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This paper is meant to develop an idea showing how the dynamic 
programming algorithm, originally described by Jensen (1969) can 
be a valuable algorithm for optimization approaches in clustering. 
The original algorithm is reliable, but it is too slow, because it has 
to deal with a great number of redundant partial solutions. The 
way to speed up this algoritm is then to relax its complexity and to 
reduce the needed amount of memory. 

To achieve these goals, some elements taken from Rousseeuw's 
partitioning around medioids method (1987) and from Rao's integer 
programming algorithm (1971) were combined. 

1. Introduction 

This paper considers the problem of optimal partitioning a set N, of n entities 
or objects , into m disjoint and nonempty subsets (clusters). Let Xi,j denote the 
value of characteristic c of entity j for c = 1, 2, ... , p characteristics, observations 
or properties under study and Xij E Rz for all entities of the set N. 

Let us define what is meant by "optimal solution". The approach used 
here is based on finding the global optimum (minimum or maximum) to the 
problem. A numerical criterion is to be optimized in order to determine the 
degree of homogeneity among clusters. Most clustering methods use a function 
of distance as their criterion. This function measures the dissimilaTity between 
each pair of objects i, .i = 1, 2, ... , n. Let di,j denote the distance between 
entities i and j of the set N, so that d can be called the dissimilaTity matrix. 

One familiar dissimilarity measure in cluster analysis is the Euclidean dis­
tance : 

(1) 
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Recent studies often use the Manhattan distance or £1 Norm as their metric: 

n 

d(Xi, Xj) = L lx~ - xjl (2) 
k=l 

Given a subset A of N, a real valued function T(A) of the elements belonging 
to A can be defined. In many cases, this function T(A) is a function of the 
distances. Such a criterion could be: 

·r(A) = { t L:i<j drj for>-;::: 2 i,j EA 
otherwise 

(3) 

Then the optimal pa'f'titioning of the set N into m disjoint and non-empty 
clusters means choosing the best partition of N according to a certain objective 
criterion C. This criterion C is a real valued function defined over RM , where 
M denotes the set of the m clusters. The problem can be defined by: 

Optimize Ch) with .i = 1, ... , m (4) 

There are some well known objective criterions in cluster analysis such as: 
Minimizing the total of the average within-group sum of squares of the dis-

tances 
or 
Minimising the total within-gToup sum of squaTes of the distances 
or 
Minimising the maximum of the within-gToup distances 
As Hartigan (1975) noticed: "All clustering algorithms are procedures for 

searching through the set of all possible clusterings to find one that fits the 
data well. Frequently, there is a numerical measure of fit which the algorithm 
attempts to optimize, but many useful algorithms do not explicitly optimize a 
criterion ... " . 

There is a lot of methods available for clustering. Most of them may not 
produce an optimal solution, as they trade off optimality for computational ease. 
On the other hand, the optimal clustering problems are computationally very 
complex, so that these methods have not been often used, because they need to 
much system ressources (processor time, main memory, etc .. . ) to run. 

1.1. Jensen's dynamic programming algorithm 

A general dynamic programming problem can be explained by assuming that 
one is observing a system and that the system moves from one state to another 
depending on the action taken at the beginning of each stage of decision-making. 
On account of the decision made one can have a TewaTd, which may be profit · 
made, losses incurred or cost of the action. Any specification of action depending 
on the state and the stage is called a policy and if the policy optimizes the total 
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reward, it is called an optimal policy. The approach for such problems is due to 
Bellman (1965). 

Applied to the clustering problem the above definitions can be denoted as 
follows: 

A state represents a subset A of N, that is one of the many 
clustering alternatives; 

A stage represents the "construction" of a given cluster, so that 
stage 1 denotes all clustering possibilities to build cluster number 
1 and stage m denotes the same for cluster m. Stage 0 denotes all 
separate entities and a final stage is obtained after cluster m has 
been built; 

An action is then the clustering of 1 or more entities in a given 
cluster; 

.Jensen's original algorithm supposes that there are nk entities in the set gk 

of entities within cluster k of a given alternative for partitioning n entities into 
m clusters. It uses the following criterion as its homogeneity measure: 

m 

w = LT(yk) (5) 
k= l 

where 

(6) 

1s the ' transition cost ' of cluster k. This transition cost will be the reward 
for building cluster k. It is the increase of the objective function. .Jensen 
used the following recursive formula as his objective function for his dynamic 
programming formulation, using the forward value iteration algorithm: 

W k:* (z) = { 0 . for k: = 0 * (7) 
mmzk=l, ... ,Mo [T(z- y) + Wk + 1 (y)] fork:= 1, ... , Mo 

with 
M = number of clusters 
M o = M if N = 2M, and N - M if N < 2 
k: = index of stage 
z = index of objects at stage k: + 1 
y = index of objects at stage k: 
z- y = all objects in z , but not in y 

T ( z - y) = Transition cost between stage k and stage k: + 1 
Some other definitions are useful. All clustering alternatives of then entities 

in m clusters can be themselves classified according to various distTib11tion foTms. 

For example, suppose n = 4 and m = 2. There are in this case 7 clustering 
alternatives, each of wich has one of the following distribution forms: 
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1. Distribution form {3} {1}, where 3 entities are assigned to 
one cluster and a single one to the other cluster. With this dis­
tribution form, there are the following clustering alternatives: 

{1,2,3} {4} 
{1,2,4} {3} 
{1,3,4} {2} 
{2,3,4} {1} 

2. Distribution form {2} {2}, where 2 entities are assigned to each 
cluster with the following clustering alternatives: 

{1,2} 
{2,3} 
{2,4} 

{3,4} 
{1,4} 
{1,3} 

The distribution forms are to be found so that n1 ;::::: n2 ;::::: , . . . , ;::::: nm. In 
the algorithm the distribution forms are very useful to compute the clustering 
alternatives, or states. 

1.2. Computational problems of the dynamic programming algo­
rithm 

Jensen's dynamic programming algorithm assures convergence on the optimal 
solution. Although a great number of redundant solutions are eliminated in 
comparison to total enumeration, there are still too many clustering alternatives 
to be evaluated. For example, if a clustering alternative should contain the 
entities {1,2,3}, then the symetric alternatives {1,3,2} , {2,3 ,1}, {2 ,3,1}, {3,2,1} 
and {3,1,2} are also evaluated, if no precautions ar:e taken. 

Jensen saw this problem and described an alternative formulation to reduce 
the redundancy of the symetric alternatives. To achieve this, a selective criterion 
has to be applied. He studied the efficiency of such a criterion. It seemed to 
him that during large computational problems, it was meaningless to spend time 
reducing this redundancy, because it was a relatively small additional gain in 
comparison to total enumaration. 

"Even when arc Tedundancy is not eliminated, the mLmber of transition calcn­
lations TeqniTed undeT dynamic pmgmmming is S1Lbstantially less than the nmn­
beT of such calC7Llations r·equiTcd undeT total enumcmtion in large pToblem s " . 
.Jensen (1965). 

This redundancy means that a program, based on this algorithm, uses a great 
amount of memory to store all these states and transition costs, on the other 
hand "useless" computations are needed, even if the alternative formulation 
described by Jensen is implemented. 

In order to explain what is ment with storing too much data, a comparison 
between a PC version of Rousseeuw's PAM and an implementation of .Jensen's 
dynamic algorithm can be done. Rousseeuw's program can compute a problem 
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of size 100 objects and 80 observations, clustering the 100 objects in 20 groups . 
.Jensen 's algorithm is limited to 10 objects with 25 observations and can build 
up to 10 clusters, and has to · store a lot of data in temporary files, so that it 
cannot be runned efficiently. The size of both programs is around 500 KB. 

2. Algorithm 

The basic idea to relax the complexity of the algorithm is to consider that 
it is not necessary to compute all the possible clustering solutions generated 
by Jensen's definitions. For his integer programming algorithm, Rao (1971) 
introduced the concepts of string condition and leaders. The string condition 
states that "in an optimal solution, each gmup should consist of a least one 
entity, which foT convenience will be denoted as the leadeT of the gmup, s1tch that 
the distance between the leadeT and any entity that does not belong to the same 
gToup is not less than the distance between the leadeT and any entity within the 
same gT01tp". A leader is then the first object that is cluster:ed in a given group. 
The string condition will be used in the new algorithm to select the entities that 
are to be clustered in a given group at a given stage of the algorithm, instead of 
considering any possible combination of the entities, as .Jensen did. Rao's string 
condition will be the selective criterion used to reduce the states ' redundancy. 

Assume that one state, that is to be generated , should contain the 3 entities 
{1}, {2} , {3} , that entity {1} is to be considered as the leader and that the 
distances are so that: d12 ::::; d13 ::::; d23· Then the only clustering alternative 
generated in respect to the string condition is: {1,2.3}. Because d12 ::::; d13, the 
state {1,3,2} is not a valid one with this formulation. But entities {2} or {3} 
can also be considered as leader. Assume that if entity {2} is the leader , then 
the only valid clustering alternative is {2,1,3}, and if entity {3} is the leader, 
then {3,2,1} is the cluster generated for it. For this clustering alternative , three 
states are then generated. In comparison to .Jensen's definition, it is a gain of 
50%. 

A first trial program was written using this string condition. It has been 
called DYNARAO, and was very useful to verifY, that Rao's string condition 
was a good selective criterion to reduce t he states' redundancy. It will not be 
exposed in its details in this paper, but will be used in the comparison tables 
at the end. 

With this formulation, all the n ent ities are considered as lea.deTs, wich is 
surely not very efficient , because only m clusters are to be built . The second 
idea to reduce the states' redundancy is then to find a way to determine, wich 
entities are the best leadeTs to form the m clusters. 

After Hartigan (1975) developped his solution with the K-Mean algorithm, 
more technics such as H-Mean, or H-median , were proposed. In the new algo- . 
rithm, the method used by Rousseeuw, the m.edioids, was preferred to others , 
because it had been proven that it was more robust. 

Assume that the same entities as above have to be clustered. The medioids' 
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computation will then determine wich entity between {1},{2} and {3} is the 
best, so that at the end only one clustering alternative has to be considered 
in the computations for these three entities, instead of the six with .Jer1sen's 
formulation. 

Then the new algorithm can be defined as follows: 
Given d a dissimilarity measurement between the objects: 

1. Determine the leader (medioids) with Rousseeuw's PAM method: 
The first one is found by: 

Find il Ldij = min Ldij i,j = 1, ... ,n 
'· 

The next ones are computed by the iterative formula: 

with 
Find ijCi = max(Cj) .i = 1, ... , n 

L max(dpq- dpj, 0) _ 
q 

q = 1, ... , n (-medioids) 

pI medioids 
The set of medioids is then controlled and eventually enhanced: 
While a permutation can be done: 

(8) 

(9) 

(10) 

Find ijCi > 0 (11) 

with 
:z::::.:(dpq- dqi) 

q 

q = 1, ... , n(-medioids) 

q = the nearest medioid for p 

p = 1 given med!oid 

i = 1 given object 
2. Find the distribution forms of the n objects in m groups so that: 

'T!I 2: n2 ... 2: nm 

3. Compute the solution 
For f varying from 1 to number of forms do: 
For x varying from 1 to m do: 

generate the state for medioid x in respect to Rao's string con­
dition and with the number of entities required by distribution 
form f 

compute 

W k'(z) ~ { ~in,,~,, ,Mo 

with 

NI = number of clusters 

fork= 0 
[T(z- y) + Wk + 1 *(y)] 

fork= 1, ... , Mo 

(12) 

(13) 

(14) 

(15) 
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M o = M if N = 2M, and N - M if N < 2M 

f = index of distribution form 

x = index of medioid 

k = index of stage 

z = index of objects at stage k + 1 

y = index of objects at stage k 

z - y = all objects in z, but not in y 

T ( z - y) = Transition cost between stage k and stage k + 1 
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IfW k* < W', then W' = W k* memorize the solution that generated W k*. 
At the end the memorized solution is the optimal one. The DYNARAO 
solution beginns at step 2 and considers all n entities as leaders, so that 
loop over .x runs n times instead of m. 
The homogeneity of a partition is measured with the within cluster sum 
of squares, as Jensen did in his formulation: 

(16) 
k=l 

where 

T(yk) = ( n\) . L (dij) 
t,JEYk 

(17) 

3. Results and conclusion 

As a first result, the size of the greatest problem, that can be computed with 
the new algorithm, is 100 objects, 60 observations and 10 clusters.Rousseeuw's 
programm can compute a problem of size 100 objects and 80 observations, 
clustering the 100 objects in 20 groups. The programs used for the following 
tables were all written in FORTRAN. 

The first table shows the goodness of the algorithm by clustering different 
data sets generated as normal random deviates or by a Monte Carlo method. 
The result given is the percent of problems that were correctly solved among 
10'000. As these simulations prove it, the new algorithm still finds an optimal 
solution, as .Jensen 's original does. All these simulations have been done on a 
VAX-11 machine. 

Table 2 shows the average CPU times needed by an AT /286 class machine to 
cluster some data sets, as an example 6 objects in 2 clusters. It proves that the 
new algorithm runs faster as integer programming and the DYNAROA solution. 
No times are given for .Jensen's algorithm, as it cannot compute all datasets , 
because of its limited capabilities (only 10 objects). 

The third table shows the CPU time needed to cluster a real dataset with 
62 objects and 25 observations each in different numbers of clusters using some 
modern microprocessors. This table shows, that with the rapid microprocessors, 
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Method Normal Monte-Carlo 
PAM 62 65 
Rao (Integer P rogram.) 98 98 
Jensen 's algorithm 100 100 
Dynamic + Rao 's string condition 100 100 
NEW DYNAmic algorithm 100 100 

Table 1. Efficience of t he algorithms 

·Dataset Pam Rao Dynarao Newdyna 
6/2 1" 1" 1" 0"57 
10/2 1" 1" 1" 1" 
20/2 2" 15" 1" 1" 
6/3 1" 1" 1" 0"81 
9/3 1" 5 53" 1"60 0"90 
12/3 1"79 12" 2"37 0"90 
18/3 2"76 118" 11"03 2"35 

Table 2. Performance of the algorithms on an 80286 12 Mhz 

one can use a complex algorithm without having to wait to long to obtain good 
results. 

In comparison with the classical method;; it is still a bit slow. With the PAM 
algorithm the CPU time never exceeds 30" . But as simulations proved it, the 
new algorithm finds an optimal solution. 

Number of clusters 80286 12 Mhz 80486/DX2 66Mhz Pentium 60Mhz 
2 38" 2" 2" 
3 2'46" 10" 7" 
4 9'31" 33" 25" 
5 21 '32" 1'11" 51" 
6 34'21" 1'24" 57" 

Table 3. Performance of NEW-DYNAMIC 
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