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In econometric models, the variables of economic theory are typ­
ically replaced by a much smaller set of aggregated variables, while 
the structure of the model remains unchanged. The manner in which 
the variables are partitioned into groups to be aggregated is usually 
based on intuition or convenience. In this paper we propose to carry 
this out in an optimal manner, the criterion being minimization of 
mean-square forecast error. This leads to an integer programming 
problem of high computational complexity. The optimization heuris­
tic Threshold Accepting is implemented for the optimal partition 
and aggregation of a long monthly series of Swedish internal and ex­
ternal price indices. To correct for heteroskedasticity resulting from 
inflation, the sample variance matrix is assumed proportional to a 
diagonal matrix whose diagonal elements are the sums of squares of 
the external prices. This is compared with results obtained by using 
a scalar variance matrix and replacing Euclidean by Mahalanobis 
distance. The algorithm and the resulting groupings are presented. 

Key words: Aggregation; integer programming; optimization 
heuristics; industrial classification. 

1. Introduction 

It is common practice in econometrics to base model specification on economic 
theory, yet to replace the large number of variables of the pure theory by a 
smaller set of aggregates of them. Such practice has often been unavoidable 

1 Research was supported by a Humboldt Research Award for Senior U.S. Scientists 
and by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 178, "International­
isierung der Wirtschaft" at the University of Konstanz. Thanks are due to Jane Ihrig for her 
preparation of the data set and to an anonymous referee for his comments. 
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owing either to the lack of sufficiently detailed data or to the computational 
difficulties of dealing with l arge~ scale systems (or both). With the advance of 
the information revolution there is less and less reason for either of these con­
siderations to apply. Yet, the practice remains, in large part probably because 
small models are easier to understand than large ones. But if one must aggre­
gate, there are many alternative ways of doing so; however, until very recently 
the problem of aggregating or classifying variables in an optimal way has been 
totally intractable. In this paper we attempt to show a way to accomplish 
this. The method is applied to a particular problem, namely the study of the 
international transmission of price changes. 

The basic idea of our approach is easily explained. One wishes to find a 
partition of industries into a certain number of groups so as to obtain the best 
possible prediction of the resulting indices of prices of the corresponding com­
modity groups within a country, given data on the corresponding indices of 
external (import _and export) prices. The criterion for the optimal prediction 
is mean-square joTecast er·roT, denoted by c/J, which is to be minimized. We as­
sume a linear-homogeneous relationship between internal and external prices; 
for the theoretical justification of th.is specification we refer to Chipman and 
Winker (1994), where this approach was applied to German data. In that study 
the definition used of mean-square forecast error involved the concept of Maha­
lanobis distance; in the present study, which uses a comparable set of Swedish 
data, we introduce a modified definition of mean-square forecast error which 
uses Euclidean distance combined with a correction for heteroskedasticity as an 
alternative way of allowing for the effects of general inflation. As in the previous 
study, we also limit ourselves to the problem of optimally partitioning a set of 
medium-level categories (three- and some four-digit categories of the Swedish 
industrial classification system) into a specific number of groups, namely six 
(as corresponding to the number of groups in the official classification of the 
respective German price indices) . 

As observed above , the problem of finding a partition of a given number of 
industries into a smaller number of groups that mini.mizes mean-square forecast 
error falls under the heading of integer programming problems. 

Simple enumeration is not feasible , since the number P(m ,m*) of ways of 
partitioning m objects into m* groups, 

(Chipman 1975, p. 151), is typically enormous . For the application to the 
Swedish price data analyzed ir\ this paper this amounts to P(25, 6) = 3.7026 x 
1016. ll 

With i'egard to its computational complexity the problem is similar to p.rob­
lems such as the classic travellin~ salesman problem. In fact, it falls into the 
class of so-called NP-complete problems, see Winker (1992) for a proof, which 



Optimal industrial classification by thres hold accepting 479 

means that there is probably no exact optimization algorithm that works in a 
reasonable amom;t of computing time. 

We by-pass this problem by the use of a "heuristic" combinatorial opti­
mization algorithm, i.e., one that provides solutions sufficiently close to but 
not necessarily achieving the optimal value. The basic advantage of heuristic 
algorithms is their speed which allows for the calculation of approximative so­
lutions even for large complex problems, when exact algorithms cannot give 
any solution at all in reasonable computing time. We use a ,refined local-search 
algorithm similar to the Simulated Annealing approach, (see Kirkpatrick et al., 
1983 and Aarts and Korst, 1989), which is known as the Threshold Accepting 
algorithm. This algorithm was introduced by Dueck and Scheuer (1991) for the 
travelling salesman problem. Other successful implementations include integer 
knapsack problems (Dueck and Wirsching, 1991), or the identification of multi­
variate lag structures (Winker, 1995) . See also Nissen and Paul (1995) for other 
applications. 

In this paper we study a problem of optimal grouping of 25 industries or 
commodity categories into six sectors for the purpose of analyzing the inter­
national transmission of price changes. The internal Swedish producer-price 
indices of 25 commodity categories are put into relation with the corresponding . 
indices of import and export prices. Following the procedures of other statisti­
cal agencies we generated a "pseudo-official" grouping into six sectors by stage 
of production. Using a TA implementation we have calculated other groupings 
that minimize the objective function if;. 

The rest of the paper is organized as follows: The next section provides a 
short summary of the theory of approximate and optimal aggregation leading to 
the objective function for optimization. Special attentipn is paid to the problem 
of heteroskedasticity arising for price data due to inflationary processes. In this 
section the application to price indices for Sweden is also introduced . Section 3. 
is devoted to the heuristic optimization algorithm T hreshold Accepting and 
Section 4. to the results achieved with the method of optimal aggregation for 
the problem of price indices. The paper concludes with a summary. 

2 . Opt imal A ggregation 

We may formulate the problem of optimal aggregation in terms of the multi­
variate multiple-regression model 

Y=Xfl+E (1) 

where Y is an n x m matrix of n observations on m endogenous variables, X is 
an n x k matrix of n observations on k exogenous variables , B is a k x m matrix 
of unknown regression coefficients to be estimated, and E is a random n x m 
matrix of error terms with zero mean and covariance 

£{(col E)(col E)'}= I;@ V, (2) 
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where "col E" denotes the column vector of successive columns of E, ~ is the 
m x m simultaneous covariance matrix and V the n x n sample covariance 
matrix. E. denotes the expectation operator. We shall assume that V is positive 
definite . 

Letting G and H respectively denote k: x k:* and m. x m* (proper) gro1Lping 

matrices, i.e., matrices with exactly one nonzero (in fact, positive) element in 
each row and at least one nonzero element in each column, it is customary to 
deal with an aggregative model 

Y* =X* B* + E* 

mimicking the true one (cf. Theil (1954)), where 

X * = X G and Y * = Y H 

(3) 

are n x k* and n x m* matrices of observations on k:* and m* aggregative 
exogenous and endogenous variables respectively. The situation may be depicted 
in the commutative diagram of Figure 1 as first done by Malinvaud (1956) (The 
meaning of the reverse mapping G# appearing in the figure will be explained 
later, see equation (5) below). 

B y 

G Q# H 

B* 

X* Y* 
Figure 1. Commutative diagram for the aggregation problem 

The case of perfect aggregation in which the diagram in Figure 1 actually 
commutes (i.e., GB* = B H) cannot be expected to hold exactly for real data. 
Therefore, the approach of best approximate aggregation introduces a suitable 
measure of aggregation error. This is based on the discrepancy between the 
random variable Y* = Y H to be forecast and its forecast by X* B* on the 
assumption that the model (3) is true, namely 

Y*- X* B* =(X B + E)H- XGB* = X(BH- GB*)+ EH. 

The mcan-squa·rc foTccast CT'rOT is then defined in terms of this discrepancy as 
the matrix 

F E.{ (Y* - X* B*)'V- 1(Y*- X* B*)jX} 
(BH- GB*)' X'V- 1 X(BH- GB*)+ nH'~H 

(4) 
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(cf. Chipman 1975, pp. 125-6). B* is chosen in such a way as to minimize (4) 
for predefined modes of aggregation G and H . As shown in Chipman (1976, 
p. 668) this minimum is achieved by 

B* = G#BH (5) 

where 

(6) 

and A - denotes any matrix such that AA-A = A . This reverse mapping (6) 
and the solution (5) are depicted in Figure 1; the diagram may be interpreted 
as commuting approximatively in the sense of minimizing the distance between 
GB* and EH as defined by (4). 

If G and H are not given, but are to be chosen optimally, the above mini­
mization problem is ill-defined; a scalar measure of error is then required . Sub­
stituting the optimal solution (5) in ( 4) we obtain 

(7) 

Since the previous minimization problem is invariant with respect to replace­
ment ofF by W*112Fwdf2, where W* is some m* x m* symmetric positive­
definite matrix, we may perform this replacement and then take the trace of the 
resulting matrix, to obtain our criterion function 

For an .alternative objective function the Reader is referred to Fisher (1962, 
1969) and the discussion in Chipman (1976, pp. 665, 707-710). 

In the computations to be reported below, we adopt two alternative choices 
for W* and V: 

(a) E1tclidean metTic with coTTection faT heteroskedasticity. 

W* =I m* and V= diag{X X'} (9) 

This choice of V corrects for possible heteroskedasticity due to inflationary pro­
cesses. 

(b) M ahalanobis metTic with no co·rrection joT heteTOskedasticity. 

W* = (H'L,H)- 1 and V= In. (10) 

By weighting the variables inversely to their variability, use of the Mahalanobis 
distance neutralizes the effect that high variability of one variable might oth­
erwise have on the objective function . In fact, it might partially correct for 
problems of heteroskedasticity. This was the procedure followed in Chipman 
and Winker (1994). 

We calculate optimized groupings for both objective functions which are 
presented in Section 4. 
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Since B and I; are unknown, we replace them by estimates. In the case (9) 
of Euclidean metric and correction for heteroskedasticity, we choose for B the 
generalized least-squares estimator 

(11) 

and for I; the pseudo-maximum-likelihood estimator 

(12) 

where 

(13) 

Our estimate of <P then becomes 

J = tr H'B'(I- GG#)'x'v- 1X(I- GG#)iJH + tr{H'SH}. (14) 

In. the case (10) of Mahalanobis metric and no correction for heteroskedasticity, 
our estimates for B and I; are just as in (11) and (12) but with V set equal to 
In, and our estimate of <P then becomes 

~ = n tr H' il'(I- GG#)'X'X(I- GG#)iJH(H'SH)- 1 + nm*. (15) 

Dividing through by n we have 

J=a+rn* 
where 

(16) 

(17) 

Since m* is constant in our applications (namely m* = 6) , we shall use a­
which we refer to as the "aggregation bias" - as our criterion function in the 
Mahalanobis case. 

In our particular application the problem is simplified because of its special 
structure. Then x k matrix X has the special form X = [X 1, X 2] where X 1 and 
X 2 are n x m matrices of n consecutive monthly observations on import and 
export price indices of m commodity categories, respectively, and Y denotes the 
n x m matrix of internal producer prices for the same commodity categories. 
The regression model (1) then becomes 

Y = XB +E = [X1 , X2] [~~]+E. (18) 

Defining H to be an m x m* grouping matrix, we define the k x k* grouping 
matrix G by 
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where k = 2m and k* = 2m *. The object is then to choose the optimal H out 
of the class of m x m* proper grouping matrices. 

As one aim of this paper is to assess the robustness of the outcomes of an 
earlier analysis for German price data in Chipman and Winker (1994), we use a 
similar set of price data for Sweden. Unpublished import , export, and domestic 
producer price-index data have been furnished by the Statistiska centralbyn'tn, 
Stockholm. The data set consists of monthly observations on import and export 
price indices (which are formed as weighted averages of prices with fixed weights) 
and internal producer-price indices (formed the same way), covering the period 
1971-1992. Since the natural way to group them is by forming weighted averages 
with the given weights, it has been most convenient to work with the price 
indices multiplied by their weights. Then aggregation means just summation 
and the nonzero elements of the grouping matrices are all ones. We considered 
the series of m = 25 commodity categories to be aggregated into m* = 6 groups . 
There exists no official method of grouping these 25 industries into a smaller 
number of groups for Sweden. Hence, in order to compare our results with those 
of our German study in which 37 commodity categories were partitioned into six 
groups according to the official classification system, we generated a "pseudo­
official" grouping similar to the German one which essentially is a grouping 
by stage of production. We present this horizontal grouping together with the 
optimized groupings in Section 4 .. 

3. Optimization 

The use of simple enumeration algorithms is completely infeasible for the prob­
lem of optimal aggregation owing to the enormous number of proper grouping 
matrices. Furthermore, we are not aware of any standard software for integer 
programming problems of this magnitude with a non-linear objective function. 
As the problem is NP-complete, there exists no feasible deterministic algorithm 
giving the exact optimal solution with certainty using only a reasonable amount 
of computer resources. 

Consequently, as in Chipman and Winker (1994) we use the refined local 
search heuristic Threshold Accepting to achieve good approximations to the 
global optimum, which we call "optimized groupings". 

The pivotal step of TA like any other local search algorithm consists in 
comparing a given grouping H in the set of feasible groupings 7i with other 
groupings in a neigEborhood H E U(H) C 7-f.. The comparison is based on the 
objective function rf;. 

A trivial local search algorithm accepts a new element in the neighbourhood 
if and only if it leads to a reduction of the objective function. Consequently, it 
shows a strict "down-hill" behavior which results in convergence to some local 
minirrium, which in general is a rather poor local minimum. The mean perfor­
mance of this algorithm is not satisfactory. The central idea of the Threshold 
Accepting approach is to accept a temporary worsening in order to escape such 
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local minima. Hence, these algorithms show a "hill-climbing" behavior (see Fig­
ure 3). For problems with known optimal solution this approach proved to give 
very good .approximations to the global optimum. 

A problem arising in all implementations of local search algorithms on integer 
sets is the notion of "neighborhoods" as it is not given in a standard manner as 
e.g. for Euclidean spaces (c-spheres in ne). They should be defined in a way 
to secure that elements of a neighborhood U(H) are "close" to H. As the set of 
all grouping matrices defines a {0, 1} vector space, the set of proper grouping 
matrices being a subset, the Hamming distance, Hamming (1950), seems to be 
a natural and appropriate choice. For two grouping matrices H = (hij) and 

ii = fh,ij) the Hamming distance d H is defined by 

m m* 

dH(H , H) = LL I hij- hij I 0 (19) 
i=l j=l 

Following the analysis and results of some simulations in Chipman and 
Winker (1994) we use a Hamming distance of 4 to define neighborhoods for 
our application on Swedish price data. It should be stressed that the perfor­
mance of local search algorithms depends crucially on the choice of the local 
structure. 

As the Threshold Accepting algorithm accepts a temporary worsening of the 
current solution during the iteration process, it has to impose som~ criterion 
on when to accept a randomly chosen element in the neighbourhood of the 
current solution. This task is fulfilled by the threshold values. During the 
optimization procedure, the threshold values decrease to zero. They describe 
up to what amount a worsening of the objective function will be accepted when 
moving from the current solution to a new element in the neighborhood. For 
example, a threshold factor of 2 per cent means that a new element in the 
neighborhood of a current solution will be accepted as the new current solution, 
if the corresponding value of the objective function is not higher than 1.02 times 
the value of the old current solution. 

In the paper of Dueck and Scheuer (1990) intr:oducing the Threshold Ac­
cepting algorithm for a large scale travelling salesman problem the threshold 
sequence is exogenously given. The paper of Nissen and Paul (1995) represents 
a first step in letting the choice of these parameters be based on the data. The 
approach followed here may be regarded as a second step, since the threshold 
sequence used to obtain the results presented in the next section was generated 
endogenously. It was created from an empirical distribution of local relative de­
viations. To that end a large number (this number depending on the total num­
ber of iterations) of proper grouping matrices H was chosen randomly. Then, 
an element of the neighborhood ofH was chosen and the relative deviation of 
the objective function evaluated for the two grouping matrices calculated. The 
resulting absolute values of relative deviations were sorted in decreasing order 
and the lower 50 per cent were chosen as the threshold sequel'lce. 
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However, both our experience and a small simulation study suggest that the 
choice of the threshold parameters is not too crucial for the mean performance 
of the algorithm as long as it falls in a reasonable range. For example , simple 
linear threshold sequences might give results of similar quality than the ones 
presented in the next section. 

A last important parameter for the overall performance of TA is the total 
number of iterations, i.e. local exchange trials as described above. For each of 
I different threshold values J exchange trials are performed. A flow chart of 
the implementation of the Threshold Accepting algorithm for the problem of 
optimal aggregation can be found in Chip man and W inker (1994). 

This implementation of TA guarantees that only a finite number of itera­
tions is performed. For a reasonable choice of tuning parameters the algorithm 
stops at a local minimum with respect to the chosen neighborhood definition. 
Asymptotically, this local minimum will be the global one as proved by Althi:ifer 
and Koschnick (1991) . Unfortunately, their proof is not constructive, but it al­
lows for the conclusion that for every E > 0 and every problem size, i.e. the 
dimension of the grouping matrices H, there exists a threshold sequence such 
that the probability of ending up in a global minimum is greater or equal to 
1- E. Of course, the necessary number of iterations will increase as E goes to 
zero. 

4. Optimized Groupings 

The implementation of Threshold Accepting described in the previous section 
was used to obtain optimized groupings for the Swedish industrial classification 
system. · The TA algorithm has been coded in FORTRAN77 using some ESSL­
subroutines for matrix operations. The program was run on different IBM 
RS6000 workstations. 

We recall that we considered a linear-homogeneous regression model for price 
indices multiplied by their weights. The grouping problem consists in the ag­
gregation of time series for 25 commodity categories into only six groups per 
series (internal producer price, import price, export price). 

The monthly data cover the period 1971-1992. The data for the years 1971-
1979 are calculated on a 1968 base; subsequent data are calculated using weights 
from December of the previous year. These have all been linked to the 1968 
series and expressed as 1968=100, multiplied by the 1968 weights (in millions 
of Swedish crowns). 

Before turning to the optimized groupings, the "pseudo-official" grouping 
we used as a benchmark should be introduced. It is given by the following list, 
where the code numbers refer to the Swedish industrial classification Svensk 
standard fOr niiT'ingsgrensindelning (SNI), which is a refinement of the United 
Nations Standard Industrial Classification of All Economic Activities (ISIC): 

Agricultural, hunting, forestry, and fishery products 
100 Agricultural, hunting, forestry, and fishery products 
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Mining and quarrying products 

200 Mining and quarrying products 

Basic materials 

369' Other non-metallic mineral products 

371 Iron and steel 

372 Non-ferrous metals 

351 Industrial chemicals 

352 Other chemical products 

353+354 Petroleum produ~ts, lubricating oils, asphalt & coal products 

331 Sawn timber, plywood and other worked wood 

355 Rubber products 

340 Pulp, paper, paper products and printed matter 

Capital goods 
3841 Ships and boats 

384\3841 Transport equipment other than ships and boats 

383 Electrical products 

385 Instruments, photographic and optical goods 

381 Fabricated metal products 

3825 Office, computing and accounting machinery 

382\3825 Machinery excluding office, computing and accounting machinery 

Consumer goods 

361+362 Fine ceramics, glass and glassware 

330 Wood products 

356 Plastic products 

323+324 Leather, leatherware and footwear 
321 Textiles 

322 Apparel 

Food, beverages and tobacco 
310 Food, beverages and tobacco 

For comparability with our previous study (cf. Chipman and Winker (1994)) 
we have grouped the 25 commodity categories in the above list according to 
six "stages of production" following the procedure of the German classification 
ststem. We shall refer to this as the "horizontal" grouping. As in the German 
case this grouping t urns out to be far from optimal. For the Euclidean metric 
its yields the value ~ = 701.95 for the mean-square forecast error and for t he 
Mahalanobis metric the value a = ~-m* = 18.22 for the aggregation bias. Both 
values are about three times as large as the results for optimized groupings . 

Since in this paper we ·are especially concerned with the problem of het­
eroskedastic error terms let us start with the results for the Euclidean metric 
using the estimator (9) of V to correct for heteroskedasticity. 

Figures 2 and 3 may give an idea about some properties of the optimization 
procedure for a run of the algorithm with only 20,000 iterat ions leading to the 
best grouping for the Euclidean distance presented below. In Figure 2 we try 
to illustrate how the local structure near the current solution changes as the 
algorithm approaches its final local minimum. 
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0. 0 '-------o;;--.......lUJ. 

Figure 2. Local structure of aggregation problem 

All plots show the empirical frequencies of the relative deviations of the ob­
jective function between the current solution of the algorithm and the tested 
elements in the neighborhood. The uppermost bar chart describes the dis­
tribution for the first 5,000 exchange trials, i.e. at the very beginning of tht; 
optimization. The distribution still has a significant weight for negative devia­
tions, i.e. for possible improvements, whereas the lower charts for the exchange 
trials 5,001 to 10,000 and 10,001 to 15,000, respectively, demonstrate that this 
distribution shifts to the right as the algorithm proceeds. This means that it 
becomes more likely that the current solution is a local minimum with regard 
to the given neighborhood structure. For the last few hundred iterations the 
final local minimum will be achieved and the distribution of relative deviations 
has only positive weights for values greater or equal to zero. 

Figure 3 gives some other interesting insights in the resulting sequence of 
values for the obje<;:tive function ~ during the optimization process. In the 
beginning of the optimization the algorithm accepts a new current solution 
nearly in every iteration resulting in the very volatile behavior in the upper 
part of the figure. As the optimization proceeds further the current solutions 
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become more stable. In particular in the lower part of the plot showing the 
values of J for the current solutions for the iteration steps 10,001 to 15,000 the 
typical "hill-climbing" behavior of TA can be detected, i.e . in order to achieve 
a better current solution it proves to be necessary to admit a worsening of the 
solution first to escape local minima. 

Let us indicate that one run with 20 ,000 iterations used about 1,600 CPU­
seconds on the fastest of the workstations we used which was an IBM RS 
6000/360. It should be noted that one attempt to achieve an optimized group­
ing consists in general of several (10) trials with different initializations of the 
random number generator. 

Figure 3. The Way to an Optimal Solution 

The optimized grouping we can present for the Euclidean metric seems to 
be a very strong attractor in the underlying set of proper grouping matrices , 
as it was attained again. and again for different random start groupings and 
different numbers of iterations ranging from 20,000 to 100,000. The value of the 
objective function rjJ for this grouping is only 279.02 as compared to the 701.95 
of the pseudo-official grouping. Before discussing it in some detail we present 
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the optimized grouping: 

Group 1 

100 

200 

353-354 

3841 

384\3841 

340 

Agricultural, hunting, forestry and fishery products 

Mining and quarrying products 

Petroleum products, lubricating oils, asphalt & coal products 

Ships and boats 

Transport equipment other than ships and boats 

Pulp, paper, paper products and printed matter 

Group 2 

371 Iron and steel 

385 Instruments, photographic and optical goods 

381 Fabricated metal products 

382\3825 Machinery excluding office, computing and accounting machinery 

356 Plastic pn'lducts 

323+324 Leather, leatherware and footwear 

310 Food, beverages and tobacco 

Group 3 

352 Other chemical products 

3825 Office, computing and accounting machinery 

330 Wood products 

Group 4 

372 Non-ferrous metals 

351 Industrial chemicals 

355 Rubber products 

Group 5 
369 Other non-metallic mineral products 

331 Sawn timber, plywood and other worked wood 

383 Electrical products 

Group 6 

361+362 Fine ceramics, glass and glassware 

321 Textiles 

322 Apparel 

489 

Group 1 accounted for 31% of Sweden's imports and 40% of its exports in 
1968. Crude petroleum accounted for 61% of category 200 imports in 1968 
(and much more after the two oil shocks of 1973 and 1979); it is combined in 
Group 1 with petroleum products which accounted for 27% of Group-1 imports 
(compared with 10% for crude petroleum). The same clustering appeared for 
the German data in Chipman and Winker (1994). Category 100, which has a 
substantial forestry component (28% of its exports), is combined in this group 
with paper products which comprised 48% of Group-1 exports (compared with 
2% from forestry). The two transport categories are also combined, which ac­
counted for 30% of Group 1's imports and 35% of its exports. 

Group 2 accounted for 30% of imports and 32% of exports in 1968. Cate­
gories 371, 381, and 382\3825, consisting of iron and steel and their products, 
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accounted for 60% of Group 2's imports and 87% of its exports. Again, we 
found the same grouping of iron and steel together with instruments and plastic 
products for the German data. While some of the combinations in Groups 3 to 
5 are hard to explain, textiles and apparel are together in Group 6. 

The following list presents the best grouping we could achieve for the Maha­
lanobis distance. However, it seems to be a weaker attractor than the grouping 
for the Euclidian metric as it has been attained only once for one out of ten trials. 
As one of the basic novelties of this paper is the use of the heteroskedasticity­
corrected Euclidian metric, we concentrated our computing effort on this objec­
tive function. Consequently, the total number of attempts for the Mahalanobis 
metric was smaller. Nevertheless, the value of the Mahalanobis objective func­
tion a for this grouping amounts to 6.41 as compared to the 18.22 of the pseudo­
official grouping. 

Group 1 

100 Agricultural, hunting, forestry and fishery products 

200 Mining and quarrying products 

Group 2 

369 Other non-metallic mineral products 

384\3841 Transport equipment other than ships and boats 

383 Electrical products 

361+362 Fine ceramics, glass and glassware 

340 Pulp, paper, pape,r products and printed matter 

Group 3 

352 Other chemical products 

355 Rubber products 

385 Instruments, photographic and optical goods 

382\3825 Machinery excluding office, computing and accounting machinery 

310 Food, beverages and tobacco 

Group 4 

351 

353+354 

331 

356 

323+324 

Industrial chemicals 

Petroleum, lubricating oils, asphalt & coal products 

Sawn timber, plywood and other worked wood 

Plastic products 

Leather, leatherware and footwear 

Group 5 

3825 Office, computing and accounting machinery 

321 Textiles 

Group 6 

371 Iron and steel 

372 Non ferrous metals 

3841 Ships and boats 

381 Fabricated metal products 

330 . Wood products 

322 Apparel 
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In contrast to our previous German results , the two primary sectors (100 and 
200) are combined together in Group 1. While the combination of petroleum 
products, industrial chemicals and plastic products tn Group 4 and of metals 
and their products in Group 6 is convincing, on the whole the combinations are 
harder to explain than those obtained with the Euclidean metric with correction 
for heteroskedasticity. But for the reasons explained above, we feel less confident 
about the optimality of this grouping compared with the previous one. 

As the data might be revised or the data sample might change, e.g. owing 
to new incoming observations, we are interested not only in the best groupings 
we could achieve with the methodology presented above, but as well in the 
robustness of these results. Will the groupings or even the minimal values of 
the objective function change dramatically for a small change in the data base? 

A first result on robustness is quite easy to obtain and seems to be a very 
strong one, but unfortunately is less useful in practice. It draws on the discrete 
character of the set of proper grouping matrices and the continuity of our ob­
jective function. It can be concluded (Chipman and Winker, 1994, pp. 28ft). 
that a small enough change in the data will result in no change of the optimal 
grouping. However, we neither know how small is "small enough" nor do we 
know the global optimum with certainty. 

A more practical approach uses a somewhat different understanding of the 
meaning of robustness. Here, we are interested in knowing whether a slight 
change in the data or in the parameters of the algorithm will lead to completely 
different outcomes with regard to the values of the objective function ~ and to 
the main features of the resulting groupings. 

To begin with the optimization parameters, we tried a huge bundle of dif­
ferent threshold sequences, used different numbers of iterations from 10,000 to 
200,000 and many different initial values for the random number generator. The 
general impression is a negative correlation between the number of iterations 
and the achieved values for ~, a rather weak influence of difFerent forms for the 
threshold s~quence - as long as the thresholds are not too small - and optimal 
values for cjJ nearly always in the same order of magnitude. The run with 10 
trials leading to the or:timal grouping for the Euclidean metric presented above 
gave a mean value of cjJ of 306.24 with standard deviation of 22 .71. 

Furthermore, all these "good" grouping matrices shared some patterns and 
the same tendency to "vertical grouping" as the best grouping presented above , 
except for Group 1 in the Mahalanobis case. 

Finally, we can compare the groupings obtained by optimization with regard 
to different objective functions: Euclidean and Mahalanobis metric , respectively. 
The idea is also to calculate the value of the other objective function . Table 1 
shows the resulting values for cjJ and 0:. 

Of course, the values in fields (1,1) and (2,2), respectively, must be the 
smallest in each column. Furthermore, a grouping optimized with regard to the 
Mahalanobis distance also tends to give low values for the Euclidean dis tance , 
whereas the difference in a is less clearcut between the grouping optimized for 
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Table 1. Comparison of Diflerent Groupings 

cjJ a 
grouping cjJ 279.02 14.36 

optimized for a 342.08 6.41 
pseudo-official 

grouping 701.95 18.22 

the Euclidean distance and the pseudo-official grouping. The same tendency can 
be found for other good groupings with regard to the two objective functions . 

5. Conclusion 

In this paper we have studied the problem of optimal aggregation of commodity 
categories for a Swedish data set. The aggregation criterion is based on the 
quality of the model in forecasting internal from external price indices. 

The results obtained in this and an earlier paper using German data allow 
for the conclusion that the mode of classification matters. It can have a strong 
effect on the outcomes of econometric modelling. Furthermore, standard modes 
of industrial classification used by official agencies may be far from optimal 
for estimation and forecasting purposes. The use of a Threshold Accepting 
implementation has led to a considerable reduction in the value of the objective 
function as compared to some official groupings. 

However, the economic interpretation of the "improved groupings" achieved 
by the use of optimization heuristics is not yet completely obvious. Although 
the results for the German and the Swedish data both exhibit many "vertical 
clusters"-groupings which take account of input-output relationships-some 
"horizontal clusters" persist and some · clusters cannot be easily explained by 
intuitive reasoning. 

The present study might be regarded as a second step in the exploration of 
the aggregation of price indices. The model is still extremely simple and does not 
yet allow for dynamic effects which might be captured by using distributed lags 
of the exogenous variables. However, the assumption of homoskedastic residuals 
which was implicit in Chipman and Winker (1994) has been relaxed by positing 
heteroskedastic residuals, with variances proportionate to the sums of squares of 
the external prices , and using Euclidean instead of Mahalanobis distance. The 
comparison of results achieved with the two objective functions show important 
diflerences of the resulting groupings. We plan to apply the methods presented 
in this paper to other data sets, in particular to Dutch price-index data, in 
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order to obtain further insights in the economic meaning and robustness of the 
resulting clusters. 
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