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The paper considers the generalized problem of partitioning the 
nodes of a weigchted graph into m disjoint subsets of bounded size, 
such that the objective function related to the weights of the graph 
edges is maximized. The applications of the investigated model for 
the group technology classification and for processing large computer 
programs in distributed computing system are presented. 

Both tabu search and genetic a lgorithms are fine tuned for solv­
ing of the generalized graph partitioning problem. Tabu search a lgo­
rithm is the neighbourhood search optimization procedure based on 
the tabu search framework with short as well as long term memory 
components, and a strategic oscillation element that allows search 
paths to cross the capacity-feasibility boundary. Genetic algorithm 
is an instance of genetic type algorithms with evaluation function 
consisting of objective function and weighted infeasibility measure. 
It exploits five genetic operators, three of them perform simple search 
operations besides random choose operations. 

1. Introduction 

The graph partitioning problem (GP) of an undirected and weighted graph G = 
(N, E) consists of a partition of the nodes N = {1, 2, .. . , j, ... , n} into m, disjoint 
subsets X1, X2, .. . , Xm so called clusters to optimize a given measure defined by 
the objective function .f(X), where X= (X1,X2, ... ,Xi,· .. ,Xm) is called the 
graph partition. This clustering of the nodes of a graph into subsets is NP-hard 
combinatorial problem (see, Feo and Khellaf (1988, 1990) for survey). Therefore 
there is a great demand for efficient approximation algorithms producing good 
suboptimal solution within a reasonable amount of time. 

Graph partitioning serves as a model for several important problems. For in­
stance, it can be used in integrated circuit layout in Very Large Scale Integration, 
Chen (1986), in storing or processing large computer programs in distributed 
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computing systems, Ma, Lee and Tsuchiya (1982), Wala and Werewka (1989), 
and in group technology classification problems, Kumar, Kusiak and Vanelli 
(1986), Kusiak (1991). . 

Number of intractable combinatorial optimization problems can be solved 
now successfully by means of metaheuristics calling on principles of artificial 
intelligence. Machine learning becomes a popular field of research during the 
last years in artificial intelligence based on the idea to build computer pro­
grams capable to guide a search process into a "promising regions" for finding 
high-quality solution of an optimization problem. There has been an increasing 
interest in experimental comparisons of applying various new techniques to the 
same data sets of the same problems to provide a necessary condition to un­
derstand the merits of different methods. The most interesting machine learn­
ing approaches to hard combinatorial optimization problems are tabu search 
framework originally proposed by Glover and general purpose search strategies, 
proposed by Holland , called genetic algorithm. 

The paper is organized in the following way: the next section presents the 
mathematical model of the generalized graph partitioning problem. In section 3 
we look into details of two applications of the proposed model. Two approximate 
algorithms based on machine learning, i.e. tabu search algorithm TABGGP 
and genetic algorithm GENGGP, are presented in sections 4 and 5, respectively. 
These algorithms are fine tuned for solution of the generalized graph partitioning 
problem. The computer experiment results for a test example are reported in 
section 6. The last section contains conclusions. 

2. Generalized graph partitioning problem 

Mathematically, generalized graph partitioning problem (GGP) can be described 
as the following combinatorial optimization problem. Given an undirected and 
weighted graph G = (N, E) and a set of numbers {b1, b2, ... , bm}, where bi > 0 
fori= 1, ... , m. Find a graph partition X = (X 1, X2, . .. , Xi , ... , X m), Xi C N 
(i = 1, ... ,m), of the set N which maximizes: 

m 

f(X) = L L Cjk 

i=l j,kEXi 

subject to: 
m 

xi n Xv = 0 fori i V 

L Uij :S: bi , i = 1, ... , m 
jEX, 

where: 

(1) 

(2) 

(3) 

(4) 
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aj = (a 1j, a.2j,.,., aij, .. . , amj) weight vector of the node j EN, 
Cjk weight of the edge jk E E. 
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Constraints (2) and (3) ensure that ,each graph node is allocated precisely in one 
cluster (set) Xi. Constraints (4) 1imit the size for each cluster. The objective 
function f (X) is the aggregate measure accqunting for intra-cluster similarities 
or prQximities (see, e.g. Owsinski (1984)) , Let us note that partitioning the 
graph nodes, such that one minimizes the sum of the weight of the edges having 
incident nodes riot in the same set Xi, is identical to clustering the nodes of 
the graph such that one maximizes the sum of the weights of the edges having 
incident nodes in the same set Xi, i = 1, ... , m. This follows from the fact that 
the sum of the weights of all edges in the graph is a constant and that each edge 
is either in a cluster or runs between two clusters. Thus the aggregate measure 
accounting for inter-cluster dissimilarities or distance is equal: 

Tn m 

g(X) = L L L L Cjk = c - f(X) (5) 
i=l v=l v;<'l jEXi kEX.u 

where: 
n n 

(6) 

. is the constant value. 
It is assumed, without loss of generality, that for each jk E E: Cjk > 0 and 

for jk:·!fc E: Cjk = 0 as well as U.ij = oo if node j can not be assigned to cluster 
Xi, otherwise: 0 < aij < oo fori= 1, ... ,m; .i = 1, ... ,n. Let F(.j) denote the 
set oUeasible cluster numbers for node _j: F(.j) = { i E {1, 2, ... , m} : aij < oo }, 
j EN. Further, we will mark the feasible assignment of node j to cluster Xi, 

j E Xi and i E F (j), as a pair ( i, j), In this formulation, bi is the resource or 
size of i-cluster. If for each i and j a.ij = 1 then bi limits the number of nodes 
in cluster i and the constraint (4) has the form IXil:::::; bi. 

We called the formulation (1), (2), (3) and (4) the generalized graph parti­
tioning (GGP) as opposed to standard GP where for each i: aij = U.j and the 
constraint (4) has the form LjEX., a.j:::::; bi. 

3. Applications of the GGP model 

Let us model the allocation problem of the distributed computer program into 
a distributed computing system (see e.g., Wala and Werewka (1989)). A dis­
tributed program consists of a set N = {1, ... , n} of computational processes 
which cooperate to reach a common goaL The processes cooperate by exchang­
ing messages and let Cjk stands for the number (or number per unit time) of 
message transmissions between the processes j, /;: E N, where Cjk = 0 means 
that processes j and k do not cooperate and E = {ik E N x N : Cjk > 0}. 
The processes should be allocated over different processors to enable a parallel 
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computation. The solution of the allocation problem is given by the colle~?tion 
of the sets X 1, X 2, ... , X m, where Xi, Xi C N, is a subset of processes allocated 
in processor i, fori = 1, ... , m. When the processes are allocated to the same 
processor (e.g. Xi processes) an information exchange is performed, in practi­
cally no time, using the memory of the processor. In the case t he processes are 
in different processors the messages are transmitted through the communication 
channels and it may cause some overhead. One can maximize the message ex­
change by processors memory and use thus defined .f(X) as a objective function 
or minimize communication overhead using an other objective function g(X). 
In this example of GGP a.ij stands for average processing time of the process j 
in processor i and bi is the time resource of the processor i. 

A second application of the GGP model arises in group technology clas­
sification problems. The basic idea of group technology is to decompose a 
manufacturing system into m subsystems called machine cells. The result of 
this grouping leads to physical machine layout. Some studies have shown that 
grouping machines into machines cells might limit the manufacturing system 
flexibility. However, industrial applications have proved that it is virtually im­
possible to implement a large-scale automated manufacturing system without 
using the cellular concept. For more information reader may refer to Kumar, 
Kusiak and Vannelli (1986), Kusiak (1991) , Sawik (1992). 

To model group technology problem GGP formulation can be used. In the 
graph G = (N, E) the nodes set N represents the manufacturing system ma­
chines and subset Xi the machines allocated at the i-rnachine cell, i = 1, ... , m . 
Let the manufacturing system produce on the average fJ.r workpieces (parts) 
of type .,. per time unit (week, month) and let o1k(T) denote a uumber of 
transfers of one workpiece from machine j to machine k during the produc­
tion process realized according to the technological route of part type .,. . In 
this case we calculate cjk = ~r il·rOjk(T) and Cjk = c~j + cjk, thus the edges 
set E = {.ik E N x N : Cjk > 0}. When the machines are allocated to the 
same cell the parts transport is performed using the cell robot. In the case the 
machines are in different cells the material handling Car! iers are used to traus­
port workpieces, for example automated guided vehicles (AGVs) . Each of the 
carriers serves a limited number of machines (e.g. maximum number of trips 
that an AGV can make per time unit is limited, see Kusiak (1991)). Thus one 
can maximize the workpiece transport by cell robot and use .f (X) ----; rnax as au 
objective function or minimize AGVs transport using the functiou g(X) ----;min . 
If given machines j and k have to be grouped together (due to technological re­
quirements, fo r example, a forging machine and a heat treatment station, see 
Kusiak (1991)) one have to set Cjk =A, where A is a sufficiently large number. 

In general , a manufacturing system may consist of various kind of cells 
thus resources bi ( i = 1, ... , m) of these cells may be expressed in [m.], [m. 2], 

[machine post], [situation number] or [radian] . Figures 1, 2 and 3 illustrate these 
various kind of cells. In Fig. 1, the resource b1 of the cell i = 1 is expressed 
in [m], the machines can be allocated along the transport robot TR thus the 
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Figure 1. Cell i = 1 with transport robot TR (b1 in [m]). 

numbers u.lj (.j = 1, . .. , m) are also expressed in [m]. In Fig. 2, the numbers 
b2 and a. 2 j of the cell i = 2, with gantry robot GR, may be expressed in [m 2] or 
[machine post] and fori= 3 (Fig. 3), b3 and u.3j are exp-ressed in radian , where 
j = 1, ... ,n . 

4. Approximation algorithm TABGGP 

In our tabu search algorithm for solution the GGP, described by the objective 
function .f(X) and constraints (2), (3) and (4), we follow the tabu search algo­
rithm developed for the multilevel generalized assignment problem in Laguna, 
Kelley, Gon~alez-Velarde, Glover (1991) . We have designed a tabu structure 
that consists of dynamic tabu list with a long term memory component, and a 
strategic oscillation element that allows searching paths to cross the capacity -
feasibility boundary. 

Tabu search method derived by F. Glover exploits a collection of principles 
of intel•ligent problem solving. A fundamental element underlying tabu search 
is the use of flexible memory which embodies the dual processes of creating and 
exploitiug structures for taking advantage of search history. In addition tabu 
search methods operate under the assumption that a neighbourhood NB (X) of 
the curreut solution X = (X 1, ... , X m) can be constructed to identify "adjacent 
solutions" that can be reached from any current solution. Each solution X' E 

NB (X) can be reached directly from X by an operation called a move, and X 
is said to move to X' , when such an operation is performed. There are used 
choice criteria for selecting "best" moves from N B(X) and termination criteria 
for endiug the search (for details see Glover (1989, 1990)). 

In TABGGP algorithm the neighbourhood is defined as follows: 
N B(X) = N1 (X) U N2(X), where 

N 1(X) = {X': solution X move to solution X' consists in assignment replace­
ment of node j from i1-cluster to i2-cluster , where i1 -=1- i2, i2 E F(.j)} 
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Figure 2. Cell i = 2 with gantry robot GR (b1 = 9 machine post number). 

Figure 3. Cell i = 3 with robot R (b 3 = n radian). 
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N 1(X) = {X': solution X move to solution X' consists in assignment replace­
ment of node h from i1-cluster to i2-cluster as well as node .'l2 from i2-
cluster to i3-cluster, where .il i h and i1 i i2, i2 i i3 and i2 E F(.h), 
i3 E F(.h)} 

The neighbourhood N 1 defines a very simple moves for GGP: a move is 
one that changes sets X; 1 and X;2 for X;1 - {j} and X;2 U {.j}; i.e. only one 
assignment (i 1,.j) changes for (i 2, j), i 2 E F(.j). The neighbourhood N 2 is more 
corn plex: a move is one that changes sets X ;1 , X ; 2 and X ;3 for X ;1 - {.il} and 
{X;2 U {h}}- {h} and X; 3 U {h}; i.e. two assignments (i1,.il) and (i2 , h) 
change for (i2,.il) and (i3,_h), i2 E F(.h), i3 E F(_h) . 

Let us define s;, the capacity slack of i-clusters as follows. Let X be a given 
solution to the GGP that satisfies the assignment constraints (2) and (3) but 
does not necessarily meet the · capacity restrictions ( 4), then 

Si = b; - L O.ij 

jEXi 

(7) 

TABGGP algorithm ensures that the assignment constraints (2), (3) are 
always satisfied; however, infeasibility may occur due to violation of the capacity 
constraints ( 4). Therefore, infeasible solutions are these for which s; is strictly 
less than zero for at least one i. A measure of infeasibility, v, of an assignment­
feasible solution X, may be defined as the sum of all the negative capacity 
slacks: 

m 

v(X) = l:min{s;,O} (8) 
i=l 

where, to be precise, the solution X= (X1,X2, ... ,X;, · ... ,Xm) is an assign­
ment - feasible one if the constraints (2) and (3) are satisfied and for each 
j EX;, i = 1,2, . . . ,m, the pair (i , j) is a feasible assignment (satisfies the 
condition i E F (.j)). 

The starting solution of the TABGGP algorithm is the solution X st that 
results from assignment nodes of the set N to m clusters by means of greedy 
procedure with objective function v(X). 

A chief mechanism for exploiting memory in tabu search is to classify a 
subset NT(X) of the moves in a neighbourhood N B(X) as tabu. As a basis 
for preventing the search from repeating move combination tried in the recent 
past, potentially reversing the effects of previous moves by interchanges that 
might return to previous position, we introduce tabu list TL = [TL(i,j)] (i = 
1, . . . , m; j 1, ... , n). Thus, the subset of tabu-active moves can be defined 
as 

NT(X) {X' E N B(X): solution X move to solution X' contains a as-
signment (i,j) change for which TL(i,j) > 0}, 

where: 
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N B(X) = NT(X) UN F(X) and NT(X) n· N F(X) = 0, 
N F(X) = {X' E N B(X): no solution X move to solution X' contains a 

assignment (i,j) change ifTL(i,j) > 0} defines a subset of tabu-inactive moves. 
Let a component of the move is assignment replacement of the node j from 

i-cluster to i1-cluster. We call the tuple ( i, j) as a leaving assignment . After 
a move has been executed, the leaving assignment (or assignments, in the case 
of N2(X) neighbourhood) become(s) tabu. The number of iterations that a 
leaving assignment remains tabu is a function of three elements: (1) number 
mn; (2) the relative increment of the objective function; (3) the frequency that 
the leaving assignment has been a component of a previously selected moves. 
Then, the number of iterations that the leaving assignment ( i, j) will remain 
tabu i~> given by the following expression: 

TT(i,j) =INTEGER (fl·lmn + 11·2 L\f + J-L3J!..iJ_) 
f rPmax 

(9) 

where: 

P·l, 1'·2, 11·3 = weight coefficients, 
L\f = max{O, f(X)- f(X')} , f = f(X) , 
rPij = number of times leaving assignment (i, .i) has been part of an executed 

move component, 
rPrnax = maximum rPij, for all i , j. 

The long term memory element of the tabu list is implemented in form of 
a frequency count. This component of tabu tenure is only a function of the 
history of the current search. 

Algorithm: TABGGP 
To determine the approximate solution X approx do the following. 

STEP 1. Determine the start solution X st and set X cur := X st { where X cur 
is the current solution }. 

STEP 2. Calculate .fcur := f(Xcur) and Vcur := v(Xcur)· 
If Vcur = 0 set .fapprox := .fcur and Xapprox := Xcun otherwise set fcur := 
0. 
Set TL(i,j) := 0 for all i,j. 

STEP 3. (a) For v(Xcur) = 0 do the following. 
Search the N F (X cur) neighbourhood of solution X cur only to get the 
set solutions S: 

S ={X': f(X') = max{f(X) : X EN F(Xcur)}} 

and search the best solution in set S: 

Xbest := argmax{v(X): X E S} 
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(b) For v (X cur) < 0 do the following. 
Search the N F (X cur) neighbourhood of solution X cur only to get the 
set solutions S: 

S ={X': v(X') = max{v(X): X E NF(Xcur)}} 

and search the best solution in set S: 

Xbest := argmax{.f(X): X E S} 

STEP 4. If v(Xbest) = 0 and .f(Xbest) > .fapprox :=hest, set .fapprox :=hest, 
Xapprox := Xbest; 

STEP 5. Search the NT (X cur) neighbourhood of solution X cur only to get the 
set solution ST: 

ST ={X E NT(Xcur) : v(X) = 0} 
and if ST # 0 search the best tabu solution in set ST: 

Xtab = argmax{.f(X): X EST} 
If .f (X tab) > .f approx set .f approx : = .f (X tab), .!best : = .f (X tab), X approx : = 
Xtab, X best:= Xtab; 

STEP 6. For all (i,j) with TL(i,j) > 0 set TL(i,j) := TL(i,j) -1; and for 
all leaving assignment (k,l) of solution Xcur move to Xbest set TL(k:,l) := 
TT(k:, l). 

Set .fcur := .f(Xbest), Xcur := Xbest; 
STEP 7. Repeat steps 3, 4, 5 and 6 K times, where K is the TABGGP algo­

rithm parameter. 
STEP 8. Return .fapprox and Xapprox 

Let us notice that in STEP 3 a strategic oscillation element that allows 
search path to cross the capacity - feasibility boundary is realized. In the 
tabu search methodology it is important to create best move definitions that 
depend on the search state. When the current solution X cur is inside the feasible 
region, v(Xcur) = 0 (STEP 3(a)), the best neighbour is the one with the largest 
objective function value. When the current solution is infeasible, v(Xcur < 0 
(STEP 3(b)), the best neighbour is the one that reduces infeasibility the most. 

STEP 5 employs a simple type of aspiration criterion, consisting of removing 
a tabu classification from a trial move when the move yields a solution better 
then the best obtained so far, i.e. when f(Xtab) > .fapprox, the tabu restriction 
can be overridden: Xapprox := Xtab and Xcur := Xtab· 

5. Approximation algorithm GENGGP 

Holland (1975) proposed a theoretical treatment of evolutionary adaptation. 
Artificial intelligence systems are starting to genetic algorithms as the basis for 
machine learning systems to make good decisions (see, e.g. Goldberg (1989), 
Michalewicz (1992)). The genetic algorithm consists of a population and of the 
genetic operators. The knowledge, accumulated during the solution process, 
is encoded as a list of solutions called population. The solution improvement 
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process is realized by use of genetic operators. Every genetic operator generates 
new solutions called offspring on the basis of old solutions called parents. Old 
solutions are picked out from the population, and then the new solutions replace, 
if they are better, the worse population solutions. As an evaluation function 
EV(X) of the GGP problem solution X the objective function f(X) together 
with function v(X) (see, formula (8)) is used: 

EV(X) = f(X) + wv(X) (10) 

where w, w ;:::: 0, is the weight coefficient of the evaluation function. Let us 
notice, that coefficient w defines the part of infeasibility measure of the solution 
in evaluation function. 

Taking into account genetic algorithm requirements concerning the solut ion 
form of the investigated problem, we introduce the second form of the GGP 
problem solution x = (x1, xz, .. . , Xj, ... , xn), where component Xj (xj E F(.j)) 
defines the cluster number for the node j and Xi = {j : Xj = i}. Further, in 
this section we denote the GGP problem solution by symbol x corresponding to 
X. Genetic algorithm GENGGP exploits the following genet ic operators: 

1. Inversion operator 
Inversion operator generates one offspring on the basis of one parent x : 

a) choose one number j so that 1 :<::: .i < n, 

b) invert the elements of the parent x 1, xz, ... , xj after elements 
Xj+l , Xj+2, ... , Xn, 

If the parent is the solution of the framework x = (x1, :r:z, . .. , :r:j, Xj+l, ... , 
xn) then the offspring has a framework x1 = (xj+l, ... ,xn, Xl , ... , :r:j ) 

2. Mutation operator 1 
Mutation operator 1 generates one offspring on the basis of one parent x : 

a) choose one number i so that 1 :<::: i :<::: n as well as the "best" number j, 
j = argmaxk,..:i{EV(x1 ,xz, .. . , Xi-1 ,Xk.Xi+1, ... , xk-1 ,xi , Xk+1, ... , 
Xn) : k E N}; 

b) swap element Xi of the parent for element x j. . 

If the parent is the solution of the framework 
x = (x 1,xz, . . . ,Xi-1,Xi, ·· ·, x j - 1,xj,···,xn) then the offspring has a 
framework x 1 = (x1, xz, ... , Xi-1, :r:j, .. . , Xj-1, Xi, ... , xn) 

3. Mutation operator 2 
Mutation operator 2 generates one offspring on the basis of one parent x : 

a) choose one number j, 1 :<::: j :<::: n, as well as the "best" number i, such 
that 

EV(x1, xz, . .. , Xj - 1, i, Xj+1, ... , Xn) = 
max{EV(x1, xz, ... , Xj-1, k, Xj+1, . . . , xn) : k E F(j)}; 
~~ . 

b) replace element x j of the parent with number i. 
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If the parent has the framework x = (x1, x2, ... , Xj-1, x J, ... , xn) then the 
offspring has a framework x 1 = (x1, x2, ... , Xj-1, i, ... , xn) 

4. Crossover operator 

a) choose one number j, 1 ::; j < n, and for two parents: 

b) generate two offspring: 

5. Local optimization operator 
Let S(x) = {x': x' = (xbxz, ... Xj-1,xj,xJ+1, ... ,xn): xj E F(.j), x:j -1-
Xj, j EN} denotes the neighbourhood of the solution x = (x 1 ,x 2 , ... ,xj, 

... 'Xn)· 
Local optimization operator generates one offspring x 1 on the basis of one 
parent x: 

a) determine the neighbourhood S(x), 

b) find a solution x' = argmax{EV(x): x E S(x:), x -1- x} 

c) if EV(x') > EV(x) then set x := x' and go to step a), otherwise set 
x;l := :r:. 

Each genetic operator has the operation "choose" which is arbitrary choice. 
Besides, genetic operators mutation 1 and mutation 2 have choose operation 
together with simple search operation (choose the "best" number j or i). The 
crossover operator makes possible to sample new regions (see, Holland (1975)), 
whereas the local optimization operator is used to do the thorough search in one 
particular region of the search space. In the GENGPP algorithm, the chosen 
operations are realized by sampling mechanism and in this way random changes 
during the offspring generation process are made. 

Algorithm: GENGGP 
To determine the approximate solution Xapprox do the following. 

STEP 1 Randomly generate an initial population of M solutions 
,r; = (xl,X2, .. . ,Xj, ... ,xn), where for each j, Xj = RANDOM_UNI­
FORM(F(.j)), as well as compute and save the evaluation function value 
for each solution. 

STEP 2 Choose one genetic operator, where p 1 is the selection probability of 
inversion operator, P2 is the selection probability of mutation operator 1, 
etc. (where Pl, ... ,p5 2: 0, Pl + P2 + P3 + P4 + P5 = 1), and choose, from 
the population, one or two parents. 
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STEP 3 Using chosen genetic operator, generate offspring xj (.j E {1 ,2}). If 
the solution-offspring :;) is better than the worst solution in population , 
then the last one is replaced by xj, i.e. if EV (xJ) > EV (xworst), where 
:;;worst= argmin{EV(:;;): :rE population}, then replace solution Xworst 

in population by xj. 

STEP 4 Repeat from step 2 to step 4 K times . 
STEP 5 Return1;approx, wherexapprox = argmax{f (x) : x E population and 

v ( ;r;) is minimal} . 

Let us notice that the population size M, total iteration number K , weight 
coefficient wand genetic operator selection probabilities p 1 , ... , p 5 are GENGGP 
algorithm parameters. The structure of GENGGP algorithm is similar to modGA 
algorithm , where.,. E {1 , 2} (see, Chapter 4 in Michalewicz (1992)), and RAN­
DOM_UNIFORM procedure is sampling procedure with uniform distribution. 

6. A test example 

On the base of TABGGP and GENGGP algorithms two computer program­
ming systems, coded in C for IBM PC compatible computers under MS DOS 
operating system, were developed. In this section we report computer experi­
ments realized with the aid of this programming systems for a t est example of 
size n = 30 and m = 6. We applied random problem generator, called A (see, 
Kadiuczka, Wala (1993) ), to create random instance using the integer uniform 
distribution function: 

{ 

0, 

RANDOM _U NIFORM[RAN ~0~~ ~Uk~ IFORM[O , 99), 0), 
otherwise 

cjk + c~J' j, k: = 1.2 . . .. , n 

RANDOM _UNIFORM[O, 9] 

{ 
a~j for a~j > 0 2 

f 
, O i = 1, , . . . , ·m; j = 1, 2, ... , n 

oo or aij = 

INTEGER (1+0.7·f.a;,j/m) , i=1 , 2, .. . ,rn. 
J=l 

The table 1 gives the matrix [cjk] and table 2 presents the matrix [aij] · The 
matrix [bi] is equal to [17,18,18,15,13,16]. In tables 3 and 4 we use t he following 
notations: 

fk(xapprox) - objective function value of the best solution Xa pprox in the k-th 
experiment, k: E {1, 2}, 

vk(Xapprox) - measure of infeasibility of solution Xapprox in the k:-th experiment, 
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N h(CTk) - number of search process iteration (computation time of the PC 
486DX2/50 MHz in [seconds]) when the best solution Xapprox, in the k-th 
experiment, was found, 

T AVk - average tabu time tenure of one computational test in the k:-th experi­
ment . 

Table 3 presents results of two experiments, performed by means of TABGGP 
algorithm, consisting of K = 10.000 search process iterations for weight coeffi­
cients J-1·1 = 0.01, J-1·2 = 1, 50, 100 and fi;'J = 1, 10, 100. In the first experiment, 
contrary to the second one, the aspiration criterion was neglected: STEP 5 of 
the algorithm was inactive. These two experiments enable us to observe the 
influence of aspiration criterion and coefficients p;2, p;3 on the search process. 

Let us notice that the tabu structure defined by expression (9) may be viewed 
as a form of multiple lists of dynamic size. The first two components of this 
expression implement the short term memory of tabu statu1) and the coefficients 
p.1 , p.2 determine the number of iterations that leaving assignments will be not 
a llowed to be part of the solutions to prevent the algorithm to oscillate between 
local optimum solutions. The purpose of the short term memory is not to rule 
out cycling completely since this would in general result in heavy bookkeeping 
and loss of flexibility, but at least to make it improbable. This problem, by 
choosing coefficients 1~ 1, p;z, is generally to be resolved by experimentation. 
The third component of expression (9), along with coefficient p;3 , implements 
the long term memory of tabu status in form of the frequency count function. 
This function records the leaving assignments of the best solutions found in 
some phase of the algorithm. In a subsequent phase, tabu search can then 
be restricted to the subset of neighbourhood and the scale of neighbourhood 
reduction is controlled by coefficient p.3 . This enforces what Glover calls a 
"regional intensification" of the search in "promising regions". 

Table 4 presents results of two experiments, performed by means of GENGGP 
algorithm, consisting of K = 20000 search process iterations for population size 
M = 50 and weight coefficient w from the inte'rval [50, 20000]. The selection 
probabilities of the first experiment equals P1 = pz = P3 = P4 = 0.25, p 5 = 0.0 
and of the second experiment are as follows P1 = pz = ,p3 = P4 = 0.23, P5 = 0.08. 
In these experiments one can observe the influence of the local optimization op­
erator and coefficient w on the search process. 

There is no accepted methodology for choosing the penalty coefficient w ex­
cept computer experiments. Let us notice that in case of incorporating a high 
penalty coefficient into the evaluation function we take the risk that if feasible 
solution is found, it drives the others out and the population converges on it 
without finding better solutions, since the likely paths to other feasib le solu­
tions require the production of infeasible solutions as intermediate structures, 
and the penalties for violating the constraint make it unlikely 'that such inter­
mediate structures will reproduce. On the other hand, if the penalty coefficient 
is rather small the algorithm, especially for the heavily constrained problems , 
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Parameters k=1 k=2 

113=1 113=10 113=100 113=1 113=10 113=100 

Nlk (CTd 153, (140) 794 , (729) 17, (15) 286, (263) 6060, 23, (21) 
(5657) 

fk (Xappruxl /1?=1 11234 11264 8988 11264 11264 10488 

TAVk 2 5.26 90.64 1.98 5.49 87.86 

Ni dCTd 2194, 5021' 17, (15) 416, (386) 6321' 23, (21) 
_(2029) (4678) (5901) 

fk (X approxl /1?=50 11264 11264 8988 11264 11264 10488 

TAVk 3.73 7.55 93.45 3.60 7.38 90.32 

Nlk(CTd 2130, 1308, 17, (15) 3290, 7510, 23, (21) 
(1969) (1204) (3053) (7005) 

Jk (Xapprux) 11?=100 11234 11010 8988 11264 11264 10488 

TAVk 5.64 9.81 94.68 5.63 9.42 90.74 

Table 3. 

f1 (xappm..J VI (xappn~) NI 1(C'Fj) fz (X appruxl Vz ( Xappruxl NI 2 (CT2 ) 
w 
50 6532 -19 42, (10) 7040 -20 62, (2) 

100 7420 -7 206, (6) 5366 -19 72, (2) 

200 7904 -3 987, (29) 9362 0 172, (5) 

300 11264 0 7508, (100) 11264 0 1434, (35) 
400 11264 0 9278, (119) 11264 0 670, (19) 

500 11186 0 5298, (76) 11264 0 3314, (55) 
1000 10828 0 10606, (131) 11066 0 11652, (142) 
5000 11264 0 15397, (182) 11264 0 11988, (146) 

10000 11188 0 8601' (111) 11264 0 1763, (39) 
20000 11178 0 18554, (216) 11264 0 5936, (83) 

Table 4. 
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may generate solutions that violate the constraints. 
For the best objective function value f(X) = 11264, the respective solution 

X = (X 1 , X z, ... , X 6) has the following clusters X 1 = {3, 11, 12, 14, 17, 21, 23}, 
X 2 = {28}, X 3 = {13,18,20,22}, X4 = {7,25,27,30}, Xs = {2,4,6,16 ,24,26, 
29}, x 6 = {1, 5, 8, 9, 10, 15, 19}. 

7. Conclusions 

The paper describes two approximate algorithms, TABGGP and GENGGP, for 
the generalized graph partitioning problem. TABGGP algorithm is the neigh­
bourhood search optimization procedure based on the tabu search framework 
with short a~:> well as long term memory components, and a strategic oscillation 
element that allows search paths to cross the capacity - feasibility boundary. 
GENGGP algorithm refers to genetic type algorithms with evaluation function 
consisted of objective function and weighted infeasibility measure. GENGGP 
exploits five genetic operators, three of them perform simple search operation 
besides random choose operations. 

We have shown that these algorithms can be used, on IBM PC compati­
ble computers, to solve GGP problem successfully but GENGGP algorithm is 
cornputationally more efficient. Let us notice that one iteration of TABGGP 
algorithm consists of time consuming complete search in current so lut ion neigh­
bourhood thus, in our investigation, one computational test performed by means 
of TABGGP algorithm lasted over twenty times than one performed with the 
aid of GENGGP. 
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