaf (1988, 1990) for survey). Therefore
there is a great demand for efficient approximation algorithms producing good
suboptimal solution within a reasonable amount of time.

Graph partitioning serves as a model for several important problems. For in
stance, it can be used in integrated circuit layout in Very Large Scale Integration,
Chen (1986), in storing or processing large computer programs in distributed

460 P.KADLUCZKA,K.WALA

computing systems, Ma, Lee and Tsuchiya (1982), Wala and Werewka (1989),
and in group technology classification problems, Kumar, Kusiak and Vanelli
(1986), Kusiak (1991). .

Number of intractable combinatorial optimization problems can be solved
now successfully by means of metaheuristics calling on principles of artificial
intelligence. Machine learning becomes a popular field of research during the
last years in artificial intelligence based on the idea to build computer pro
grams capable to guide a search process into a "promising regions" for finding
high-quality solution of an optimization problem. There has been an increasing
interest in experimental comparisons of applying various new techniques to the
same data sets of the same problems to provide a necessary condition to un
derstand the merits of different methods. The most interesting machine learn
ing approaches to hard combinatorial optimization problems are tabu search
framework originally proposed by Glover and general purpose search strategies,
proposed by Holland , called genetic algorithm.

The paper is organized in the following way: the next section presents the
mathematical model of the generalized graph partitioning problem. In section 3
we look into details of two applications of the proposed model. Two approximate
algorithms based on machine learning, i.e. tabu search algorithm TABGGP
and genetic algorithm GENGGP, are presented in sections 4 and 5, respectively.
These algorithms are fine tuned for solution of the generalized graph partitioning
problem. The computer experiment results for a test example are reported in
section 6. The last section contains conclusions.

2. Generalized graph partitioning problem

Mathematically, generalized graph partitioning problem (GGP) can be described
as the following combinatorial optimization problem. Given an undirected and
weighted graph G = (N, E) and a set of numbers {b1, b2, ... , bm}, where bi > 0
fori= 1, ... , m. Find a graph partition X = (X 1, X2, . .. , Xi , ... , X m), Xi C N
(i = 1, ... ,m), of the set N which maximizes:

m

f(X) = L L Cjk

i=l j,kEXi

subject to:
m

xi n Xv = 0 fori i V

L Uij :S: bi , i = 1, ... , m
jEX,

where:

(1)

(2)

(3)

(4)

Tabu s earch and genetic algol'ithn;s for the generalized graph partitioning problem

aj = (a 1j, a.2j,.,., aij, .. . , amj) weight vector of the node j EN,
Cjk weight of the edge jk E E.

461

Constraints (2) and (3) ensure that ,each graph node is allocated precisely in one
cluster (set) Xi. Constraints (4) 1imit the size for each cluster. The objective
function f (X) is the aggregate measure accqunting for intra-cluster similarities
or prQximities (see, e.g. Owsinski (1984)) , Let us note that partitioning the
graph nodes, such that one minimizes the sum of the weight of the edges having
incident nodes riot in the same set Xi, is identical to clustering the nodes of
the graph such that one maximizes the sum of the weights of the edges having
incident nodes in the same set Xi, i = 1, ... , m. This follows from the fact that
the sum of the weights of all edges in the graph is a constant and that each edge
is either in a cluster or runs between two clusters. Thus the aggregate measure
accounting for inter-cluster dissimilarities or distance is equal:

Tn m

g(X) = L L L L Cjk = c - f(X) (5)
i=l v=l v;<'l jEXi kEX.u

where:
n n

(6)

. is the constant value.
It is assumed, without loss of generality, that for each jk E E: Cjk > 0 and

for jk:·!fc E: Cjk = 0 as well as U.ij = oo if node j can not be assigned to cluster
Xi, otherwise: 0 < aij < oo fori= 1, ... ,m; .i = 1, ... ,n. Let F(.j) denote the
set oUeasible cluster numbers for node _j: F(.j) = { i E {1, 2, ... , m} : aij < oo },
j EN. Further, we will mark the feasible assignment of node j to cluster Xi,

j E Xi and i E F (j), as a pair (i, j), In this formulation, bi is the resource or
size of i-cluster. If for each i and j a.ij = 1 then bi limits the number of nodes
in cluster i and the constraint (4) has the form IXil:::::; bi.

We called the formulation (1), (2), (3) and (4) the generalized graph parti
tioning (GGP) as opposed to standard GP where for each i: aij = U.j and the
constraint (4) has the form LjEX., a.j:::::; bi.

3. Applications of the GGP model

Let us model the allocation problem of the distributed computer program into
a distributed computing system (see e.g., Wala and Werewka (1989)). A dis
tributed program consists of a set N = {1, ... , n} of computational processes
which cooperate to reach a common goaL The processes cooperate by exchang
ing messages and let Cjk stands for the number (or number per unit time) of
message transmissions between the processes j, /;: E N, where Cjk = 0 means
that processes j and k do not cooperate and E = {ik E N x N : Cjk > 0}.
The processes should be allocated over different processors to enable a parallel

462 P. KADLUCZKA, K. V1/ALA

computation. The solution of the allocation problem is given by the colle~?tion
of the sets X 1, X 2, ... , X m, where Xi, Xi C N, is a subset of processes allocated
in processor i, fori = 1, ... , m. When the processes are allocated to the same
processor (e.g. Xi processes) an information exchange is performed, in practi
cally no time, using the memory of the processor. In the case t he processes are
in different processors the messages are transmitted through the communication
channels and it may cause some overhead. One can maximize the message ex
change by processors memory and use thus defined .f(X) as a objective function
or minimize communication overhead using an other objective function g(X).
In this example of GGP a.ij stands for average processing time of the process j
in processor i and bi is the time resource of the processor i.

A second application of the GGP model arises in group technology clas
sification problems. The basic idea of group technology is to decompose a
manufacturing system into m subsystems called machine cells. The result of
this grouping leads to physical machine layout. Some studies have shown that
grouping machines into machines cells might limit the manufacturing system
flexibility. However, industrial applications have proved that it is virtually im
possible to implement a large-scale automated manufacturing system without
using the cellular concept. For more information reader may refer to Kumar,
Kusiak and Vannelli (1986), Kusiak (1991) , Sawik (1992).

To model group technology problem GGP formulation can be used. In the
graph G = (N, E) the nodes set N represents the manufacturing system ma
chines and subset Xi the machines allocated at the i-rnachine cell, i = 1, ... , m .
Let the manufacturing system produce on the average fJ.r workpieces (parts)
of type .,. per time unit (week, month) and let o1k(T) denote a uumber of
transfers of one workpiece from machine j to machine k during the produc
tion process realized according to the technological route of part type .,. . In
this case we calculate cjk = ~r il·rOjk(T) and Cjk = c~j + cjk, thus the edges
set E = {.ik E N x N : Cjk > 0}. When the machines are allocated to the
same cell the parts transport is performed using the cell robot. In the case the
machines are in different cells the material handling Car! iers are used to traus
port workpieces, for example automated guided vehicles (AGVs) . Each of the
carriers serves a limited number of machines (e.g. maximum number of trips
that an AGV can make per time unit is limited, see Kusiak (1991)). Thus one
can maximize the workpiece transport by cell robot and use .f (X) ----; rnax as au
objective function or minimize AGVs transport using the functiou g(X) ----;min .
If given machines j and k have to be grouped together (due to technological re
quirements, fo r example, a forging machine and a heat treatment station, see
Kusiak (1991)) one have to set Cjk =A, where A is a sufficiently large number.

In general , a manufacturing system may consist of various kind of cells
thus resources bi (i = 1, ... , m) of these cells may be expressed in [m.], [m. 2],

[machine post], [situation number] or [radian] . Figures 1, 2 and 3 illustrate these
various kind of cells. In Fig. 1, the resource b1 of the cell i = 1 is expressed
in [m], the machines can be allocated along the transport robot TR thus the

Tabu s earch <.lnd genet ic algorithms fo~· the generalized gTaph partitioning problem 463

b,
I

I I
I I
I I
I I I
I a17 a,3 I a,4 I a,2 I
~)I(>I< >I< >I

Figure 1. Cell i = 1 with transport robot TR (b1 in [m]).

numbers u.lj (.j = 1, . .. , m) are also expressed in [m]. In Fig. 2, the numbers
b2 and a. 2 j of the cell i = 2, with gantry robot GR, may be expressed in [m 2] or
[machine post] and fori= 3 (Fig. 3), b3 and u.3j are exp-ressed in radian , where
j = 1, ... ,n .

4. Approximation algorithm TABGGP

In our tabu search algorithm for solution the GGP, described by the objective
function .f(X) and constraints (2), (3) and (4), we follow the tabu search algo
rithm developed for the multilevel generalized assignment problem in Laguna,
Kelley, Gon~alez-Velarde, Glover (1991) . We have designed a tabu structure
that consists of dynamic tabu list with a long term memory component, and a
strategic oscillation element that allows searching paths to cross the capacity -
feasibility boundary.

Tabu search method derived by F. Glover exploits a collection of principles
of intel•ligent problem solving. A fundamental element underlying tabu search
is the use of flexible memory which embodies the dual processes of creating and
exploitiug structures for taking advantage of search history. In addition tabu
search methods operate under the assumption that a neighbourhood NB (X) of
the curreut solution X = (X 1, ... , X m) can be constructed to identify "adjacent
solutions" that can be reached from any current solution. Each solution X' E

NB (X) can be reached directly from X by an operation called a move, and X
is said to move to X' , when such an operation is performed. There are used
choice criteria for selecting "best" moves from N B(X) and termination criteria
for endiug the search (for details see Glover (1989, 1990)).

In TABGGP algorithm the neighbourhood is defined as follows:
N B(X) = N1 (X) U N2(X), where

N 1(X) = {X': solution X move to solution X' consists in assignment replace
ment of node j from i1-cluster to i2-cluster , where i1 -=1- i2, i2 E F(.j)}

464 P. KADLUCZ K A, K. VVALA

<)

Figure 2. Cell i = 2 with gantry robot GR (b1 = 9 machine post number).

Figure 3. Cell i = 3 with robot R (b 3 = n radian).

Tabu search and genetic algoritl11ns for the generalized graph partitioning: problem 465

N 1(X) = {X': solution X move to solution X' consists in assignment replace
ment of node h from i1-cluster to i2-cluster as well as node .'l2 from i2-
cluster to i3-cluster, where .il i h and i1 i i2, i2 i i3 and i2 E F(.h),
i3 E F(.h)}

The neighbourhood N 1 defines a very simple moves for GGP: a move is
one that changes sets X; 1 and X;2 for X;1 - {j} and X;2 U {.j}; i.e. only one
assignment (i 1,.j) changes for (i 2, j), i 2 E F(.j). The neighbourhood N 2 is more
corn plex: a move is one that changes sets X ;1 , X ; 2 and X ;3 for X ;1 - {.il} and
{X;2 U {h}}- {h} and X; 3 U {h}; i.e. two assignments (i1,.il) and (i2 , h)
change for (i2,.il) and (i3,_h), i2 E F(.h), i3 E F(_h) .

Let us define s;, the capacity slack of i-clusters as follows. Let X be a given
solution to the GGP that satisfies the assignment constraints (2) and (3) but
does not necessarily meet the · capacity restrictions (4), then

Si = b; - L O.ij

jEXi

(7)

TABGGP algorithm ensures that the assignment constraints (2), (3) are
always satisfied; however, infeasibility may occur due to violation of the capacity
constraints (4). Therefore, infeasible solutions are these for which s; is strictly
less than zero for at least one i. A measure of infeasibility, v, of an assignment
feasible solution X, may be defined as the sum of all the negative capacity
slacks:

m

v(X) = l:min{s;,O} (8)
i=l

where, to be precise, the solution X= (X1,X2, ... ,X;, · ... ,Xm) is an assign
ment - feasible one if the constraints (2) and (3) are satisfied and for each
j EX;, i = 1,2, . . . ,m, the pair (i , j) is a feasible assignment (satisfies the
condition i E F (.j)).

The starting solution of the TABGGP algorithm is the solution X st that
results from assignment nodes of the set N to m clusters by means of greedy
procedure with objective function v(X).

A chief mechanism for exploiting memory in tabu search is to classify a
subset NT(X) of the moves in a neighbourhood N B(X) as tabu. As a basis
for preventing the search from repeating move combination tried in the recent
past, potentially reversing the effects of previous moves by interchanges that
might return to previous position, we introduce tabu list TL = [TL(i,j)] (i =
1, . . . , m; j 1, ... , n). Thus, the subset of tabu-active moves can be defined
as

NT(X) {X' E N B(X): solution X move to solution X' contains a as-
signment (i,j) change for which TL(i,j) > 0},

where:

466 P. KADLUCZKA, K. VVALA

N B(X) = NT(X) UN F(X) and NT(X) n· N F(X) = 0,
N F(X) = {X' E N B(X): no solution X move to solution X' contains a

assignment (i,j) change ifTL(i,j) > 0} defines a subset of tabu-inactive moves.
Let a component of the move is assignment replacement of the node j from

i-cluster to i1-cluster. We call the tuple (i, j) as a leaving assignment . After
a move has been executed, the leaving assignment (or assignments, in the case
of N2(X) neighbourhood) become(s) tabu. The number of iterations that a
leaving assignment remains tabu is a function of three elements: (1) number
mn; (2) the relative increment of the objective function; (3) the frequency that
the leaving assignment has been a component of a previously selected moves.
Then, the number of iterations that the leaving assignment (i, j) will remain
tabu i~> given by the following expression:

TT(i,j) =INTEGER (fl·lmn + 11·2 L\f + J-L3J!..iJ_)
f rPmax

(9)

where:

P·l, 1'·2, 11·3 = weight coefficients,
L\f = max{O, f(X)- f(X')} , f = f(X) ,
rPij = number of times leaving assignment (i, .i) has been part of an executed

move component,
rPrnax = maximum rPij, for all i , j.

The long term memory element of the tabu list is implemented in form of
a frequency count. This component of tabu tenure is only a function of the
history of the current search.

Algorithm: TABGGP
To determine the approximate solution X approx do the following.

STEP 1. Determine the start solution X st and set X cur := X st { where X cur
is the current solution }.

STEP 2. Calculate .fcur := f(Xcur) and Vcur := v(Xcur)·
If Vcur = 0 set .fapprox := .fcur and Xapprox := Xcun otherwise set fcur :=
0.
Set TL(i,j) := 0 for all i,j.

STEP 3. (a) For v(Xcur) = 0 do the following.
Search the N F (X cur) neighbourhood of solution X cur only to get the
set solutions S:

S ={X': f(X') = max{f(X) : X EN F(Xcur)}}

and search the best solution in set S:

Xbest := argmax{v(X): X E S}

Tabu search and genetic algorithms for the generalized graph partitioning problem 467

(b) For v (X cur) < 0 do the following.
Search the N F (X cur) neighbourhood of solution X cur only to get the
set solutions S:

S ={X': v(X') = max{v(X): X E NF(Xcur)}}

and search the best solution in set S:

Xbest := argmax{.f(X): X E S}

STEP 4. If v(Xbest) = 0 and .f(Xbest) > .fapprox :=hest, set .fapprox :=hest,
Xapprox := Xbest;

STEP 5. Search the NT (X cur) neighbourhood of solution X cur only to get the
set solution ST:

ST ={X E NT(Xcur) : v(X) = 0}
and if ST # 0 search the best tabu solution in set ST:

Xtab = argmax{.f(X): X EST}
If .f (X tab) > .f approx set .f approx : = .f (X tab), .!best : = .f (X tab), X approx : =
Xtab, X best:= Xtab;

STEP 6. For all (i,j) with TL(i,j) > 0 set TL(i,j) := TL(i,j) -1; and for
all leaving assignment (k,l) of solution Xcur move to Xbest set TL(k:,l) :=
TT(k:, l).

Set .fcur := .f(Xbest), Xcur := Xbest;
STEP 7. Repeat steps 3, 4, 5 and 6 K times, where K is the TABGGP algo

rithm parameter.
STEP 8. Return .fapprox and Xapprox

Let us notice that in STEP 3 a strategic oscillation element that allows
search path to cross the capacity - feasibility boundary is realized. In the
tabu search methodology it is important to create best move definitions that
depend on the search state. When the current solution X cur is inside the feasible
region, v(Xcur) = 0 (STEP 3(a)), the best neighbour is the one with the largest
objective function value. When the current solution is infeasible, v(Xcur < 0
(STEP 3(b)), the best neighbour is the one that reduces infeasibility the most.

STEP 5 employs a simple type of aspiration criterion, consisting of removing
a tabu classification from a trial move when the move yields a solution better
then the best obtained so far, i.e. when f(Xtab) > .fapprox, the tabu restriction
can be overridden: Xapprox := Xtab and Xcur := Xtab·

5. Approximation algorithm GENGGP

Holland (1975) proposed a theoretical treatment of evolutionary adaptation.
Artificial intelligence systems are starting to genetic algorithms as the basis for
machine learning systems to make good decisions (see, e.g. Goldberg (1989),
Michalewicz (1992)). The genetic algorithm consists of a population and of the
genetic operators. The knowledge, accumulated during the solution process,
is encoded as a list of solutions called population. The solution improvement

468 P.KADLUCZKA, K . WALA

process is realized by use of genetic operators. Every genetic operator generates
new solutions called offspring on the basis of old solutions called parents. Old
solutions are picked out from the population, and then the new solutions replace,
if they are better, the worse population solutions. As an evaluation function
EV(X) of the GGP problem solution X the objective function f(X) together
with function v(X) (see, formula (8)) is used:

EV(X) = f(X) + wv(X) (10)

where w, w ;:::: 0, is the weight coefficient of the evaluation function. Let us
notice, that coefficient w defines the part of infeasibility measure of the solution
in evaluation function.

Taking into account genetic algorithm requirements concerning the solut ion
form of the investigated problem, we introduce the second form of the GGP
problem solution x = (x1, xz, .. . , Xj, ... , xn), where component Xj (xj E F(.j))
defines the cluster number for the node j and Xi = {j : Xj = i}. Further, in
this section we denote the GGP problem solution by symbol x corresponding to
X. Genetic algorithm GENGGP exploits the following genet ic operators:

1. Inversion operator
Inversion operator generates one offspring on the basis of one parent x :

a) choose one number j so that 1 :<::: .i < n,

b) invert the elements of the parent x 1, xz, ... , xj after elements
Xj+l , Xj+2, ... , Xn,

If the parent is the solution of the framework x = (x1, :r:z, . .. , :r:j, Xj+l, ... ,
xn) then the offspring has a framework x1 = (xj+l, ... ,xn, Xl , ... , :r:j)

2. Mutation operator 1
Mutation operator 1 generates one offspring on the basis of one parent x :

a) choose one number i so that 1 :<::: i :<::: n as well as the "best" number j,
j = argmaxk,..:i{EV(x1 ,xz, .. . , Xi-1 ,Xk.Xi+1, ... , xk-1 ,xi , Xk+1, ... ,
Xn) : k E N};

b) swap element Xi of the parent for element x j. .

If the parent is the solution of the framework
x = (x 1,xz, . . . ,Xi-1,Xi, ·· ·, x j - 1,xj,···,xn) then the offspring has a
framework x 1 = (x1, xz, ... , Xi-1, :r:j, .. . , Xj-1, Xi, ... , xn)

3. Mutation operator 2
Mutation operator 2 generates one offspring on the basis of one parent x :

a) choose one number j, 1 :<::: j :<::: n, as well as the "best" number i, such
that

EV(x1, xz, . .. , Xj - 1, i, Xj+1, ... , Xn) =
max{EV(x1, xz, ... , Xj-1, k, Xj+1, . . . , xn) : k E F(j)};
~~ .

b) replace element x j of the parent with number i.

Tabu search and genetic algorithms for the generalized graph partitioning problem 469

If the parent has the framework x = (x1, x2, ... , Xj-1, x J, ... , xn) then the
offspring has a framework x 1 = (x1, x2, ... , Xj-1, i, ... , xn)

4. Crossover operator

a) choose one number j, 1 ::; j < n, and for two parents:

b) generate two offspring:

5. Local optimization operator
Let S(x) = {x': x' = (xbxz, ... Xj-1,xj,xJ+1, ... ,xn): xj E F(.j), x:j -1-
Xj, j EN} denotes the neighbourhood of the solution x = (x 1 ,x 2 , ... ,xj,

... 'Xn)·
Local optimization operator generates one offspring x 1 on the basis of one
parent x:

a) determine the neighbourhood S(x),

b) find a solution x' = argmax{EV(x): x E S(x:), x -1- x}

c) if EV(x') > EV(x) then set x := x' and go to step a), otherwise set
x;l := :r:.

Each genetic operator has the operation "choose" which is arbitrary choice.
Besides, genetic operators mutation 1 and mutation 2 have choose operation
together with simple search operation (choose the "best" number j or i). The
crossover operator makes possible to sample new regions (see, Holland (1975)),
whereas the local optimization operator is used to do the thorough search in one
particular region of the search space. In the GENGPP algorithm, the chosen
operations are realized by sampling mechanism and in this way random changes
during the offspring generation process are made.

Algorithm: GENGGP
To determine the approximate solution Xapprox do the following.

STEP 1 Randomly generate an initial population of M solutions
,r; = (xl,X2, .. . ,Xj, ... ,xn), where for each j, Xj = RANDOM_UNI
FORM(F(.j)), as well as compute and save the evaluation function value
for each solution.

STEP 2 Choose one genetic operator, where p 1 is the selection probability of
inversion operator, P2 is the selection probability of mutation operator 1,
etc. (where Pl, ... ,p5 2: 0, Pl + P2 + P3 + P4 + P5 = 1), and choose, from
the population, one or two parents.

470 P. KADLUCZKA, K. VVALA

STEP 3 Using chosen genetic operator, generate offspring xj (.j E {1 ,2}). If
the solution-offspring :;) is better than the worst solution in population ,
then the last one is replaced by xj, i.e. if EV (xJ) > EV (xworst), where
:;;worst= argmin{EV(:;;): :rE population}, then replace solution Xworst

in population by xj.

STEP 4 Repeat from step 2 to step 4 K times .
STEP 5 Return1;approx, wherexapprox = argmax{f (x) : x E population and

v (;r;) is minimal} .

Let us notice that the population size M, total iteration number K , weight
coefficient wand genetic operator selection probabilities p 1 , ... , p 5 are GENGGP
algorithm parameters. The structure of GENGGP algorithm is similar to modGA
algorithm , where.,. E {1 , 2} (see, Chapter 4 in Michalewicz (1992)), and RAN
DOM_UNIFORM procedure is sampling procedure with uniform distribution.

6. A test example

On the base of TABGGP and GENGGP algorithms two computer program
ming systems, coded in C for IBM PC compatible computers under MS DOS
operating system, were developed. In this section we report computer experi
ments realized with the aid of this programming systems for a t est example of
size n = 30 and m = 6. We applied random problem generator, called A (see,
Kadiuczka, Wala (1993)), to create random instance using the integer uniform
distribution function:

{

0,

RANDOM _U NIFORM[RAN ~0~~ ~Uk~ IFORM[O , 99), 0),
otherwise

cjk + c~J' j, k: = 1.2 , n

RANDOM _UNIFORM[O, 9]

{
a~j for a~j > 0 2

f
, O i = 1, , . . . , ·m; j = 1, 2, ... , n

oo or aij =

INTEGER (1+0.7·f.a;,j/m) , i=1 , 2, .. . ,rn.
J=l

The table 1 gives the matrix [cjk] and table 2 presents the matrix [aij] · The
matrix [bi] is equal to [17,18,18,15,13,16]. In tables 3 and 4 we use t he following
notations:

fk(xapprox) - objective function value of the best solution Xa pprox in the k-th
experiment, k: E {1, 2},

vk(Xapprox) - measure of infeasibility of solution Xapprox in the k:-th experiment,

Tabu s earch and genetic algorithms for the g:cncralizcd graph partitioning problem 471

N h(CTk) - number of search process iteration (computation time of the PC
486DX2/50 MHz in [seconds]) when the best solution Xapprox, in the k-th
experiment, was found,

T AVk - average tabu time tenure of one computational test in the k:-th experi
ment .

Table 3 presents results of two experiments, performed by means of TABGGP
algorithm, consisting of K = 10.000 search process iterations for weight coeffi
cients J-1·1 = 0.01, J-1·2 = 1, 50, 100 and fi;'J = 1, 10, 100. In the first experiment,
contrary to the second one, the aspiration criterion was neglected: STEP 5 of
the algorithm was inactive. These two experiments enable us to observe the
influence of aspiration criterion and coefficients p;2, p;3 on the search process.

Let us notice that the tabu structure defined by expression (9) may be viewed
as a form of multiple lists of dynamic size. The first two components of this
expression implement the short term memory of tabu statu1) and the coefficients
p.1 , p.2 determine the number of iterations that leaving assignments will be not
a llowed to be part of the solutions to prevent the algorithm to oscillate between
local optimum solutions. The purpose of the short term memory is not to rule
out cycling completely since this would in general result in heavy bookkeeping
and loss of flexibility, but at least to make it improbable. This problem, by
choosing coefficients 1~ 1, p;z, is generally to be resolved by experimentation.
The third component of expression (9), along with coefficient p;3 , implements
the long term memory of tabu status in form of the frequency count function.
This function records the leaving assignments of the best solutions found in
some phase of the algorithm. In a subsequent phase, tabu search can then
be restricted to the subset of neighbourhood and the scale of neighbourhood
reduction is controlled by coefficient p.3 . This enforces what Glover calls a
"regional intensification" of the search in "promising regions".

Table 4 presents results of two experiments, performed by means of GENGGP
algorithm, consisting of K = 20000 search process iterations for population size
M = 50 and weight coefficient w from the inte'rval [50, 20000]. The selection
probabilities of the first experiment equals P1 = pz = P3 = P4 = 0.25, p 5 = 0.0
and of the second experiment are as follows P1 = pz = ,p3 = P4 = 0.23, P5 = 0.08.
In these experiments one can observe the influence of the local optimization op
erator and coefficient w on the search process.

There is no accepted methodology for choosing the penalty coefficient w ex
cept computer experiments. Let us notice that in case of incorporating a high
penalty coefficient into the evaluation function we take the risk that if feasible
solution is found, it drives the others out and the population converges on it
without finding better solutions, since the likely paths to other feasib le solu
tions require the production of infeasible solutions as intermediate structures,
and the penalties for violating the constraint make it unlikely 'that such inter
mediate structures will reproduce. On the other hand, if the penalty coefficient
is rather small the algorithm, especially for the heavily constrained problems ,

f-:
~
v
ro-
:
~
~
M-

"' x·
" '->.

?.:....

12 108 144 196 104 0 0 120 36 194 108 84 0 102 0
0 0 0 0 96 64 4 146 182 236 120 144 212 224 62 96 12 104 170 0 56 30 96 54 0 68 0 2
0 0 314 180 76 124 0 6 198 132 188 106 46 150 38 0 280 4 64 0 168 58 316 138 0 80 166
0 314 0 112 0 198 206 88 180 0 0 0 180 162 24 0 174 60 0 40 0 122 186 282 8
0 180 112 0 20 48 266 104 216 28 72 0 102 118 196 236 132 0 252 0 0 298 168 98 0

96 76 0 20 0 126 102 164 0 0 96 50 0 0 226 216 218 180 86 18 136 290 182 0
0 64 124 198 48 126 0 90 172 184 0 64 10 166 58 94 26 190 56 20 42 174 16 0 58 0 114 68

0 0 4 0 206 266 102 90 0 76 48 190 366 0 0 58 0 44 174 312 0 42 32 0 198 110 154 54 24 27
6 88 104 164 172 76 0 0 216 58 218 0 0 10 268 100 20 22 0 0 0 88 108 168 152 154

48 36 182 198 180 216 0 184 48 0 0 270 94 106 34 118 262 136 50 0 172 76 12 154 282 4 0 0 72
0 194 236 132 0 28 0 0 190 216 270 0 156 118 108 302 164 0 0 218 12 168 206 58 136 198 252 256 24

82 108 120 188 0 72 96 64 366 58 94 156 0 26 174 44 0 122 0 100 82 272 0 44 86 40 0 168 0
92 84 144 106 0 0 50 10 0 218 106 118 26 0 316 0 0 168 48 66 296 18 224 178 0 0 120 56 306

216 0 212 46 180 102 0 166 0 0 34 108 174 316 0 102 180 80 192 162 48 144 146 190 98 116 0 146 0
110 102 224 150 162 118 0 58 58 0 118 302 44 0 102 0 0 0 64 198 286 132 48 0 296 178 188 316 50
44 0 62 38 24 196 0 94 0 10 262 164 0 0 180 0 0 76 190 212 148 0 334 0 280 0 38 0 184

0 0 96 0 0 236 226 26 44 268 136 0 122 168 80 0 76 0 0 130 172 304 0 102 180 308 176 128 184
0 12 280 174 132 216 190 174 100 50 0 0 48 192 64 190 0 0 10 148 24 148 110 60 0 0 104 84
0 104 4 60 0 218 56 312 20 0 218 100 66 162 198 212 130 10 0 8 314 240 0 0 20 170 272 8
0 170 64 0 252 180 20 0 22 172 12 82 296 48 286 148 172 148 8 0 174 222 0 212 196 6 78 324

0 0 40 0 86 42 42 0 76 168 272 18 144 132 0 304 24 314 174 0 124 158 12 0 82 92 84 14
56 168 0 0 18 174 32 0 12 206 0 224 146 48 334 0 148 240 222 124 0 356 48 138 104 0 42

0 30 58 122 298 136 16 0 0 154 58 44 178 190 0 0 102 110 0 0 158 356 0 0 42 0 168 0 3
16 96 316 186 168 290 0 198 88 282 136 86 0 98 296 280 180 60 0 212 12 48 0 0 96 142 52 158 14
10 54 138 282 98 182 58 110 108 4 198 40 0 116 178 0 308 0 20 196 0 138 42 96 0 0 0 266
4 0 0 8 0 0 0 154 168 0 252 0 120 0 188 38 176 0 170 6 82 104 0 142 0 0 156 78 4

68 80 0 38 0 114 54 152 0 256 168 56 146 316 0 128 104 272 78 92 0 168 52 0 156 0 166
0 166 100 162 0 68 24 154 72 24 0 306 0 50 184 184 84 8 324 84 42 0 158 266 78 166

24 0 172 20 174 0 270 94 0 46 0 0 34 0 0 70 28 14 0 148 0 32 140 0 44 0 100

,{::>.
~
tv

1l

:>:
;,.
Cl
t"
c:
0
N
:>:
;,.

:>:

~
t"
;,.

~
0"
(i)

~

~
(>:>
M,_,
:;<'
~
'->.

i\j 1

1 =
=
3

=
3

6 2

1 6 7 8 5

7 5 8 9 5

9 = 9 8 7

2 1 2 4 1

4 8 4 6 4

=
6 = = 7

4 1 6 3 2 4 2 2 4

4 4 = 5 3 9 9 2 5

5. 6 7 6 4 = 3 7 =
3 1 2 2 2 4 4 8 1

4 1 3 9 6 3 9

5 8 2 6 7 8 7 4 6 6 4

2 = 2 = 7 8 5 1 1 7 5

1 5 2 9 5 6 2 5 1 6 3

7 5 3 2 5 9 7 3 3 6 9

30

= 6

9 7 5

4 5 9 6

2 7 4 2

5 4 3 3

4 = 9 8

~
<T
c

,
:;.
'J
[
n· .
"' g

~
:;

"<l
~
~
~·
a.

~

i
"
~·
c;·

" ;·

" " 0
<T
0
5

>~'
~
C.:>

474 P. KADLUCZKA , K. WALA

Parameters k=1 k=2

113=1 113=10 113=100 113=1 113=10 113=100

Nlk (CTd 153, (140) 794 , (729) 17, (15) 286, (263) 6060, 23, (21)
(5657)

fk (Xappruxl /1?=1 11234 11264 8988 11264 11264 10488

TAVk 2 5.26 90.64 1.98 5.49 87.86

Ni dCTd 2194, 5021' 17, (15) 416, (386) 6321' 23, (21)
_(2029) (4678) (5901)

fk (X approxl /1?=50 11264 11264 8988 11264 11264 10488

TAVk 3.73 7.55 93.45 3.60 7.38 90.32

Nlk(CTd 2130, 1308, 17, (15) 3290, 7510, 23, (21)
(1969) (1204) (3053) (7005)

Jk (Xapprux) 11?=100 11234 11010 8988 11264 11264 10488

TAVk 5.64 9.81 94.68 5.63 9.42 90.74

Table 3.

f1 (xappm..J VI (xappn~) NI 1(C'Fj) fz (X appruxl Vz (Xappruxl NI 2 (CT2)
w
50 6532 -19 42, (10) 7040 -20 62, (2)

100 7420 -7 206, (6) 5366 -19 72, (2)

200 7904 -3 987, (29) 9362 0 172, (5)

300 11264 0 7508, (100) 11264 0 1434, (35)
400 11264 0 9278, (119) 11264 0 670, (19)

500 11186 0 5298, (76) 11264 0 3314, (55)
1000 10828 0 10606, (131) 11066 0 11652, (142)
5000 11264 0 15397, (182) 11264 0 11988, (146)

10000 11188 0 8601' (111) 11264 0 1763, (39)
20000 11178 0 18554, (216) 11264 0 5936, (83)

Table 4.

Tabu searc h cmd genet ic algorithms for the generalized graph partitioning problem 475

may generate solutions that violate the constraints.
For the best objective function value f(X) = 11264, the respective solution

X = (X 1 , X z, ... , X 6) has the following clusters X 1 = {3, 11, 12, 14, 17, 21, 23},
X 2 = {28}, X 3 = {13,18,20,22}, X4 = {7,25,27,30}, Xs = {2,4,6,16 ,24,26,
29}, x 6 = {1, 5, 8, 9, 10, 15, 19}.

7. Conclusions

The paper describes two approximate algorithms, TABGGP and GENGGP, for
the generalized graph partitioning problem. TABGGP algorithm is the neigh
bourhood search optimization procedure based on the tabu search framework
with short a~:> well as long term memory components, and a strategic oscillation
element that allows search paths to cross the capacity - feasibility boundary.
GENGGP algorithm refers to genetic type algorithms with evaluation function
consisted of objective function and weighted infeasibility measure. GENGGP
exploits five genetic operators, three of them perform simple search operation
besides random choose operations.

We have shown that these algorithms can be used, on IBM PC compati
ble computers, to solve GGP problem successfully but GENGGP algorithm is
cornputationally more efficient. Let us notice that one iteration of TABGGP
algorithm consists of time consuming complete search in current so lut ion neigh
bourhood thus, in our investigation, one computational test performed by means
of TABGGP algorithm lasted over twenty times than one performed with the
aid of GENGGP.

References

CHEN C. C. (1986) Placement and partitioning methods for integrated circuit
layout. Berkeley, CA, Ph. D. Dissertat ion, Dep. of EECS, Univ. of
Califoruia.

FEO T. A. , KHELLAF M . (1988) The complexity of graph partitioning. Ma
nuscript, Operations Research Group, Department of Mechanical Engi
neering , Univ. of Texas at Austin.

FEO T. A., KHELLAF M. (1990) A class of bounded approximation algo-
rithm for graph partitioning, Networks 20, 181-195.

GLOVER F . (1989) Tabu search, part I. ORSA J. on Comp11ting 1, 3, 190-206.
GLOVER F. (1990) Tabu search, part II. ORSA .1. on Comp11ting 2, 1, 4-32.
GOLDBETI.G D.E. (1989) Genetic algorithms in search, optimization and ma-

chine lear-ning, New York, Addison-Wesley.
HOLLAND .J. (1975) Adaptation in natnml and ar-tificial systems, MI, Univ.

of Michigan Press, Ann Arbor.
KADLUCZKA P., WALA K. (1993) Tabu search heuristic for generalized graph

partitioning problem, A 1domatics 64, 473-487, Cracow, University of Min
ing and Metallurgy Press.

476 P.KADLUCZKA , K.WALA

KuMAR K .R., KuSIAK A., VANNELLI A. (1986) Grouping parts and com
ponents in flexible manufacturing system, Em·. J. Opemtions Res. 24,
387-397.

KusrAK A. (1991) GToup technology in flexible marmfactu'f'ing systems, In:
Handbook of Flexible Manufacturing Systems, Ed. N. K. .Jha, Academic
Press, .Jnc.

LACUNA M., KELLEY .J. P., GON ZALEZ-VELARDE .J.L. , GLOVER F . (1991)
Tabu search methods for the multilevel generalized assignment problem,
Manuscript, Graduate School of Business and Administration, University
of Colorado at Boulder.

MAP. R., LEE E.Y.S., TSUCHIYA M. (1982) A task allocation model for
distributed computing systems, IEEE Transactions on Co rnpute'f's 31, 1,
41-47.

MICHALEWICZ Z. (1992) Genetic algo'f'ithms + data stntcht'f'es = e1Jol1dio n

progmrns, Berlin , Springer-Verlag.
OwsrNSKI .J. (1984) On a quasi-objecti1Je global clustering meth od, In: Data

Analysis and Informatics , III, E. Diday et al., Amsterdam , North Holland.
SAWIK T. (1992) DiscTete optimization in flexible mamtfacbtring systems,

Polish Scientific Publishers (in Polish).
WALA K ., WEREWKA .J. (1989) Allocation of computational processes in a

multiprocessor system, Archiwum Automatyki i Telemechaniki 34 (1-2):
197-215.

	Bez nazwy

